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ABSTRACT. The U(o)-algebras are new triple systems, which are obtained by extend-
ing the concept of Freudenthal-Kantor triple systems introduced by I.L. Kantor [9]
and K. Yamaguti [12]. In this paper, for U(c)-algebras we define the semisimplicity
and radicals and show that any semisimple U(o)-algebra is decomposed into the direct
sum of o-simple ideals. We also give a formula which describes a relationship between
the trace form of a semisimple U(c)-algebra U and the Killing form of the Lie algebra
associated with U.

Introduction

A triple system U with trilinear product (zyz) is called generalized Jordan triple system
if the identity (uv(zyz)) = ((uvz)yz) — (z(vuy)z) + (zy(uvz)) is valid for all u, v, z,y,z € U.
This definition was given by I.L. Kantor [9]. Starting from a given generalized Jordan triple

system U, he constructed a certain graded Lie algebra £ = Z U; which is now called the
Kantor’s algebra of U. On the other hand, B.N. Allison [1] and W. Hein [6], [7] gave the
concept of J-ternary algebra. It was based on results of H. Freudenthal [5] about the ge-
ometry of exceptional Lie groups. Reforming the axioms of J-ternary algebra, K. Yamaguti
[12] defined U (e)-algebras for € = £1, and later, he called them Freudenthal-Kantor triple
systems. In our paper [4], we extended the concept of Freudenthal-Kantor triple systems
by replacing ¢ = £1 with automorphisms ¢’s of triple systems, and constructed a graded
Lie algebra of the 2nd order from a U(c)-algebra via an Lie triple system. A U(Id)-algebra
is nothing but generalized Jordan triple system of the 2nd order and a U(—Id)-algebra
particularly is called a Freudenthal triple system. Our concern is the semisimplicity of
U(o)-algebra. N. Kamiya [8] defined the radical of a Freudenthal-Kantor triple system
and studied about the semisimplicity of Freudenthal-Kantor triple systems. In this paper,
we will define the semisimplicity and the radical of any U(c)-algebra and show that any
semisimple U(o)-algebra is decomposed into the direct sum of o-simple ideals (Theorem
2.8). Our next concern is to generalize some results of H. Asano and S. Kaneyuki [3] on
generalized Jordan triple systems to the case of U(c)-algebras. We introduced the tace
form v of a U(o)-algebra in [4]. We give a formula which describes a relationship between
the trace form v of the U(c)-algebra U and the Killing form of the graded Lie algebra £
associated with U (Theorem 3.2).

Throughout this paper, it is assumed that any vector space is finite dimensional vector
space over a field of characteristic different from two.
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§1. U(o)-algebras and graded Lie algebras

Let U be a vector space over a field F and let B : U x U x U — U be a trilinear
mapping. Then the pair (U, B) (or U) is called a triple system over F. We shall often write
(zyz) (or [zyz]) in stead of B(z,y, z). For any subspaces V; (i = 1,2,3) of U, we denote by
(V1 V2 V3) the subspace spanned by all elements of the form (z1x223) for z; € V;. A subspace
I of U is called an ideal if (UUI) + (UIU) + (IUU) C I is valid. The whole space U and
{0} are called the trivial ideals. A triple system U is said to be simple if (UUU) # {0} and
U has no non-trivial ideal. An endomorphism D of U is called a derivation if D(zyz) =
(Dxyz)+ (xDyz)+ (xyDz), z,y,z € U. We denote by D(U) the set of all derivations of
U. ®(U) is a Lie algebra under the usual Lie product: [Dy, Dy] := Dy 0o Dy — D5 o D;. For
x,y € U, let us define the endomorphisms L(z,y), R(z,y), K(z,y) on U by

L(z,y)z = (xyz), R(r,y)z:= (z2y), K(z,y)z:= (rzy) - (yz2).

