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Abstract. We de�ne and study a generalized Wang homomorphism closely related

to the generalized Gottlieb group. We show that the existence of an element in the

generalized Gottlieb group whose image under the Hurewicz map is nonzero is a suÆcient

condition for the vanishing of the mod p Wu numbers of X. Also, we can show that

the image �
q

�̂
(k) of k under the generalized Wang homomorphism is an obstruction to a

map Sn�Ekf ! X lifting to a map Sn�Ekf ! Ek, where Ek is the �bration induced

by k 2 Hq(X;�)

1. Introduction

Let L(A;X) be the space of maps from A to X with the compact open topology. For

a based map f : A ! X , L(A;X ; f) will denote the path component of L(A;X) con-

taining f . Let ! : L(A;X ; f) ! X be the evaluation map given by !(�) = �(�) for

� 2 L(A;X ; f), where � is a base point of A. Gottlieb [G1] studied the evaluation sub-

group !#(�n(L(X;X ; 1))) = Gn(X) which is closely related to the Wang homomorphism

��
�̂
: H�(X ;�)! H��n(X ;�). Following [G2], any element �̂ 2 �n(L(X;X ; 1); 1), or equiv-

alently, �� : Sn �X ! X may be viewed as a clutching map ([S], p. 455) along the equator

of Sn+1 which constructs a �bration X
i

! E
p

! Sn+1. Such a �bration has the Wang exact

sequence corresponding to �̂;

� � � ! Hq(E;�)
i
�

! Hq(X ;�)
�
q

�̂

! Hq�n(X ;�)! Hq+1(E;�)! � � �

and �
q

�̂
is called the Wang homomorphism for �̂. Lupton and Oprea [LO] studied certain ob-

structions arising in symplectic geometry using some properties of the Wang homomorphism

��
�̂
for �̂ 2 �1(L(X;X ; 1); 1). In [GNO], some properties of the Wang homomorphism ��

�̂
for

�̂ 2 �n(L(X;X ; f); f) were studied and it was shown that this homomorphism ��
�̂
is closely

related to the spherical Lefschetz and Euler characteristics. In this paper, we generalize

this homomorphism to ��
�̂
: H�(X ;�) ! H��n(A;�) for �̂ 2 �n(L(A;X ; f); f) and study

some properties of the generalized Wang homomorphism ��
�̂
: H�(X ;�) ! H��n(A;�)

closely related to the generalized Gottlieb group !#(�n(L(A;X ; f); f)) = Gn(A; f;X). In

section 2, we introduce and study some properties of the generalized Wang homomor-

phism ��
�̂

: H�(X ;�) ! H��n(A;�) for �̂ 2 �n(L(A;X ; f); f). We can obtain some

connections between the generalized Gottlieb groups and the generalized Wang homomor-

phisms. We show that �n
�̂
= 0 if and only if h(�) = 0, where � = !#(�̂) 2 Gn(A; f;X)

and h : �n(Y ) ! Hn(Y ;Z) ! Hn(Y ;�) is the composition of the Hurewicz homomor-

phism tensored with �. Also we show that if f : A ! X has a right homotopy inverse
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g : X ! A, then the Wang homomorphism �
q

(g\)#(�̂)
for (g\)#(�̂) 2 L(X;X ; 1) can be

represented by the composition of g� and the generalized Wang homomorphism �q
�̂
, where

g\ : L(A;X ; f)! L(X;X ; fg) is the map given by g\(f 0) = f 0g. On the other hand, Byun

[B] de�ned the mod pWu numbers and obtained a result in which the Wang homomorphism

is closely related to the vanishing of the mod p Wu numbers. In section 3, we can replace

Byun's condition with a weaker one for the mod pWu numbers to vanish. A map f : A! X

is called cohomologically injective or c-injective over � if f� : H�(X ;�) ! H�(A;�) is an

injective map. We show that for a c-injective map f : A ! X over Zp and the same di-

mensional path connected Zp-Poincar�e spaces X , A, if there is an element � 2 G1(A; f;X)

such that the image h(�) of � under the Hurewicz map is nonzero, then all the mod p

Wu numbers of X vanish. In section 4, we can know that �
q

�̂
(k) can be considered as an

obstruction to the map ��(1� pkf ) : S
n�Ekf ! X lifting to a map Sn�Ekf ! Ek, where

Ek is the pullback of k : X ! K(�; q) and � : PK(�; q)! K(�; q), and Ekf is the pullback

of kf : A ! K(�; q) and � : PK(�; q)! K(�; q). In fact, we show that there exists a map

� : Sn �Ekf ! Ek such that �jEkf
� ~f and the diagram

Sn �Ekf

�

����! Ek

1�pkf

?
?
y pk

?
?
y

Sn �A
��

����! X

commutes if and only if �
q

�̂
(k) = 0 2 Hq�n(A;�). The special case in which f = 1X and

A = X , is a result of Gottlieb ([G1], Theorem 6.3). Throughout this paper, space means a

space of the homotopy type of a locally �nite connected CW complex. The base point as

well as the constant map will be denoted by �. For simplicity, we use the same symbol for

a map and its homotopy class.

