ON SEMISIMPLE $U(\sigma)$-ALGEBRAS ${ }^{*}$

Yoshiaki TANIGUCHI and Kenji ATSUYAMA

Received April 18, 2000; revised April 24, 2001

Abstract

The $U(\sigma)$-algebras are new triple systems, which are obtained by extending the concept of Freudenthal-Kantor triple systems introduced by I.L. Kantor [9] and K. Yamaguti [12]. In this paper, for $U(\sigma)$-algebras we define the semisimplicity and radicals and show that any semisimple $U(\sigma)$-algebra is decomposed into the direct sum of σ-simple ideals. We also give a formula which describes a relationship between the trace form of a semisimple $U(\sigma)$-algebra U and the Killing form of the Lie algebra associated with U.

Introduction

A triple system U with trilinear product $(x y z)$ is called generalized Jordan triple system if the identity $(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z))$ is valid for all $u, v, x, y, z \in U$. This definition was given by I.L. Kantor [9]. Starting from a given generalized Jordan triple system U, he constructed a certain graded Lie algebra $\mathfrak{L}=\sum_{i=-\infty}^{\infty} U_{i}$ which is now called the Kantor's algebra of U. On the other hand, B.N. Allison [1] and W. Hein [6], [7] gave the concept of \mathfrak{J}-ternary algebra. It was based on results of H. Freudenthal [5] about the geometry of exceptional Lie groups. Reforming the axioms of \mathfrak{J}-ternary algebra, K. Yamaguti [12] defined $U(\varepsilon)$-algebras for $\varepsilon= \pm 1$, and later, he called them Freudenthal-Kantor triple systems. In our paper [4], we extended the concept of Freudenthal-Kantor triple systems by replacing $\varepsilon= \pm 1$ with automorphisms σ 's of triple systems, and constructed a graded Lie algebra of the 2 nd order from a $U(\sigma)$-algebra via an Lie triple system. A $U(\mathrm{Id})$-algebra is nothing but generalized Jordan triple system of the 2 nd order and a $U(-\mathrm{Id})$-algebra particularly is called a Freudenthal triple system. Our concern is the semisimplicity of $U(\sigma)$-algebra. N. Kamiya [8] defined the radical of a Freudenthal-Kantor triple system and studied about the semisimplicity of Freudenthal-Kantor triple systems. In this paper, we will define the semisimplicity and the radical of any $U(\sigma)$-algebra and show that any semisimple $U(\sigma)$-algebra is decomposed into the direct sum of σ-simple ideals (Theorem 2.8). Our next concern is to generalize some results of H. Asano and S. Kaneyuki [3] on generalized Jordan triple systems to the case of $U(\sigma)$-algebras. We introduced the tace form γ of a $U(\sigma)$-algebra in [4]. We give a formula which describes a relationship between the trace form γ of the $U(\sigma)$-algebra U and the Killing form of the graded Lie algebra \mathfrak{L} associated with U (Theorem 3.2).

Throughout this paper, it is assumed that any vector space is finite dimensional vector space over a field of characteristic different from two.

[^0]
$\S 1 . ~ U(\sigma)$-algebras and graded Lie algebras

Let U be a vector space over a field F and let $B: U \times U \times U \longrightarrow U$ be a trilinear mapping. Then the pair (U, B) (or U) is called a triple system over F. We shall often write $(x y z)$ (or $[x y z]$) in stead of $B(x, y, z)$. For any subspaces $V_{i}(i=1,2,3)$ of U, we denote by ($V_{1} V_{2} V_{3}$) the subspace spanned by all elements of the form $\left(x_{1} x_{2} x_{3}\right)$ for $x_{i} \in V_{i}$. A subspace I of U is called an ideal if $(U U I)+(U I U)+(I U U) \subset I$ is valid. The whole space U and $\{0\}$ are called the trivial ideals. A triple system U is said to be simple if $(U U U) \neq\{0\}$ and U has no non-trivial ideal. An endomorphism D of U is called a derivation if $D(x y z)=$ $(D x y z)+(x D y z)+(x y D z), x, y, z \in U$. We denote by $\mathfrak{D}(U)$ the set of all derivations of $U . \mathfrak{D}(U)$ is a Lie algebra under the usual Lie product: $\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-D_{2} \circ D_{1}$. For $x, y \in U$, let us define the endomorphisms $L(x, y), R(x, y), K(x, y)$ on U by

$$
L(x, y) z:=(x y z), \quad R(x, y) z:=(z x y), \quad K(x, y) z:=(x z y)-(y z x)
$$