A Lie triple system (or LTS simply) is a triple system 7' with trilinear product [zyz]
satisfying the following conditions for u,v,z,y,z € T

(L1) [zzy] =0,
(L2) [zy2] + [yza] + [z2y] = 0,
(L3) [uo[zyz]] = [[uvzlyz] + [zluvy]z] + [zy[uvz]].

The condition (L3) shows that L(z,y) is a derivation of T, which is called an inner
derivation. We denote by L(T,T) the space spanned by all inner derivations of T'. A vector
space direct sum

L£=T@ L(T,T)

becomes a Lie algebra with respect to the product

[5[71 4+ Dy, x2 + DQ] = Dixo — Doz + [Dl, DQ] + L(a:l,:vg),
where z; € T, D; € L(T,T) (i = 1,2). The Lie algebra £ is called the standard enveloping
Lie algebra of T'.
Definition. A triple system (U, B) is called a U(0)-algebra if there exists an automorphism
o of (U, B) satisfying the following identities:

(U1) [L(u,v), L(z,y)] = L(L(u, v)z,y) — L(z, L(v,0u)y),
(U2) K(K(u,v)x,y) = L(y,z)K (u,v) + K(u,v)L(z, cy),

where u,v,z,y € U.
The U(£Id)-algebras are nothing but the Freudenthal-Kantor triple systems U(e), € =
+1 (cf. [12]), particularly, the U(Id)-algebras are the generalized Jordan triple systems (or

GJTS simply) of the 2nd order (cf. [9]) and the U(—Id)-algebras are the Freudenthal triple
systems (cf. [5]).

Let (U, B) be a GJTS of the 2nd order. A non-singular linear transformation ¢ is called
a weak automorphism of (U, B) if there exists a linear transformation i of U such that

¢B(z,y,2) = B(yx,9y,¢2), $B(z,y,2) = B(Pw,py,?z).
For a weak automorphism ¢ of (U, B), we define a new triple product in U by

B4p($,y,2) = B(Z’,pr,z)
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Then (U, B,) becomes a U(o)-algebra for ¢ = (pp) ' and is called the p-modification of
(U, B) (cf. [4]). The notion of ¢-modification was defined by H. Asano [2] for an involutive
automorphism ¢ of a GJTS (U, B). In this case, the ¢-modification is also a GJTS of the
2nd order.

Let H be the set of all quaternion numbers and define a triple product in H by

B(x,y,2) == 2z + 2jx — YTz,

where T denotes the conjugate quaternion of x. Then it is easy to verify that the triple
system (H, B) is a GJTS of the 2nd order. Moreover, it is easily seen that the mapping
¢ : & — azx is an automorphism of (H, B) for a fixed quaternion number a such that |a| = 1.
Therefore (H, B, ) becomes a U(c)-algebra for o = 2. If a = £1, (H, B,,) is a GJTS of
the 2nd order and if a is a pure quaternion number, (H, B, ) is an FTS.

Let U be a U(o)-algebra, and let us consider the vector space direct sum
T=TU)=UaU.

An element a®z of T'(U) is also denoted as ( Z ) in column vector form. Define a trilinear

product in T'(U) by

v ()G ()] = (e i . )
_ < L(a,y) — L(b, ) K(a,b) > (
K(z,y)o L(z,0b) — L(y,0a)

where a,b,c,z,y,z € U. Then T(U) becomes an LTS with respect to this product ([4]
Proposition 2.2). The Lie triple system T'(U) is called the LTS associated with U. By £(U)
we denote the standard enveloping Lie algebra of the LTS T'(U). Let £; (i = 0,+1,+2) be
subspaces of £(U) as follows:

£_5 is the subspace spanned by all operators L(( g ) ’ ( (I; >)’

£_1 is the subspace spanned by all elements a ® 0 € T'(U),

£o is the subspace spanned by all operators L(( 3 ) , ( 2 )),
£1 is the subspace spanned by all elements 0 ® x € T(U),

£, is the subspace spanned by all operators L(( 2 ) , ( 2 >)