Acknowledgment. The author would like to express his gratitude to John Oprea and

Gregory Lupton for valuable conversations during this research.

2. Generalized Gottlieb groups and Generalized Wang homomorphisms

In 1949, H. C. Wang [W] obtained the following result; For a �bration X
i

! E
p

! Sn+1

over a sphere, there is an exact sequence

� � � ! Hq(E;�)
i
�

! Hq(X ;�)
�
q

�̂

! Hq�n(X ;�)! Hq+1(E;�)! � � � ;

which is called the Wang sequence. On the other hand, D. H. Gottlieb [G2] considered that

for any element �̂ 2 �n(L(X;X ; 1); 1), the Wang homomorphism for �̂ as follows;

Represent Sn+1 as the union of closed hemisphere En+1
� and En+1

+ with intersection

Sn. For any element �̂ 2 �n(L(X;X ; 1); 1), let E�̂ be the space obtained from (En+1
� �

X)
`
(En+1

+ �X) by identifying (y; x) 2 En+1
� �X with (y; �̂(y)(x)) 2 En+1

+ �X for y 2 Sn

and x 2 X . These identi�cations are compatible with the projections En+1
� �X ! En+1

�

and En+1
+ � X ! En+1

+ . Thus we have a �bration X
i

! E�̂

p�̂
! Sn+1 with the clutching

map �� : Sn �X ! X for p�̂. Such a �bration has the Wang exact sequence associated to

it;

� � � ! Hq(E;�)
i
�

! Hq(X ;�)
�
q

�̂

! Hq�n(X ;�)! Hq+1(E;�)! � � �

and �
q

�̂
is called the Wang homomorphism for �̂ [G2].

There is a beautiful connection between the Wang homomorphism �
q

�̂
: Hq(X ;�) !

Hq�n(X ;�) for �̂ and the clutching map �� : Sn �X ! X for p�̂ as follows;
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For any x 2 Hq(X ;�); ���(x) = 1� x+ �U � �
q

�̂
(x), where �U 2 Hn(Sn) is the generator

(Confer [S] pp.456).

Now we would like to generalize this Wang homomorphism to ��
�̂
: H�(X ;�)! H��n(A;

�) for �̂ 2 �n(L(A;X ; f); f) using a similar relation with the above fact and study some

properties of the generalized Wang homomorphism ��
�̂
: H�(X ;�) ! H��n(A;�) closely

related to the generalized Gottlieb group Gn(A; f;X) de�ned by Woo and Kim [WK].

De�nition 2.1. Let f : A ! X be a based map. A based map � : Sn ! X is called

f-cyclic if there is a map �� : Sn � A ! X such that ��j � r(� _ f) : Sn _ A ! X , where

j : Sn _ A! Sn �A is the inclusion and r : X _X ! X is the folding map. We say that

�� is an associated map to �. The set of all homotopy class of f -cyclic maps from Sn to X

is denoted by Gn(A; f;X).

Also, a based map � : Sn ! X is called cyclic if � is 1X -cyclic. The Gottlieb group

denoted Gn(X) is the set of all homotopy class of cyclic maps from Sn to X [G1].

Remark 2.2.

(1) Gn(X) = \fGn(A; f;X) j f : A ! X is a map and A is a spaceg. For � 2 Gn(X),

there is an associated map �� : Sn �X ! X . The composition

A� Sn
f�1
! X � Sn

��
! X

establishes that � 2 Gn(A; f;X). Since f is arbitrary, � 2 \fGn(A; f;X). On the

other hand, if we take A = X and f = 1 : X ! X , then the converse holds.

(2) Gn(X; 1; X) = Gn(X) and Gn(A; �; X) = �n(X).

(3) In general, Gn(X) � Gn(A; f;X) � �n(X) for any map f : A! X . It is well known

that G5(S
5) = 2Z [G1] and Gn(X; i1; X � Y ) �= Gn(X) � �n(Y ) [LW]. Consider the

inclusion i1 : S
5 ! S5 � S5 and the projection p1 : S

5 � S5 ! S5. Then we know,

from the above fact, that G5(S
5 � S5) �= 2Z� 2Z 6= G5(S

5; i1; S
5 � S5) �= 2Z� Z 6=

�5(S
5 � S5) �= Z�Z.

Since A is a locally compact, any continuous map �̂ : (Sn; �) ! (L(A;X ; f); f) corre-

sponds to a continuous map �� : Sn � A ! X , where ��(s; a) = �̂(s)(a). Thus we have the

following proposition.

Proposition 2.3. [WK] Let ! : L(A;X ; f)! X be the evaluation map. Then !#(�n(L(A;

X ; f))) = Gn(A; f;X).