A Lie triple system (or LTS simply) is a triple system T with trilinear product [xyz] satisfying the following conditions for $u, v, x, y, z \in T$:
(L1) $[x x y]=0$,
(L2) $[x y z]+[y z x]+[z x y]=0$,
(L3) $[u v[x y z]]=[[u v x] y z]+[x[u v y] z]+[x y[u v z]]$.
The condition (L3) shows that $L(x, y)$ is a derivation of T, which is called an inner derivation. We denote by $L(T, T)$ the space spanned by all inner derivations of T. A vector space direct sum

$$
\mathfrak{L}=T \oplus L(T, T)
$$

becomes a Lie algebra with respect to the product

$$
\left[x_{1}+D_{1}, x_{2}+D_{2}\right]=D_{1} x_{2}-D_{2} x_{1}+\left[D_{1}, D_{2}\right]+L\left(x_{1}, x_{2}\right)
$$

where $x_{i} \in T, D_{i} \in L(T, T)(i=1,2)$. The Lie algebra \mathfrak{L} is called the standard enveloping Lie algebra of T.

Definition. A triple system (U, B) is called a $U(\sigma)$-algebra if there exists an automorphism σ of (U, B) satisfying the following identities:
(U1) $[L(u, v), L(x, y)]=L(L(u, v) x, y)-L(x, L(v, \sigma u) y)$,
(U2) $K(K(u, v) x, y)=L(y, x) K(u, v)+K(u, v) L(x, \sigma y)$,
where $u, v, x, y \in U$.
The $U(\pm \mathrm{Id})$-algebras are nothing but the Freudenthal-Kantor triple systems $U(\varepsilon), \varepsilon=$ ± 1 (cf. [12]), particularly, the $U(\mathrm{Id})$-algebras are the generalized Jordan triple systems (or GJTS simply) of the 2nd order (cf. [9]) and the $U(-\mathrm{Id})$-algebras are the Freudenthal triple systems (cf. [5]).

Let (U, B) be a GJTS of the 2 nd order. A non-singular linear transformation φ is called a weak automorphism of (U, B) if there exists a linear transformation $\bar{\varphi}$ of U such that

$$
\varphi B(x, y, z)=B(\varphi x, \bar{\varphi} y, \varphi z), \quad \bar{\varphi} B(x, y, z)=B(\bar{\varphi} x, \varphi y, \bar{\varphi} z)
$$

For a weak automorphism φ of (U, B), we define a new triple product in U by

$$
B_{\varphi}(x, y, z):=B(x, \varphi y, z)
$$

Then $\left(U, B_{\varphi}\right)$ becomes a $U(\sigma)$-algebra for $\sigma=(\bar{\varphi} \varphi)^{-1}$ and is called the φ-modification of (U, B) (cf. [4]). The notion of φ-modification was defined by H. Asano [2] for an involutive automorphism φ of a GJTS (U, B). In this case, the φ-modification is also a GJTS of the 2 nd order.

Let \mathbb{H} be the set of all quaternion numbers and define a triple product in \mathbb{H} by

$$
B(x, y, z):=x \bar{y} z+z \bar{y} x-y \bar{x} z
$$

where \bar{x} denotes the conjugate quaternion of x. Then it is easy to verify that the triple system (\mathbb{H}, B) is a GJTS of the 2 nd order. Moreover, it is easily seen that the mapping $\varphi: x \mapsto a x$ is an automorphism of (\mathbb{H}, B) for a fixed quaternion number a such that $|a|=1$. Therefore $\left(\mathbb{H}, B_{\varphi}\right)$ becomes a $U(\sigma)$-algebra for $\sigma=\varphi^{-2}$. If $a= \pm 1,\left(\mathbb{H}, B_{\varphi}\right)$ is a GJTS of the 2 nd order and if a is a pure quaternion number, $\left(\mathbb{H}, B_{\varphi}\right)$ is an FTS.

Let U be a $U(\sigma)$-algebra, and let us consider the vector space direct sum

$$
T=T(U)=U \oplus U
$$

An element $a \oplus x$ of $T(U)$ is also denoted as $\binom{a}{x}$ in column vector form. Define a trilinear product in $T(U)$ by

$$
\begin{array}{r}
{\left[\binom{a}{x}\binom{b}{y}\binom{c}{z}\right]:=\binom{L(a, y) c-L(b, x) c+K(a, b) z}{K(x, y) \sigma c+L(x, \sigma b) z-L(y, \sigma a) z}} \tag{1.1}\\
=\left(\begin{array}{cc}
L(a, y)-L(b, x) & K(a, b) \\
K(x, y) \sigma & L(x, \sigma b)-L(y, \sigma a)
\end{array}\right)\binom{c}{z}
\end{array}
$$