Then it follows that ,
£U) = Z iy £, 84] C Ly
1=—2
that is, £(U) is a graded Lie algebra (or GLA simply) of the 2nd order, which is called the
GLA associated with U. We have obviously

(1.2) LTT) =2 2@ Lo® Ly, TU)=2L_16L.
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Define a linear transformation 6 of T'(U) by

—1
(2)=("")

It is easy to check that # is an automorphism of the LTS T'(U). By putting

O(L(X,Y)) = L(O(X),0(Y)), X, Y € T(U),
this automorphism can be extended to an automorphism 6 (we use the same symbol) of
£(U). Then the automorphism 6 is grade-reversing, that is, (£;) = £_; (i =0, £1, £2).
Proposition 1.1. If a U(o)-algebra U satisfies (UUU) = U, then [T(U)T(U)T(U)] =
T(U) is valid.
Proof. Since (UUU) = U, we have
(€0, £-1]

=g ) (g D )mamn = (G Y = (57 ) = (

£_1.

U
0

>:

Using this equality, also we have
(€0, £1] = [0(£0),0(£-1)] = 0([€0, £ 1]) =0(L1) = L1
Hence we get
[L(T(U), TU)), TU)] D [Lo, 1] =L L =T().

Since the converse inclusion is clear, we obtain [L(T(U),T(U)),T(U)]=T(U). O
Let U be a U(o)-algebra. The bilinear form v on U defined by
1

is called the trace form of U [4]. Let o and § be the Killing forms of £(U) and T'(U)
respectively. It is well known (see [11]) that a(X,Y) = 28(X,Y) for X,Y € T(U). From
[4] Lemma 2.3, we have

ao e e ) (0 = 8 ) () ) =20t s,

where a, b, z,y € U. We note that the trace form = is neither symmetric nor anti-symmetric
except in case ¢ = £Id. But the right non-degeneration of 7 is equivalent to the left one.
Therefore we say that 7 is non-degenerate if -y is right non-degenerate or left non-degenerate.
From (1.4) and Theorem 2.1 in [11], the non-generations of a, 3 and 7 are equivalent each
other. The following lemma will be needed later on.

Lemma 1.2 ([4] Lemma 2.4). For any u,v,z,y € U, the following identities hold:

(1.5) y(L(u,v)x,y) = ~(z, L(v,0u)y),
(1.6) y(R(u,v)z,y) = 7(z, R(ov,u)y),



SEMISIMPLE U(c)-ALGEBRAS 59

(L7) (y,z) =~(0 " z,y) = y(z,09).

Proposition 1.3. If the trace form v of a U(o)-algebra U is identically zero, then the
GLA £(U) associated with U is solvable.

Proof. Put T = T(U) and £ = £(U). From (1.4), the Killing form « of £ is identically
zero on T. Since L(T,T) = [T,T], every element D € L(T,T) can be written as D =

Z[Xi,Yi] (X;,Y; € T). Then, for an arbitrary element D' € L(T,T), we have

K2

o(D,D') =Y o([X;, Y], D) =Y a(X;,[¥;, D']) = 0.

This means that « is identically zero on L(T,T). Since £ = > £; is a GLA, we have

a(Li, L) =0if i + j # 0. Hence we have a(L(T,T),T) = 0. Consequently, « is identically
zero on £. Therefore £ is solvable. O

§2. The semisimplicity of a U(o)-algebras
In this section, we consider about the semisiplicity of a U(o)-algebras. For this purpose,
we define the radical of a U(o)-algebra (cf. [10],[8]). Throughout this section, we assume

that the base field is of characteristic zero.
For two ideals I,.J of U, we put

(2.1) Ix«J=(1JU)+ (JIU)+ (IUJ)+ (JUI)+ (UI1J) + (UJI).
It is clear that IxJ = Jx*1.

Lemma 2.1. If I, J are o-invariant ideals of a U(o)-algebra U, then so is I*.J.