For a based map f : (A; �)! (X; �), let � 2 Gn(A; f;X). From Proposition 2.3, there is

an element �̂ 2 �n(L(A;X ; f); f) such that !#(�̂) = �. By the exponential law, there is a

map �� : Sn�A! X given by ��(s; a) = �̂(s)(a) or immediately by de�nition of Gn(A; f;X),

there is a map �� : Sn � A ! X such that ��j � r(� _ f), where j : Sn _ A ! Sn � A is

the inclusion and r : X _ X ! X is the folding map. Now we are going to study some

properties in cohomology of the associated map �� : Sn �A! X . Let � be a commutative

ring with a unit. By the K�unneth formula and the fact H�(Sn;Z) has no torsion, we have

Hq(Sn �A;�) �= H0(Sn;Z)
Hq(A;�) �Hn(Sn;Z)
Hq�n(A;�):

Thus if x 2 Hq(Sn � A;�), we may write x = 1 � z + �U � y, where �U 2 Hn(Sn) is the

generator such that h �U;Ui = 1 and U 2 Hn(S
n) is the fundamental homology class. Let

i1 : S
n ! Sn � A; i2 : A ! Sn � A be inclusions and p1 : S

n � A ! Sn; p2 : S
n � A ! A

be projections. Then p�1(
�U) = �U � 1; p�2(z) = 1� z. Now since p1i1 = 1; i�1(z

0 � 1) = z0 and

i�1(z
0 � z) = 0 unless z 2 H0(A;�). Since p2i2 = 1; i�2(1� z) = z and i�2(z

0 � z) = 0 unless

z0 2 H0(Sn). Thus since ��i2 = f , ���(x) = 1�f�(x)+ �U �y. From now on, we shall denote

y by �q
�̂
(x).
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De�nition 2.4. For any �̂ 2 �n(L(A;X ; f); f), de�ne a map �
q

�̂
: Hq(X ;�)! Hq�n(A;�)

by ���(x) = 1 � f�(x) + �U � �
q

�̂
(x). Since ���(x + y) = ���(x) + ���(y), we can easily show

that �
q

�̂
: Hq(X ;�)! Hq�n(A;�) is a group homomorphism. We call this homomorphism

a generalized Wang homomorphism.

Note that in case A = X and f = 1, the generalized Wang homomorphism ��
�̂
for �̂ is

exactly the Wang homomorphism.

Here we use Spanier's conventions for the cup product, cap product and slant product [S].

Recall that the slant product n : Hn(X ;G)
Hq(X�Y ;G0)! Hq�n(Y ;G0
G) is given by

hznu; ci =
P
hu; zi
ci
gi, where z =

P
zi
gi 2 Hn(X ;G) ([S], p. 351). We can easily know

that for the fundamental class U 2 Hn(S
n), the map Un : Hq(Sn � A;�) ! Hq�n(A;�)

given by (Un )() = Un for  2 Hq(Sn �A;�), is a homomorphism.

Lemma 2.5. For each q, �
q

�̂
= (Un )(���) : Hq(X ;�)

���

! Hq(Sn �A;�)
Un

! Hq�n(A;�).

Proof. Let x 2 Hq(X ;�). Since deg U = n > 0; Un(1� f�(x)) = 0. Thus (Un )(���)(x) =

Un���(x) = Un(1� f�(x)) + Un( �U � �
q

�̂
(x)) = 0 + h �U;Ui�

q

�̂
(x) = �

q

�̂
(x).

Let E : L(A;X) � A ! X be the evaluation map. Then de�ne a homomorphism
��q : Hn(L(A;X);�) ! Hom(Hq(X ;�); Hq�n(A;�)) by ��q(�)(z) = �nE�(z), where n :

Hn(L(A;X);�)
Hq(L(A;X)�A;�)! Hq�n(A;�) is the slant product. Let h : �n(Y )!

Hn(Y ;Z) ! Hn(Y ;�) be the composition of the Hurewicz homomorphism tensored with

�.

Proposition 2.6. For each �̂ 2 �n(L(A;X ; f); f), �
q

�̂
= ��q(h(�̂)):

Proof. Consider the following commutative diagram

Sn �A
�̂�1

����! L(A;X)�A

��

?
?
y E

?
?
y

X
=

����! X:

Thus �
q

�̂
(x) = Un���(x) = Un(�̂�1X)

�E�(x) = �̂�(U)nE
�(x) = h(�̂)nE�(x) = ��q(h(�̂))(x).

Note that �
q

�̂
= 0 : Hq(X ;�)! Hq�n(A;�) for all q < n since Hq�n(A;�) = 0.

Corollary 2.7. If �̂ 2 Ker(h : �n(L(A;X ; f); f) ! Hn(L(A;X);�)), then �
q

�̂
= 0 :

Hq(X ;�)! Hq�n(A;�) for all q � n.

For any r > 0 and any �̂ 2 �r(L(A;X ; f); f), let !#(�̂) = � : Sr ! X . Then !��̂� =

�� : Hr(S
r)

�̂�
! Hr(L(A;X);�)

!�
! Hr(X ;�). Therefore, we have the following commutative

diagram;

�r(L(A;X ; f); f)
h

����! Hr(L(A;X);�)

!#

?
?
y !�

?
?
y

�r(X; x0)
h

����! Hr(X ;�):

Thus we can obtain a necessary and suÆcient condition for �n
�̂
= 0 as follows.

Theorem 2.8. h!#(�̂) = !�h(�̂) = 0 2 Hn(X ;�) if and only if �n
�̂
= 0 : Hn(X ;�) !