where $a, b, c, x, y, z \in U$. Then $T(U)$ becomes an LTS with respect to this product ([4] Proposition 2.2). The Lie triple system $T(U)$ is called the LTS associated with U. By $\mathfrak{L}(U)$ we denote the standard enveloping Lie algebra of the LTS $T(U)$. Let $\mathfrak{L}_{i}(i=0, \pm 1, \pm 2)$ be subspaces of $\mathfrak{L}(U)$ as follows:
\mathfrak{L}_{-2} is the subspace spanned by all operators $L\left(\binom{a}{0},\binom{b}{0}\right)$,
\mathfrak{L}_{-1} is the subspace spanned by all elements $a \oplus 0 \in T(U)$,
\mathfrak{L}_{0} is the subspace spanned by all operators $L\left(\binom{a}{0},\binom{0}{y}\right)$,
\mathfrak{L}_{1} is the subspace spanned by all elements $0 \oplus x \in T(U)$,
\mathfrak{L}_{2} is the subspace spanned by all operators $L\left(\binom{0}{x},\binom{0}{y}\right.$).
Then it follows that

$$
\mathfrak{L}(U)=\sum_{i=-2}^{2} \mathfrak{L}_{i}, \quad\left[\mathfrak{L}_{i}, \mathfrak{L}_{j}\right] \subset \mathfrak{L}_{i+j}
$$

that is, $\mathfrak{L}(U)$ is a graded Lie algebra (or GLA simply) of the 2 nd order, which is called the $G L A$ associated with U. We have obviously

$$
\begin{equation*}
L(T, T)=\mathfrak{L}_{-2} \oplus \mathfrak{L}_{0} \oplus \mathfrak{L}_{2}, \quad T(U)=\mathfrak{L}_{-1} \oplus \mathfrak{L}_{1} \tag{1.2}
\end{equation*}
$$

Define a linear transformation θ of $T(U)$ by

$$
\theta\binom{a}{x}=\binom{\sigma^{-1} x}{a}
$$

It is easy to check that θ is an automorphism of the LTS $T(U)$. By putting

$$
\theta(L(X, Y))=L(\theta(X), \theta(Y)), X, Y \in T(U)
$$

this automorphism can be extended to an automorphism θ (we use the same symbol) of $\mathfrak{L}(U)$. Then the automorphism θ is grade-reversing, that is, $\theta\left(\mathfrak{L}_{i}\right)=\mathfrak{L}_{-i}(i=0, \pm 1, \pm 2)$.

Proposition 1.1. If a $U(\sigma)$-algebra U satisfies $(U U U)=U$, then $[T(U) T(U) T(U)]=$ $T(U)$ is valid.

Proof. Since $(U U U)=U$, we have
$\left[\mathfrak{L}_{0}, \mathfrak{L}_{-1}\right]$

$$
\begin{aligned}
& \quad=\left\{\left[L\left(\binom{a}{0},\binom{0}{y}\right),\binom{c}{0}\right]\right\}_{\text {span }}=\left\{\binom{L(a, y) c}{0}\right\}_{\text {span }}=\binom{(U U U)}{0}=\binom{U}{0}= \\
& \mathfrak{L}_{-1} .
\end{aligned}
$$

Using this equality, also we have

$$
\left[\mathfrak{L}_{0}, \mathfrak{L}_{1}\right]=\left[\theta\left(\mathfrak{L}_{0}\right), \theta\left(\mathfrak{L}_{-1}\right)\right]=\theta\left(\left[\mathfrak{L}_{0}, \mathfrak{L}_{-1}\right]\right)=\theta\left(\mathfrak{L}_{-1}\right)=\mathfrak{L}_{1} .
$$

Hence we get

$$
[L(T(U), T(U)), T(U)] \supset\left[\mathfrak{L}_{0}, \mathfrak{L}_{-1} \oplus \mathfrak{L}_{1}\right]=\mathfrak{L}_{-1} \oplus \mathfrak{L}_{1}=T(U)
$$

Since the converse inclusion is clear, we obtain $[L(T(U), T(U)), T(U)]=T(U)$.

Let U be a $U(\sigma)$-algebra. The bilinear form γ on U defined by

$$
\begin{equation*}
\gamma(x, y):=\frac{1}{2} \operatorname{Tr}\{2 R(y, x)+2 R(\sigma x, y)-L(x, y)-L(y, \sigma x)\} \tag{1.3}
\end{equation*}
$$

is called the trace form of U [4]. Let α and β be the Killing forms of $\mathfrak{L}(U)$ and $T(U)$ respectively. It is well known (see [11]) that $\alpha(X, Y)=2 \beta(X, Y)$ for $X, Y \in T(U)$. From [4] Lemma 2.3, we have

$$
\begin{equation*}
\alpha\left(\binom{a}{x},\binom{b}{y}\right)=2 \beta\left(\binom{a}{x},\binom{b}{y}\right)=2\{\gamma(a, y)+\gamma(b, x)\} \tag{1.4}
\end{equation*}
$$

where $a, b, x, y \in U$. We note that the trace form γ is neither symmetric nor anti-symmetric except in case $\sigma= \pm \mathrm{Id}$. But the right non-degeneration of γ is equivalent to the left one. Therefore we say that γ is non-degenerate if γ is right non-degenerate or left non-degenerate. From (1.4) and Theorem 2.1 in [11], the non-generations of α, β and γ are equivalent each other. The following lemma will be needed later on.