Proof. By applying (U1l) to an element z, we have
(2.2) (wv(zyz)) = (zy(uvz)) + ((wvz)yz) — (x(vouy)z).
In (2.2), let u,v,2 €U, x € [ and y € J. Since I, J are ideals of U, we get
(wo(zyz)) € (IJ(UUU)) + (UUD)JU) + (I(UUJ)U) C (IJU) C IT*J.
This means that (UU(IJU)) C I'x.J. Similarly we can obtain that
(UUIUJ)) C IxJ, (UUULJ)) C I+.J.

Permuting I and .J, we have

(UU(JIU)) C IxJ, (UU(JUI)) C IxJ, (UU(UJI)) C I*.J.

Consequently we get
(UUIxJ)CIxJ.

Equation (2.2) is rewritten as

((woz)yz) = (uv(ryz)) — (2y(uv2)) + (2(Vou y)2).
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Since I, J are o-invariant, using this identity, we have
(IUNHUU) C IxJ, (JUDHUU) C IxJ, (UIJ)UU) C IxJ, (UJI)UU) C IxJ.
From (U2), we get
(2.3) ((uzv)zy) = (yz(uav)) + (yz(uzv)) + (u(z oy 2)v) + ((vzu)zy)
—(yz(vau)) — (yx(vzu)) — (v(z oy 2)u).
In (2.3),let v,y,z2 € U, u € I and = € J, then we have

((uzv)zy) € (UU(LJU)) + (UJ(IUV)) + (I(JUUYU) + (UJNUU) + (UU (U JT))
HUJUUI)) + (UJUU)I)
C (UU(I+J)) + (UJI) + (IJU) + (Ix J)UU) + (UU(I*J)) C IxJ.

This means that ((IJU)UU) C IxJ. Permuting I and J, we get ((JIU)UU) C Ix*J.
Therefore we have

+
_|_

(I«)UU) C IxJ.

Again rewriting (2.2), we have

(z(vouy)z) = (zy(uvz)) + ((uvz)yz) — (uv(zyz)).
In this identity, let z,y,z € U v € I and u € J, then we have

(z(vouy)z) € (UUJIU)) + ((JIU)UU) + (JI(UUU))
C (UUI*)) + (IxJ)UU) + (JIU) C T*.J.

Since o(J) = J, this means that (U(IJU)U) C I*.J. Permuting I and J, we have
(U(JIU)U) C IxJ. Similarly we can show that

(UIUNU) C IxJ, (UJUDU) C IxJ, (UULNU) C IxJ, (UUJI)U) C Ix.J.

The above means that (U(I*J)U) C I«J is valid. Therefore I'xJ is an ideal of U. It is
clear that IxJ is g-invariant. O

For an o-invariant ideal I of U, we define a sequence of ideals of U by
(2.4) 1O =71, 10 = (=1 4 (=1 (> 1),
The ideal T is called solvable in U if there exists an integer n such that 1™ = {0}.

Let U be a U(o)-algebra and I an ideal of U. Then the quotient space U/I becomes a
triple system with respect to the trilinear product (Ty z) := (xyz), where T = z+1I, (z € U).

If I is o-invariant, then the mapping @ : T — o(z) is also an automorphism of U/I
satisfying the conditions (U1l) and (U2). Hence the quotient space U/I is a U(7)-algebra.

Proposition 2.2. Let U be a U(o)-algebra and I, J o-invariant ideals of U.
(1) If I and U/I are solvable, then U is solvable.
(2) If 1, J are solvable, then so is I + J.

Proof. (1) There exists an integer n such that (U/I)(™ = {0}. By m, we denote the
canonical homomorphism of U onto U/I. Then

m(UM) = U/D™ = {0},

and therefore
U™ c [ =Kerr.
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Since 1™ = {0} for some m, we have
yntm) — (U(n))(m) c1m = {0},

therefore U is solvable.
(2) Obviously I + J is a o-invariant ideal. By the mathematical induction, it is easily
seen that

(2.5) (T+7)™ c1™ 4 7™ 10
Since I, J are solvable, we have I(™ = J(®) = {0} for large enough n. Hence
I+n™cinJjcl,

and
(I + ) 1™ = {0}.