H0(A;�) for any �eld �.
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Proof. Let x 2 Hn(X ;�). Since ���(x) = 1 � f�(x) + �U � �n
�̂
(x) = 1 � f�(x) +

�n
�̂
(x) � �U � 1 and � = ��i1, (!#(�̂))

�(x) = ��(x) = i�1 ��
�(x) = i�1(1 � f�(x)) + i�1(�

n

�̂
(x) �

�U � 1) = �n
�̂
(x) � �U . Thus �n

�̂
(x) = h�n

�̂
(x) � �U;Ui = h(!#(�̂))

�(x); Ui = hx; (!#(�̂))�(U)i =

hx; h(!#(�̂))i. Thus �
n

�̂
= 0 if and only if h(!#(�̂)) = 0. Since !�h = h!#, we have proved

the theorem.

On the other hand, we have a bilinear map from �n(L(A;X ; f); f) � Hq(X ;�) !

Hq�n(A;�) given by (�̂; k) ! �
q

�̂
(k). If we �x �̂ 2 �n(L(A;X ; f); f), we get a general-

ized Wang homomorphism �
q

�̂
: Hq(X ;�) ! Hq�n(A;�). If we �x k 2 Hq(X ;�), we get a

homomorphism �k : �n(L(A;X ; f); f)! Hq�n(A;�) given by �k(�̂) = �
q

�̂
(k). We call �k

a generalized Gnaw homomorphism.

Proposition 2.9. Let k : X ! Y and l : Y ! K(�; q) be maps. Then the diagram

�n(L(A;X ; f); f)
(k\)#
����! �n(L(A; Y ; kf); kf)

�lk

?
?
y �l

?
?
y

Hq�n(A;�) Hq�n(A;�)

commutes, where k\ : L(A;X ; f)! L(A; Y ; kf) is the map given by k\(f
0) = kf 0.

Proof. Let �̂ 2 �n(L(A;X ; f); f). Then �l(k\)#(�̂) = �l((k\)#(�̂)) = �
q

(k\)#(�̂)
(l) =

Un(k��)�(l) = Un���k�(l) = Un���(lk) = �
q

�̂
(lk) = �lk(�̂).

Let �q be the fundamental class of H
q(K(�; q);�). Then it is well known by Thom [T]

that ��q : �n(L(X;K(�; q); k); k) �= Hq�n(X ;�) is an isomorphism. Taking Y = K(�; q),

l = 1K(�;q), A = X and f = 1X , we have the following corollary.

Corollary 2.10. [G2] For k : X ! K(�; q); �k = ��q(k\)# : �n(L(X;X ; 1); 1)
(k\)#
!

�n(L(X;K(�; q); k); k)
��q
! Hq�n(X ;�).

The �rst commutative diagram of the following proposition comes from the proof of

Proposition 2.9.

Proposition 2.11. Let j : B ! A; k : X ! Y be maps and �̂ 2 �n(L(A;X ; f); f). Then

the diagram

Hq(Y ;�)
k
�

����! Hq(X ;�) Hq(X ;�)

�
q

(k
\
)#(�̂)

?
?
y �

q

�̂

?
?
y �

q

(j\)#(�̂)

?
?
y

Hq�n(A;�) Hq�n(A;�)
j
�

����! Hq�n(B;�)

commutes, where j\ : L(A;X ; f)! L(B;X ; fj) is the map given by j\(f 0) = f 0j.

Proof. We only show that the second diagram is commutative. Let x 2 Hq(X ;�). Then

�
q

(j\)#(�̂)
(x) = Un(��(1� j))�(x) = Un(1� j)� ���(x) = j�Un���(x) = j��

q

�̂
(x).

Corollary 2.12. Let g : X ! A be a map and �̂ 2 �n(L(A;X ; f); f). Then the following

diagram is commutative;

Hq(A;�)
g
�

����! Hq(X ;�) Hq(X ;�)

�
q

(g
\
)#(�̂)

?
?
y �

q

�̂

?
?
y �

q

(g\)#(�̂)

?
?
y

Hq�n(A;�) Hq�n(A;�)
g
�

����! Hq�n(X ;�):
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The above corollary says that for any element �̂ 2 �n(L(A;X ; f); f) and a map g : X !

A, the homomorphism �
q

(g\)#(�̂)
for (g\)#(�̂) 2 L(X;X ; fg) is the composition Hq(X ;�)

�
q

�̂

!

Hq�n(A;�)
g
�

! Hq�n(X ;�) and the homomorphism �
q

(g\)#(�̂)
for (g\)#(�̂) 2 L(A;A; gf) is

the compositionHq(A;�)
g
�

! Hq(X ;�)
�
q

�̂

! Hq�n(A;�). Thus if f : A! X has a right homo-

topy inverse g : X ! A, then the Wang homomorphism �
q

(g\)#(�̂)
for (g\)#(�̂) 2 L(X;X ; 1)

can be represented by the composition of g� and the generalized Wang homomorphism �
q

�̂
.