Lemma 1.2 ([4] Lemma 2.4). For any $u, v, x, y \in U$, the following identities hold:
(1.5) $\gamma(L(u, v) x, y)=\gamma(x, L(v, \sigma u) y)$,
(1.6) $\gamma(R(u, v) x, y)=\gamma(x, R(\sigma v, u) y)$,

$$
\begin{equation*}
\gamma(y, x)=\gamma\left(\sigma^{-1} x, y\right)=\gamma(x, \sigma y) . \tag{1.7}
\end{equation*}
$$

Proposition 1.3. If the trace form γ of a $U(\sigma)$-algebra U is identically zero, then the GLA $\mathfrak{L}(U)$ associated with U is solvable.
Proof. Put $T=T(U)$ and $\mathfrak{L}=\mathfrak{L}(U)$. From (1.4), the Killing form α of \mathfrak{L} is identically zero on T. Since $L(T, T)=[T, T]$, every element $D \in L(T, T)$ can be written as $D=$ $\sum_{i}\left[X_{i}, Y_{i}\right]\left(X_{i}, Y_{i} \in T\right)$. Then, for an arbitrary element $D^{\prime} \in L(T, T)$, we have

$$
\alpha\left(D, D^{\prime}\right)=\sum_{i} \alpha\left(\left[X_{i}, Y_{i}\right], D^{\prime}\right)=\sum_{i} \alpha\left(X_{i},\left[Y_{i}, D^{\prime}\right]\right)=0 .
$$

This means that α is identically zero on $L(T, T)$. Since $\mathfrak{L}=\sum \mathfrak{L}_{i}$ is a GLA, we have $\alpha\left(\mathfrak{L}_{i}, \mathfrak{L}_{j}\right)=0$ if $i+j \neq 0$. Hence we have $\alpha(L(T, T), T)=0$. Consequently, α is identically zero on \mathfrak{L}. Therefore \mathfrak{L} is solvable.

§2. The semisimplicity of a $U(\sigma)$-algebras

In this section, we consider about the semisiplicity of a $U(\sigma)$-algebras. For this purpose, we define the radical of a $U(\sigma)$-algebra (cf. [10],[8]). Throughout this section, we assume that the base field is of characteristic zero.

For two ideals I, J of U, we put

$$
\begin{equation*}
I * J=(I J U)+(J I U)+(I U J)+(J U I)+(U I J)+(U J I) . \tag{2.1}
\end{equation*}
$$

It is clear that $I * J=J * I$.
Lemma 2.1. If I, J are σ-invariant ideals of a $U(\sigma)$-algebra U, then so is $I * J$.
Proof. By applying (U1) to an element z, we have

$$
\begin{equation*}
(u v(x y z))=(x y(u v z))+((u v x) y z)-(x(v \sigma u y) z) . \tag{2.2}
\end{equation*}
$$

In (2.2), let $u, v, z \in U, x \in I$ and $y \in J$. Since I, J are ideals of U, we get

$$
(u v(x y z)) \in(I J(U U U))+(((U U I) J U)+(I(U U J) U) \subset(I J U) \subset I * J .
$$

This means that $(U U(I J U)) \subset I * J$. Similarly we can obtain that

$$
(U U(I U J)) \subset I * J,(U U(U I J)) \subset I * J .
$$

Permuting I and J, we have

$$
(U U(J I U)) \subset I * J,(U U(J U I)) \subset I * J,(U U(U J I)) \subset I * J .
$$

Consequently we get

$$
(U U I * J) \subset I * J .
$$

Equation (2.2) is rewritten as

$$
((u v x) y z)=(u v(x y z))-(x y(u v z))+(x(v \sigma u y) z) .
$$

Since I, J are σ-invariant, using this identity, we have

$$
((I U J) U U) \subset I * J, \quad((J U I) U U) \subset I * J,((U I J) U U) \subset I * J,((U J I) U U) \subset I * J
$$

From (U2), we get

$$
\begin{align*}
((u x v) z y)= & (y z(u x v))+(y x(u z v))+(u(x \sigma y z) v)+((v x u) z y) \tag{2.3}\\
& -(y z(v x u))-(y x(v z u))-(v(x \sigma y z) u)
\end{align*}
$$