Therefore I + J is solvable. O

From this proposition, we see that for any finite dimensional U (o)-algebra U there exists
the unique maximal solvable g-invariant ideal, which is called the radical of U. We denote
it by Rad(U). A U(o)-algebra U is said to be semisimple if Rad(U) = {0}.

Proposition 2.3. For any U(o)-algebra U, the U(7)-algebra U/Rad(U) is semisimple.

Proof. Let 7 be the canonical homomorphism of U onto U/Rad(U), and put R =
7Y (Rad(U/Rad(U))). Obviously R is an ideal of U containing Rad(U). Moreover R
is o-invariant since oo = g on. Since R/Rad(U)=n(R)=Rad(U/Rad(U)), R/Rad(U) is
solvable in R/Rad(U). Since Rad(U) is also solvable, from Proposition 2.2 (1), R is solv-
able. Therefore we get R C Rad(U). Hence Rad(U/Rad(U)) = R/Rad(U) = {0}. Thus
U/Rad(U) is semisimple. O

In an LTS T, by conditions (L1) and (L2), a subspace A is an ideal of T if and only if
[ATT] C A. The derived series of an ideal A of T is defined by

A =4 A = [A=DT A (n =1,2,3,---).

Lemma 2.4. Let U be a U(o)-algebra, and let T'(U) be the LTS associated with U. If I is
an o-invariant ideal of U, then I &1 is an ideal of T'(U). Furthermore the following relation
is valid for any positive integer n:

(2.6) ITeD)™ =1 g1,
Proof. Since I is o-invariant, by (1.1) we have
() (0 (e aiaesn) <)

Therefore I &I is an ideal of T. We will prove (2.6) by induction on n. From (1.1), we have

(77) =100 GO G



62 Yoshiaki TANIGUCHI and Kenji ATSUYAMA

Hence, using (L1) and (L2), we have

() <) )L N0

that is, (ITU) ® {0} ¢ (I ® ). Similarly we obtain (IUI) & {0} c (I DM and
(UIT) 69{0} C (I M. Consequently we have IV) @ {0} c (I'®I)™"). Since o(I) = I and

<<xfy)>:{<2><%><o>]

similarly we get {0} @ IV c (I ©I)™). Thus we have IV) @ I c (I®T)M. On the other
hand, we obtain

oom=[(1)(£) (] (3)-mer

Thus we get (I ® 1)) = 1M @ I, In this, exchanging I for I(®~1), we have
([(nfl) & ](nfl))(l) - ([(nfl))(l) & ([(nfl))(l)_

By the definition, (I(®~1)(1) = [(®) Therefore by the assumption of induction, we obtain
(I(nfl) & [(nfl))(l) =(I® [)(nfl))(l) =(I® I)(").

Thus we have (I & I)™ =1 @ 1), O

Lemma 2.5. Let U be a U(o)-algebra, and let T = T'(U) be the LTS associated with U.
Let Rad(U) and Rad(T) be the radicals of U and T, respectively. Then we have

(2.7) Rad(T) = Rad(U) ® Rad(U).
Proof. For large enough n, we have Rad(U)™ = {0} and therefore, by Lemma 2.4,
(Rad(U) ® Rad(U))"" = Rad( ) @ Rad(U)™ = {0}. Hence Rad( ) @ Rad(U) is

solvable and therefore Rad(U) @ Rad(U) C Rad(T). We will prove the converse inclusion.
We define an endomorphism 7 of T' by

Then we have

)G -G) ()]

Hence if A is an ideal of 7', then so is 7(A4). Moreover we obtain 7(A4)(™ = 7(A™) by
induction on n. Therefore we have 7(Rad(T")) = Rad(T') since 7 is non-singular. Hence if