3. Generalized Gottlieb groups and the mod p Wu numbers

Byun [B] de�ned the mod p Wu numbers and obtained a result in which the Gottlieb

group is closely related to a condition for the vanishing of the mod p Wu numbers. In this

section, we show that the generalized Gottlieb group is closely related to a condition for the

vanishing of the mod p Wu numbers. Thus we can replace Byun's condition with a weaker

one for the mod p Wu numbers to vanish. By an m-dimensional Zp-Poincar�e complex,

we will mean a CW complex X for which there is a homology class UX 2 Hm(X ;�)

such that the map \UX : H�(X ;Zp) ! Hm��(X ;Zp) is an isomorphism. Consider an

m-dimensional Zp-Poincar�e complex X with a prime integer p. Let fpg = 1 if p = 2 and

fpg = 2(p�1) if p > 2. Let P k : Hq(X ;Zp)! Hq+fpgk(X ;Zp) be the k-th Steenrod square.

It is customary to denote it by Sqk when p = 2. Using the universal coeÆcient theorem and

Poincar�e isomorphism, there is an isomorphism � : Hq(X ;Zp) ! Hom(Hm�q(X ;Zp); Zp)

given by �(x)(y) = hx [ y; UXi, where x 2 Hq(X ;Zp); y 2 Hm�q(X ;Zp). Consider an

m-dimensional Zp-Poincar�e complex X with a prime integer p and the homomorphism

Hm�kfpg(X ;Zp)
P
k

! Hm(X ;Zp)
h ;UXi

! Zp. Then, by the above fact, there exists an unique

cohomology class vk 2 Hfpgk(X ;Zp) such that x[vk = P k

X
(x) for any x 2 Hm�fpgk(X ;Zp).

Thus we have the following lemma.

Lemma 3.1. Let X be an m-dimensional Zp-Poincar�e complex with a prime integer p.

Then there exists an unique cohomology class vk 2 Hfpgk(X ;Zp) such that x [ vk = P k

X
(x)

for any x 2 Hm�fpgk(X ;Zp), where P
k

X
is the k-th mod p Steenrod power.

Set v = 1 + v1 + v2 + � � � . Let P = 1 + P 1 + P 2 + � � � be the mod p total Steenrod

power. The mod p total Wu class q and the k-th Wu class qk are de�ned by the equation

q = Pv = 1 + q1 + q2 + � � � , that is, qk =
P

i+j=k P
i(vj) 2 Hfpgk(X ;Zp). Also, the mod p

Wu numbers are de�ned [B] as qI = hq�1q�2 � � � q�l ; UXi for any sequence of natural numbers

I = (�1; �2; � � � ; �l) such that fpg(�1 + �2 + � � �+ �l) = m. In particular, when p = 2 and X

is a manifold, these characteristic numbers are none other than the usual Stiefel-Whitney

numbers of X . When p = 2, the classical terminology calls qk the Stiefel-Whitney class of X

and vk(X) the Wu class of X . Let � be a commutative ring with a unit. A map f : A! X

is called cohomologically injective or c-injective over � if f� : H�(X ;�) ! H�(A;�) is an

injective map. Given a c-injective map f : A! X over �, a f-derivation of degree �n from

H�(X ;�) to H�(A;�) is a group homomorphism Df : H�(X ;�) ! H��n(A;�) such that

Df (u[v) = Df (u)[f
�(v)+(�1)njujf�(u)[Df (v) for any u; v 2 H�(X ;�). Here juj means

dim u. We can obtain the following lemma by modi�cation of Byun's proof.

Lemma 3.2. Let X and A be m-dimensional Zp-Poincar�e spaces for a prime p. Assume

f : A ! X is a c-injective map over Zp and there is a f-derivation Df of deg �n from

H�(X ;Zp) to H�(A;Zp) which commutes with the mod p Steenrod power. Also assume

there is a class � 2 Hn(X ;ZP ) such that Df (�) = 1; P i(f�(�)) = 0 for any i such that

0 < i < n if p = 2 and 0 < i < n=2 if p > 2, where P i's are the i-th mod p Steenrod powers.

Then all the mod p Wu numbers of X vanish.
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Proof. First of all, we will show that f�(�) [Df (q) = 0. Let m = dim X . From Lemma

3.1, there exists a unique cohomology class vk 2 Hfpgk(X ;Zp) such that x [ vk = P k

X
(x)

for any x 2 Hm�fpgk(X ;Zp). Then f�(�) [ DfP
k

X
(x) = f�(�) [ Df (x [ vk) = (f�(�) [

Df (x)) [ f�(vk) + (�1)2njxjf�(x) [ (f�(�) [Df (vk)). Thus we have

f�(�) [DfP
k

X
(x) = f�(x) [ (f�(�) [Df (vk)) + (f�(�) [Df (x)) [ f�(vk): (�)