In (2.3), let $v, y, z \in U, u \in I$ and $x \in J$, then we have

$$
\begin{aligned}
((u x v) z y) \in & (U U(I J U))+(U J(I U U))+(I(J U U) U)+((U J I) U U)+(U U(U J I)) \\
& +(U J(U U I))+(U(J U U) I) \\
& \subset(U U(I * J))+(U J I)+(I J U)+((I * J) U U)+(U U(I * J)) \subset I * J .
\end{aligned}
$$

This means that $((I J U) U U) \subset I * J$. Permuting I and J, we get $((J I U) U U) \subset I * J$. Therefore we have

$$
((I * J) U U) \subset I * J
$$

Again rewriting (2.2), we have

$$
(x(v \sigma u y) z)=(x y(u v z))+((u v x) y z)-(u v(x y z))
$$

In this identity, let $x, y, z \in U v \in I$ and $u \in J$, then we have

$$
\begin{aligned}
(x(v \sigma u y) z) \in & (U U(J I U))+((J I U) U U)+(J I(U U U)) \\
& \subset(U U(I * J))+((I * J) U U)+(J I U) \subset I * J .
\end{aligned}
$$

Since $\sigma(J)=J$, this means that $(U(I J U) U) \subset I * J$. Permuting I and J, we have $(U(J I U) U) \subset I * J$. Similarly we can show that

$$
(U(I U J) U) \subset I * J,(U(J U I) U) \subset I * J,(U(U I J) U) \subset I * J,(U(U J I) U) \subset I * J
$$

The above means that $(U(I * J) U) \subset I * J$ is valid. Therefore $I * J$ is an ideal of U. It is clear that $I * J$ is σ-invariant.

For an σ-invariant ideal I of U, we define a sequence of ideals of U by

$$
\begin{equation*}
I^{(0)}=I, \quad I^{(n)}=I^{(n-1)} * I^{(n-1)}(n \geq 1) \tag{2.4}
\end{equation*}
$$

The ideal I is called solvable in U if there exists an integer n such that $I^{(n)}=\{0\}$.
Let U be a $U(\sigma)$-algebra and I an ideal of U. Then the quotient space U / I becomes a triple system with respect to the trilinear product $(\bar{x} \bar{y} \bar{z}):=\overline{(x y z)}$, where $\bar{x}=x+I,(x \in U)$. If I is σ-invariant, then the mapping $\bar{\sigma}: \bar{x} \longmapsto \overline{\sigma(x)}$ is also an automorphism of U / I satisfying the conditions (U1) and (U2). Hence the quotient space U / I is a $U(\bar{\sigma})$-algebra.

Proposition 2.2. Let U be a $U(\sigma)$-algebra and $I, J \sigma$-invariant ideals of U.
(1) If I and U / I are solvable, then U is solvable.
(2) If I, J are solvable, then so is $I+J$.

Proof. (1) There exists an integer n such that $(U / I)^{(n)}=\{0\}$. By π, we denote the canonical homomorphism of U onto U / I. Then

$$
\pi\left(U^{(n)}\right)=(U / I)^{(n)}=\{0\}
$$

and therefore

$$
U^{(n)} \subset I=\operatorname{Ker} \pi
$$

Since $I^{(m)}=\{0\}$ for some m, we have

$$
U^{(n+m)}=\left(U^{(n)}\right)^{(m)} \subset I^{(m)}=\{0\}
$$

therefore U is solvable.
(2) Obviously $I+J$ is a σ-invariant ideal. By the mathematical induction, it is easily seen that

$$
\begin{equation*}
(I+J)^{(n)} \subset I^{(n)}+J^{(n)}+I \cap J \tag{2.5}
\end{equation*}
$$

Since I, J are solvable, we have $I^{(n)}=J^{(n)}=\{0\}$ for large enough n. Hence

$$
(I+J)^{(n)} \subset I \cap J \subset I
$$

and

$$
(I+J)^{(2 n)} \subset I^{(n)}=\{0\}
$$

Therefore $I+J$ is solvable.

From this proposition, we see that for any finite dimensional $U(\sigma)$-algebra U there exists the unique maximal solvable σ-invariant ideal, which is called the radical of U. We denote it by $\operatorname{Rad}(U)$. A $U(\sigma)$-algebra U is said to be semisimple if $\operatorname{Rad}(U)=\{0\}$.