“) e Rad(T), then < —ma > € Rad(T). This implies < g > € Rad(T) and ( 2 ) €

Rad(T). We denote by Ry and R, the images of Rad(T) by the projection of T' to U @ {0}
—1
and {0} @ U respectively, then Rad(T) = R1 @ R». Put 6 = ( (1) 00 ) Then @ is an

automorphism of T'. Therefore we have

Rad(T) = 0~ (Rad(T)) = 6~ (R, ® Ry) = R» @ o(Ry).
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This implies Ry = Ry and o(R;) = Ry. Therefore Rad(T) = R; ® Ry and o(Ry) = Ry,
that is, R; is o-invariant. By the definition of the triple product of T', we have

( (RléjU) ) - K o ) ( ) ) < " )] C [Rad(T) T T] C Rad(T) = ( gi )

This means (R;UU) C R;. Similarly we can obtain (UR,U) C R; and (UURy) C R;.
Thus R is an o-invariant ideal of U. For large enough m, Rad(T)™ = {0}. Therefore by
Lemma 2.4, Rgm) ® Rgm) = (R, ® R))™ = Rad(T)™ = {0}. Hence we have Rgm) = {0},
and R; C Rad(U). Consequently Rad(T) = R; @ Ry C Rad(U) @ Rad(U). This completes
the proof. O

Theorem 2.6. Let U be a U(o)-algebra, and let T(U) and £(U) be the LTS and the GLA
associated with U respectively. Then the following statements are equivalent each other:
(1) U is semisimple.

(2) T(U) is semisimple.

(3) £(U) is semisimple.

Proof. From Lemma 2.5, we see that (1) and (2) are equivalent one another. From the
corollary to Theorem 7 in [10] (p.55), (2) and (3) are equivalent one another. O

The non-degenerations of the trace form <y of U and the Killing form g of T'(U) are
equivalent one another. Moreover (3 is non-degenerate if and only if T(U) is semisimple
([11] Theorem 2.1). Hence, from Theorem 2.6, we have

Corollary 2.7. A U(o)-algebra U is semisimple if and only if its trace form is non-
degenerate.

A U(o)-algebra U is said to be o-simple if (UUU) # {0} and U has no non-trivial
o-invariant ideal. We note that o-simplicity coincides with the usual simplicity if U is a
Freudenthal-Kantor triple system.

Theorem 2.8. A semisimple U(o)-algebra U is decomposed into a direct sum of o-simple
ideals of U.
Proof. Let I (# {0}) be an minimal o-invariant ideal of U. We put
I+ = {w € Uhy(w, 1) = 0}.
We will prove that I;- is an o-invariant ideal of U. By (1.5),
YWUUILH), L) =4 (UU L) =0

and therefore (U U I{-) C I;-. Similarly we have (It UU) C I{- and (U I{- U) C I;i-. Hence
Ii- is an ideal of U. Using (1.7),

Yo(Ii), L) = (I 0~ (1)) = (L1, L) = 0.

This means that If- is o-invariant. Since I; N If is an o-invariant ideal of U, we have
LNI- =1, or I NI+ = {0} by the assumption of minimality. If we suppose that
I NI+ = I, then I; C I+ and therefore y(I;,I;) = 0. For any element y,w € U and
x,z € I, using (1.5), we have

Y((zy2), w) = (2, (yorw)) = 0.