Case 1. Assume p = 2 or n is even. Then, noting that Pf�(�) = f�(�) + f�(�)p from

the hypothesis, we obtain, by Cartan's formula, P k(f�(�) [ Df (x)) =
P

i
P k�if�(�) [

P i

A
Df (x) = f�(�) [ P k

A
Df (x) + f�(�)p [ P k�Æ

A
Df (x), where Æ = n if p = 2 and Æ = n=2

if p > 2. From the equation (*), we have P k(f�(�) [ Df (x)) � f�(�)p [ P k�ÆDf (x) =

f�(�)[P kDf (x) = f�(x)[(f�(�)[Df (vk))+(f�(�)[Df (x))[f
�(vk). Since A is also anm-

dimensional Zp-Poincar�e complex, there exists a unique cohomology class �vk 2 Hfpgk(A;Zp)

such that a [ �vk = P k

A
(a) for any a 2 Hm�fpgk(A;Zp). Since P k

A
f�(x) = f�P k

X
(x) =

f�(x [ vk) = f�(x) [ f�(vk) and f�(x) 2 Hfpgk(A;Zp), we know that �vk = f�(vk) and

P k(f�(�) [ Df (x)) = (f�(�) [ Df (x)) [ f�(vk). Thus we have f�(�)p [ P k�Æ

A
Df (x) =

�f�(x) [ (f�(�) [Df (vk)). Note that �
p [ P k�Æ(x) = 0 for dimensional reasons and that

Df (�
p) = 0. Thus we have 0 = Df (�

p[P k�Æ

X
(x)) = Df (�

p)[f�P k�Æ

X
(x)+(�1)nj�

p
jf�(�)p[

DfP
k�Æ

X
(x) = f�(�)p[P k�Æ

A
Df (x). Since f

�(�)p[P k�Æ

A
Df (x) = �f�(x)[(f�(�)[Df (vk)),

we know (f�(�) [ Df (vk)) [ f�(x) = 0 for any x (jxj = m � fpgk). By Lemma 3.1,

we have that f�(�) [ Df (vk) = 0 and, therefore, that f�(�) [ Df (v) = 0. Thus 0 =

P (0) = P (f�(�) [ Df (v)) = Pf�(�) [ PDf (v) = (f�(�) + f�(�)p) [ PDf (v) = (f�(�) [

PDf (v)) + (f�(�)p [ PDf (v)). It follows that f�(�) [ PDf (v) = �f�(�)p [ PDf (v) =

(�1)2f�(�)2(p�1)+1 [ PDf (v) = � � � = (�1)Nf�(�)N(p�1)+1 [ PDf (v) = 0, where N is any

suÆciently large integer. Thus we have f�(�)[Df (q) = f�(�)[DfP (v) = f�(�)[PDf (v) =

0.

Case 2. Assume both p and n are odd. Then Pf�(�) = f�(�) from the hypothesis and,

therefore, P k

A
(f�(�)[Df (x)) =

P
i
P k�i

A
f�(�)[P i

A
Df (x) = f�(�)[P k

A
Df (x). Together with

equation (*), we obtain P k

A
(f�(�)[Df (x)) = f�(x)[ (f�(�)[Df (vk)) + (f�(�)[Df (x))[

f�(vk). From the property of f�(vk), we know that P k

A
(f�(�)[Df (x)) = (f�(�)[Df (x))[

f�(vk). Therefore we have that f
�(x)[(f�(�)[Df (vk)) = 0 for any x (jxj = m�2(p�1)k).

By Lemma 3.1, we know that f�(�) [Df (vk) = 0 and, therefore, that f�(�) [Df (v) = 0.

Thus 0 = PA(f
�(�) [Df (vk)) = PAf

�(�) [ PADf (v) = f�(�) [DfPX (v) = f�(�) [Df (q).

This proves the assertion f�(�) [Df (q) = 0.

Secondly, if u is a cohomology class with Df (� [ u) = 0, then 0 = Df (� [ u) =

f�(u) + (�1)n
2

f�(�) [ Df (u). Thus we know that f�(u) = (�1)n
2+1f�(�) [ Df (u) =

(�1)(n+1)
2

f�(�) [ Df (u) = (�1)n+1f�(�) [ Df (u). In particular, if � [ u = 0, then

f�(u) = (�1)n+1f�(�) [Df (u).

Now we will prove this lemma. Let I = (�1; �2; � � � ; �l) be a sequence of natural numbers

such that fpg(�1 + �2 + � � � + �l) = m. Set qI = q�1q�2 � � � q�l . From the fact � [ qI 2

Hm+n(X : Zp) = 0, we have that f�(qI) = (�1)n+1f�(�) [ Df (qI ) = (�1)n+1f�(�) [
P

j
(�1)

(jq�1 j+���+jq�j�1 j)jq�j jDf (q�j )f
�(q�1) � � �

\f�(q�j ) � � � f
�(q�l). Since jq�j j is even (p > 2)

and (�1)(jq�1 j+���+jq�j�1 j)jq�j j � 1 (mod p = 2), we can get
P

j
(�1)(jq�1 j+���+jq�j�1 j)jq�j jDf (q�j )

f�(q�1) � � �
\f�(q�j ) � � � f

�(q�l) =
P

j
Df (q�j )f

�(q�1) � � �
\f�(q�j ) � � � f

�(q�l). Thus we know, from

the fact f�(�)[Df (q) = 0, that f�(qI) = (�1)n+1
P

j
(f�(�)[Df (q�j ))f

�(q�1) � � �
\f�(q�j ) � � �

f�(q�l) = 0. Since f is c-injective over �, qI = 0 and qI(X) = hq�1q�2 � � � q�l ; UXi = 0. This

proves the lemma.
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For any �̂ 2 �n(L(A;X ; f); f), there is a map ��
�̂
: H�(X ;�)! H��n(A;�). If f : A!