Proposition 2.3. For any $U(\sigma)$-algebra U, the $U(\bar{\sigma})$-algebra $U / \operatorname{Rad}(U)$ is semisimple.
Proof. Let π be the canonical homomorphism of U onto $U / \operatorname{Rad}(U)$, and put $R=$ $\pi^{-1}(\operatorname{Rad}(U / \operatorname{Rad}(U)))$. Obviously R is an ideal of U containing $\operatorname{Rad}(U)$. Moreover R is σ-invariant since $\pi \circ \sigma=\bar{\sigma} \circ \pi$. Since $R / \operatorname{Rad}(U)=\pi(R)=\operatorname{Rad}(U / \operatorname{Rad}(U)), R / \operatorname{Rad}(U)$ is solvable in $R / \operatorname{Rad}(U)$. Since $\operatorname{Rad}(U)$ is also solvable, from Proposition 2.2 (1), R is solvable. Therefore we get $R \subset \operatorname{Rad}(U)$. Hence $\operatorname{Rad}(U / \operatorname{Rad}(U))=R / \operatorname{Rad}(U)=\{0\}$. Thus $U / \operatorname{Rad}(U)$ is semisimple.

In an LTS T, by conditions (L1) and (L2), a subspace A is an ideal of T if and only if $[A T T] \subset A$. The derived series of an ideal A of T is defined by

$$
A^{(0)}=A, A^{(n)}=\left[A^{(n-1)} T A^{(n-1)}\right](n=1,2,3, \cdots)
$$

Lemma 2.4. Let U be a $U(\sigma)$-algebra, and let $T(U)$ be the LTS associated with U. If I is an σ-invariant ideal of U, then $I \oplus I$ is an ideal of $T(U)$. Furthermore the following relation is valid for any positive integer n :

$$
\begin{equation*}
(I \oplus I)^{(n)}=I^{(n)} \oplus I^{(n)} \tag{2.6}
\end{equation*}
$$

Proof. Since I is σ-invariant, by (1.1) we have

$$
\left[\binom{I}{I}\binom{U}{U}\binom{U}{U}\right] \subset\binom{(I U U)+(U I U)+(U U I)}{(I U U)+(U U I)+(U I U)} \subset\binom{I}{I}
$$

Therefore $I \oplus I$ is an ideal of T. We will prove (2.6) by induction on n. From (1.1), we have

$$
\binom{(x y z)}{0}=\left[\binom{x}{0}\binom{0}{y}\binom{z}{0}\right] .
$$

Hence, using (L1) and (L2), we have

$$
\binom{(I I U)}{0} \subset\left[\binom{I}{0}\binom{0}{I}\binom{U}{0}\right] \subset\left[\binom{I}{I}\binom{I}{I}\binom{U}{U}\right] \subset\left[\binom{I}{I}\binom{U}{U}\binom{I}{I}\right]
$$

that is, $(I I U) \oplus\{0\} \subset(I \oplus I)^{(1)}$. Similarly we obtain $(I U I) \oplus\{0\} \subset(I \oplus I)^{(1)}$ and $(U I I) \oplus\{0\} \subset(I \oplus I)^{(1)}$. Consequently we have $I^{(1)} \oplus\{0\} \subset(I \oplus I)^{(1)}$. Since $\sigma(I)=I$ and

$$
\binom{0}{(x \sigma y z)}=\left[\binom{0}{x}\binom{y}{0}\binom{0}{z}\right]
$$

similarly we get $\{0\} \oplus I^{(1)} \subset(I \oplus I)^{(1)}$. Thus we have $I^{(1)} \oplus I^{(1)} \subset(I \oplus I)^{(1)}$. On the other hand, we obtain

$$
(I \oplus I)^{(1)}=\left[\binom{I}{I}\binom{U}{U}\binom{I}{I}\right] \subset\binom{I^{(1)}}{I^{(1)}}=I^{(1)} \oplus I^{(1)}
$$

Thus we get $(I \oplus I)^{(1)}=I^{(1)} \oplus I^{(1)}$. In this, exchanging I for $I^{(n-1)}$, we have

$$
\left(I^{(n-1)} \oplus I^{(n-1)}\right)^{(1)}=\left(I^{(n-1)}\right)^{(1)} \oplus\left(I^{(n-1)}\right)^{(1)}
$$

By the definition, $\left(I^{(n-1)}\right)^{(1)}=I^{(n)}$. Therefore by the assumption of induction, we obtain

$$
\left(I^{(n-1)} \oplus I^{(n-1)}\right)^{(1)}=\left((I \oplus I)^{(n-1)}\right)^{(1)}=(I \oplus I)^{(n)}
$$

Thus we have $(I \oplus I)^{(n)}=I^{(n)} \oplus I^{(n)}$.