64 Yoshiaki TANIGUCHI and Kenji ATSUYAMA

Since + is non-degenerate from Corollary 2.7, we have (zyz) = 0, hence (I, U I;) = {0}.
Similarly, using the identities in Lemma 1.2, we can obtain that (UI; I;) = {0} and

(I, I; U) = {0}. Thus we have 11(1) = {0}, which contradicts the assumption that U is
semisimple. Consequently we get I; N I{- = {0}, and U = I; ® I;+. Next we will prove that
I+ is also semisimple. Let I be an arbitrary o-invariant ideal of I;-. Since I} NI{- = {0}, we
have (IUU) = (I I+ I{+) C I. Similarly we get (UIU) C I and (UUI) C I. Therefore I is
also an o-invariant ideal of U. Moreover it is easily seen that (™ in Ij- coincides with (™)
in U. Hence I is also semisimple, and the proof of the theorem is completed by induction
on the dimension of U. O

§3. The Killing form of £(U)

In this section, we will concretely write down the Killing form of the GLA £(U) associ-
ated with a semisimple U(c)-algebra U.

2
Let T = T(U) and £ = £(U) = Z £; be the LTS and the GLA associated with
1=—2
U, respectively. Since the subspace £_; (identified with U) is invariant under an element
D € £y, we denote Tr(D|y) by TryD. For E € £_5 and F € £5, we also denote Tr(EF|y)
by Try (EF).

Lemma 3.1. For

or=u(3)-(& ) ova s=a(3). ()0 r=(2).(2):

we have

(31) TrTaleadDQ = 2TI'U(D1D2),
(3.2) TrpadEadF = Try (EF).

Proof. From (1.1), we have

_( L(ai,y:) 0 _ _
adTDl = ( 0 —L(yi,aai) ) y adTE = E, adTF =F.
Hence it follows that

(3.3) TrradDyadDs = Try{L(a1,y1)L(as, y2) + L(y1,0a1)L(y2, 0az)}.

Since the trace form < is non-degenerate, we denote by ¢* the right adjoint operator of an
endomorphism ¢ on U with respect to v, v(px,y) = v(x, p*y). From (1.5), we get

(3.4) TryL(y,0a1)L(y2,0a2) = TryL(ar,y1)*L(az, y2)* = TruL(az, y2)*L(ai, y1)*
= Try{L(a1,y1)L(az,y2)}* = TruL(ai,y1)L(az,y2) = Try (D1 D3).
From (3.3) and (3.4), equation (3.1) follows. Since

adp EadpF — < K(a,b)g((:v,y)o 8 ) ,

it follows that
TrradEadF = Try (K (a,b)K(z,y)o) = Try (EF).
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Hence we have (3.2). O

Theorem 3.2. Let U be a semisimple U(o)-algebra and - its trace form. Let £(U) =

2

Z £; be the GLA associated with U and « its Killing form. Let o be the Killing form of

1=—2

the subalgebra L(T,T) of £(U). For X; = E; +a; + D; + z; + F; € £(U) (i = 1,2), where

E,ef 5, a;€ 271(: U), D; e £y, z; € 21(: U), F; € £5, we have

(35) Oé(Xl,XQ) = Ozo(El, FQ) + Ozo(Dl, D2) + Oéo(Fl, EQ) + TrU(E1F2 + 2D1D2 + F1E2)
+2{y(ay, z2) + v(az, 21)}.

Proof. Since a(£;,£;) =0 for ¢ and j such that i + j # 0, we have
(36) CK(Xl, Xz) = CK(El, FQ) + CM(Dl,Dz) + CM(Fl,EQ) + a(al, 1’2) + a(a:l,ag).

From (1.4), a(a1,x2) = 2v(a1,x2), a(zr,a2) = 2v(az,x1).
Now let Y, Z € L(T,T). Since the subspaces L(T,T') and T are invariant under the mapping
adYadZ, we have

a(Y,Z) = Trprry(adYadZ) 4+ Trr(adYadZ) = ao(Y, Z) + Trr(adYadZ).

Hence, from Lemma 3.1, we have
a(E1, Fy) = ag(Ey, F2) + Try (B F),
(3.7) a(D1,Ds) = ag(D1, D2) 4+ 2Try (D1 D3),
a(F1, Ey) = ag(F1, E2) + Try (FLEs).
From (3.6) and (3.7), (3.5) follows. O
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