X is a c-injective map over �, then the following lemma shows that ��
�̂
is an f -derivation

of degree �n.

Lemma 3.3. (1) If f : A! X is a c-injective map over �, ��
�̂
(u [ v) = ��

�̂
(u) [ f�(v) +

(�1)njujf�(u) [ ��
�̂
(v) for any u; v 2 H�(X ;�).

(2) If � = Zp, we have ��
�̂
P k = P k��

�̂
for any integer k.

Proof. (1) We have ���(u[v) = 1�f�(u[v)+ �U���
�̂
(u[v). On the other hand, ���(u[v) =

���(u)[���(v) = (1�f�(u)+ �U���
�̂
(u))[(1�f�(v)+ �U���

�̂
(v)) = 1�f�(u[v)+ �U�((��

�̂
(u)[

f�(v))+(�1)njuj(f�(u)[��
�̂
(v))). Thus ��

�̂
(u[v) = (��

�̂
(u)[f�(v))+(�1)njuj(f�(u)[��

�̂
(v)).

(2) Since P k ���(u) = ���P k(u) and P kf�(u) = f�P k(u), we have that 1 � P kf�(u) + �U �

P k��
�̂
(u) = P k(1�f�(u)+ �U���

�̂
(u)) = P k ���(u) = ���P k(u) = 1�f�P k(u)+ �U���

�̂
P k(u) =

1� P kf�(u) + �U � ��
�̂
P k(u). Hence P k��

�̂
(u) = ��

�̂
P k(u).

We know, from Corollary 2.12 and the above lemma (1), that if f : A ! X has a right

homotopy inverse g : X ! A, then g��
q

�̂
is the Wang derivation of degree �n of H�(X ;�).

Now, Lemma 3.2 and Lemma 3.3 together prove the following theorem.

Theorem 3.4. Let p be a prime, X and A m-dimensional path connected Zp-Poincar�e

spaces. Assume f : A! X is a c-injective map over Zp and there is a class � 2 Hn(X ;Zp)

such that h�; h(�)i = 1 for some element � 2 Gn(A; f;X) and P i(f�(�)) = 0 for any i such

that 0 < i < n if p = 2 and 0 < i < n=2 if p > 2, where P i's are the i-th mod p Steenrod

powers. Then all the mod p Wu numbers of X vanish.

The following corollary says that, from Proposition 2.3 and Theorem 2.8, the nontriviality

of the generalized Wang homomorphism is a suÆcient condition for the vanishing of the

mod p Wu numbers.

Corollary 3.5. Let f : A! X be a c-injective map over Zp, where X and A have the same

dimensional path connected Zp-Poincar�e spaces. If there is an element � 2 G1(A; f;X) such

that h(�) 6= 0, then all the mod p Wu numbers of X vanish.

Proof. Since the map H1(X ;Zp)! Hom(H1(X ;Zp); Zp) de�ned by the Kronecker product

is an isomorphism, there is a � 2 H1(X ;Zp) with h�; h(�)i = 1. This proves the corollary.

Taking f = 1 and A = X , we get a result of Byun [B].

Corollary 3.6. [B] Let X be a path connected Zp-Poincare space. If there is an element

� 2 G1(X) whose image under the Hurewicz map h : �1(X)! H1(X ;Zp) is not zero, then

all the mod p Wu numbers vanish.

4. Generalized Wang homomorphisms and Lifting Gottlieb groups

Let k : X ! Y be a map and PY the space of paths in Y which begin at �. Let

� : PY ! Y be the �bration given by evaluating a path at its end point. Let pk : Ek ! X

be the �bration induced by k : X ! Y from �. Let f : A! X be a map. Then we can also

consider the �bration pkf : Ekf ! A induced by kf : A! Y from �. The following lemma

is standard.

Lemma 4.1. A map g : B ! X can be lifted to a map B ! Ek if and only if kg � �.

In [Y], we showed that the following theorem is true for the case of f = 1X and A = X .

It is can be easily extended as follows.
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Theorem 4.2. Let �� : B�A! X be an associated map to � 2 G(B;A; f;X). Then there

exists a map � : B �Ekf ! Ek such that �jEkf
� ~f and the diagram

B �Ekf

�

����! Ek

(1�pkf )

?
?
y pk

?
?
y

B �A
��

����! X

commutes if and only if k��(1� pkf ) � �.