Lemma 2.5. Let U be a $U(\sigma)$-algebra, and let $T=T(U)$ be the LTS associated with U. Let $\operatorname{Rad}(U)$ and $\operatorname{Rad}(T)$ be the radicals of U and T, respectively. Then we have

$$
\begin{equation*}
\operatorname{Rad}(T)=\operatorname{Rad}(U) \oplus \operatorname{Rad}(U) \tag{2.7}
\end{equation*}
$$

Proof. For large enough n, we have $\operatorname{Rad}(U)^{(n)}=\{0\}$ and therefore, by Lemma 2.4, $(\operatorname{Rad}(U) \oplus \operatorname{Rad}(U))^{(n)}=\operatorname{Rad}(U)^{(n)} \oplus \operatorname{Rad}(U)^{(n)}=\{0\}$. Hence $\operatorname{Rad}(U) \oplus \operatorname{Rad}(U)$ is solvable and therefore $\operatorname{Rad}(U) \oplus \operatorname{Rad}(U) \subset \operatorname{Rad}(T)$. We will prove the converse inclusion. We define an endomorphism τ of T by

$$
\tau\binom{a}{x}=\binom{-a}{x}
$$

Then we have

$$
-\tau\left[\binom{a}{x}\binom{b}{y}\binom{c}{z}\right]=\left[\tau\binom{a}{x} \tau\binom{b}{y} \tau\binom{c}{z}\right]
$$

Hence if A is an ideal of T, then so is $\tau(A)$. Moreover we obtain $\tau(A)^{(n)}=\tau\left(A^{(n)}\right)$ by induction on n. Therefore we have $\tau(\operatorname{Rad}(T))=\operatorname{Rad}(T)$ since τ is non-singular. Hence if $\binom{a}{x} \in \operatorname{Rad}(T)$, then $\binom{-a}{x} \in \operatorname{Rad}(T)$. This implies $\binom{a}{0} \in \operatorname{Rad}(T)$ and $\binom{0}{x} \in$ $\operatorname{Rad}(T)$. We denote by R_{1} and R_{2} the images of $\operatorname{Rad}(T)$ by the projection of T to $U \oplus\{0\}$ and $\{0\} \oplus U$ respectively, then $\operatorname{Rad}(T)=R_{1} \oplus R_{2}$. Put $\theta=\left(\begin{array}{cc}0 & \sigma^{-1} \\ 1 & 0\end{array}\right)$. Then θ is an automorphism of T. Therefore we have

$$
\operatorname{Rad}(T)=\theta^{-1}(\operatorname{Rad}(T))=\theta^{-1}\left(R_{1} \oplus R_{2}\right)=R_{2} \oplus \sigma\left(R_{1}\right)
$$

This implies $R_{1}=R_{2}$ and $\sigma\left(R_{1}\right)=R_{2}$. Therefore $\operatorname{Rad}(T)=R_{1} \oplus R_{1}$ and $\sigma\left(R_{1}\right)=R_{1}$, that is, R_{1} is σ-invariant. By the definition of the triple product of T, we have

$$
\binom{\left(R_{1} U U\right)}{0}=\left[\binom{R_{1}}{0}\binom{0}{U}\binom{U}{0}\right] \subset[\operatorname{Rad}(T) T T] \subset \operatorname{Rad}(T)=\binom{R_{1}}{R_{1}}
$$

This means $\left(R_{1} U U\right) \subset R_{1}$. Similarly we can obtain $\left(U R_{1} U\right) \subset R_{1}$ and $\left(U U R_{1}\right) \subset R_{1}$. Thus R_{1} is an σ-invariant ideal of U. For large enough $m, \operatorname{Rad}(T)^{(m)}=\{0\}$. Therefore by Lemma 2.4, $R_{1}^{(m)} \oplus R_{1}^{(m)}=\left(R_{1} \oplus R_{1}\right)^{(m)}=\operatorname{Rad}(T)^{(m)}=\{0\}$. Hence we have $R_{1}^{(m)}=\{0\}$, and $R_{1} \subset \operatorname{Rad}(U)$. Consequently $\operatorname{Rad}(T)=R_{1} \oplus R_{1} \subset \operatorname{Rad}(U) \oplus \operatorname{Rad}(U)$. This completes the proof.

Theorem 2.6. Let U be a $U(\sigma)$-algebra, and let $T(U)$ and $\mathfrak{L}(U)$ be the LTS and the GLA associated with U respectively. Then the following statements are equivalent each other:
(1) U is semisimple.
(2) $T(U)$ is semisimple.
(3) $\mathfrak{L}(U)$ is semisimple.

Proof. From Lemma 2.5, we see that (1) and (2) are equivalent one another. From the corollary to Theorem 7 in [10] (p.55), (2) and (3) are equivalent one another.

The non-degenerations of the trace form γ of U and the Killing form β of $T(U)$ are equivalent one another. Moreover β is non-degenerate if and only if $T(U)$ is semisimple ([11] Theorem 2.1). Hence, from Theorem 2.6, we have

Corollary 2.7. A $U(\sigma)$-algebra U is semisimple if and only if its trace form is nondegenerate.

A $U(\sigma)$-algebra U is said to be σ-simple if $(U U U) \neq\{0\}$ and U has no non-trivial σ-invariant ideal. We note that σ-simplicity coincides with the usual simplicity if U is a Freudenthal-Kantor triple system.