Proof. If such a � exists, we know, from Lemma 4.1, that k��(1 � pkf ) � �: Conversely,

suppose k��(1 � pkf ) � �. By Lemma 4.1, there is a map �0 : B � Ekf ! Ek such that

pk�
0 = ��(1�pkf ). Then pk�

0

jEkf

= ��(1�pkf )jEkf
� pk ~f . It is known ([MT], Proposition 2,

p. 109) that for maps g1; g2 : C ! Ek, pkg1 � pkg2 if and only if there is a map  : C ! 
Y

such that g1 � �(g2 � )�, where � : Ek � 
Y ! Ek is given by �((a; �); !) = (a; ! + �)

and � : C ! C � C is the diagonal map. Thus for maps ~f; �0
jEkf

: Ekf ! Ek, there is

a map  : Ekf ! 
Y such that ~f � �(�0
jEkf

� )�. Let 0 = p2 : B � Ekf ! 
Y ,

where p2 : B � Ekf ! Ekf is the projection. Consider the map � = �(�0 � 0)�B�Ekf
:

B�Ekf ! Ek. Then pk� = pk�
0 = ��(1�pkf ); �jEkf

� �(�0
jEkf

�)�Ekf
� ~f . This proves

the theorem.

The following corollary says that �
q

�̂
(k) can be considered as an obstruction to the map

��(1� pkf ) : S
n �Ekf ! X lifting to a map Sn �Ekf ! Ek.

Corollary 4.3. Let �̂ 2 �n(L(A;X ; f); f) and �� : Sn � A ! X be the map given by

��(s; a) = �̂(s)(a). Let k 2 Hq(X ;�), where q � 2. Then there exists a map � : Sn�Ekf !

Ek such that �jEkf
� ~f and the diagram

Sn �Ekf

�

����! Ek

1�pkf

?
?
y pk

?
?
y

Sn �A
��

����! X

commutes if and only if �
q

�̂
(k) = 0 2 Hq�n(A;�).

Proof. From Theorem 4.2, it is suÆcient to show that k��(1 � pkf ) � � if and only if

�
q

�̂
(k) = 0 2 Hq�n(A;�). It is known [HV] that if p : E ! B is a �bration with q � 2

connected �bre F (q � 2), then for any coeÆcient group �, p� : H i(B;�) ! H i(E;�) is

an isomorphism for i � q � 2 and a monomorphism for i = q � 1. Since pkf : Ekf ! A is

a �bration with �bre K(�; q � 1), p� : H i(A;�) ! H i(Ekf ;�) is a monomorphism for all

i � q � 1. Thus �
q

�̂
(k) = 0 2 Hq�n(A;�) if and only if p�

kf
�
q

�̂
(k) = 0 2 Hq�n(Ekf ;�). We

have that ���(k) = 1� f�(k)+ �U ��
q

�̂
(k). Hence we have, from the property of cohomology

cross product with respect to coboundary operator of a pair, that Æ� ���(k) = Æ�1� f�(k) +

Æ� �U � �
q

�̂
(k) 2 Hq+1(Dn+1 � A;Sn � A;�). Since H1(Dn+1; Sn;Z) = H1(Sn+1;Z) =

0, Æ�1 = 0. Therefore Æ� ���(k) = Æ� �U � �
q

�̂
(k). Since (1Dn+1 � pkf )

�Æ� ���(k) = Æ� �U �

p�
kf
�
q

�̂
(k) and Æ� �U is a generator of Hn+1(Dn+1; Sn;Z) = Z, it follows that p�

kf
�
q

�̂
(k) = 0 2

Hq�n(Ekf ;�) if and only if (1Dn+1 � pkf )
�Æ����(k) = 0 2 Hq+1(Dn+1 �Ekf ; S

n �Ekf ;�).

Since (1Dn+1�pkf )
�Æ� = Æ�(1Sn�pkf )

� : Hq(Sn�A;�)! Hq+1(Dn+1�Ekf ; S
n�Ekf ;�),

p�
kf
�
q

�̂
(k) = 0 2 Hq�n(Ekf ;�) if and only if Æ�(k��(1Sn � pkf )) = Æ�(1Sn � pkf )

� ���(k) =

0 2 Hq+1(Dn+1 � Ekf ; S
n � Ekf ;�). Thus we only show that Æ�(k��(1Sn � pkf )) = 0 2

Hq+1(Dn+1 � Ekf ; S
n � Ekf ;�) if and only if k��(1Sn � pkf ) � �. If k��(1Sn � pkf ) �

�, then clearly Æ�(k��(1Sn � pkf )) = 0. Conversely, suppose Æ�(k��(1Sn � pkf )) = 0 2
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Hq+1(Dn+1 � Ekf ; S
n � Ekf ;�). Since the sequence Hq(Dn+1 � Ekf ;�)

(��1)�

! Hq(Sn �

Ekf ;�)
Æ
�

! Hq+1(Dn+1�Ekf ; S
n�Ekf�) is exact, there is a map F : cSn�Ekf ! K(�; q)

such that FjSn�Ekf
= k��(1Sn � pkf ), where cS

n is the reduced cone of Sn. Thus we have

a map H : Sn � Ekf � I ! K(�; q) given by H(s; e; t) = F ([s; t]; e). Then H( ; ; 0) =

k��(1Sn � pkf ); H( ; ; 1) = H(�; ; 0) = kfpkfp2. Since there is a map ~fp2 : S
n �Ekf ! Ek

satisfying pk( ~fp2) � fpkfp2, by Lemma 4.1, H( ; ; 1) = kfpkfp2 � �. Thus we have

k��(1Sn � pkf ) � �.

The special case in which f = 1X and A = X , is a result of Gottlieb ([G1], Theorem

6.3).
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