Theorem 2.8. A semisimple $U(\sigma)$-algebra U is decomposed into a direct sum of σ-simple ideals of U.
Proof. Let $I_{1}(\neq\{0\})$ be an minimal σ-invariant ideal of U. We put

$$
I_{1}^{\perp}=\left\{x \in U \mid \gamma\left(x, I_{1}\right)=0\right\}
$$

We will prove that I_{1}^{\perp} is an σ-invariant ideal of U. By (1.5),

$$
\gamma\left(\left(U U I_{1}^{\perp}\right), I_{1}\right)=\gamma\left(I_{1}^{\perp},\left(U U I_{1}\right)\right)=0
$$

and therefore $\left(U U I_{1}^{\perp}\right) \subset I_{1}^{\perp}$. Similarly we have $\left(I_{1}^{\perp} U U\right) \subset I_{1}^{\perp}$ and $\left(U I_{1}^{\perp} U\right) \subset I_{1}^{\perp}$. Hence I_{1}^{\perp} is an ideal of U. Using (1.7),

$$
\gamma\left(\sigma\left(I_{1}^{\perp}\right), I_{1}\right)=\gamma\left(I_{1}^{\perp}, \sigma^{-1}\left(I_{1}\right)\right)=\gamma\left(I_{1}^{\perp}, I_{1}\right)=0
$$

This means that I_{1}^{\perp} is σ-invariant. Since $I_{1} \cap I_{1}^{\perp}$ is an σ-invariant ideal of U, we have $I_{1} \cap I_{1}^{\perp}=I_{1}$ or $I_{1} \cap I_{1}^{\perp}=\{0\}$ by the assumption of minimality. If we suppose that $I_{1} \cap I_{1}^{\perp}=I_{1}$, then $I_{1} \subset I_{1}^{\perp}$ and therefore $\gamma\left(I_{1}, I_{1}\right)=0$. For any element $y, w \in U$ and $x, z \in I_{1}$, using (1.5), we have

$$
\gamma((x y z), w)=\gamma(z,(y \sigma x w))=0
$$

Since γ is non-degenerate from Corollary 2.7, we have $(x y z)=0$, hence $\left(I_{1} U I_{1}\right)=\{0\}$. Similarly, using the identities in Lemma 1.2, we can obtain that $\left(U I_{1} I_{1}\right)=\{0\}$ and $\left(I_{1} I_{1} U\right)=\{0\}$. Thus we have $I_{1}^{(1)}=\{0\}$, which contradicts the assumption that U is semisimple. Consequently we get $I_{1} \cap I_{1}^{\perp}=\{0\}$, and $U=I_{1} \oplus I_{1}^{\perp}$. Next we will prove that I_{1}^{\perp} is also semisimple. Let I be an arbitrary σ-invariant ideal of I_{1}^{\perp}. Since $I_{1} \cap I_{1}^{\perp}=\{0\}$, we have $(I U U)=\left(I I_{1}^{\perp} I_{1}^{\perp}\right) \subset I$. Similarly we get $(U I U) \subset I$ and $(U U I) \subset I$. Therefore I is also an σ-invariant ideal of U. Moreover it is easily seen that $I^{(n)}$ in I_{1}^{\perp} coincides with $I^{(n)}$ in U. Hence I_{1}^{\perp} is also semisimple, and the proof of the theorem is completed by induction on the dimension of U.

§3. The Killing form of $\mathfrak{L}(U)$

In this section, we will concretely write down the Killing form of the GLA $\mathfrak{L}(U)$ associated with a semisimple $U(\sigma)$-algebra U.

Let $T=T(U)$ and $\mathfrak{L}=\mathfrak{L}(U)=\sum_{i=-2}^{2} \mathfrak{L}_{i}$ be the LTS and the GLA associated with U, respectively. Since the subspace \mathfrak{L}_{-1} (identified with U) is invariant under an element $D \in \mathfrak{L}_{0}$, we denote $\operatorname{Tr}\left(\left.D\right|_{U}\right)$ by $\operatorname{Tr}_{U} D$. For $E \in \mathfrak{L}_{-2}$ and $F \in \mathfrak{L}_{2}$, we also denote $\operatorname{Tr}\left(\left.E F\right|_{U}\right)$ by $\operatorname{Tr}_{U}(E F)$.

Lemma 3.1. For

$$
D_{i}=L\left(\binom{a_{i}}{0},\binom{0}{y_{i}}\right)(i=1,2), \quad E=L\left(\binom{a}{0},\binom{b}{0}\right), \quad F=L\left(\binom{0}{x},\binom{0}{y}\right)
$$

we have
(3.1) $\quad \operatorname{Tr}_{T} \operatorname{ad} D_{1} \operatorname{ad} D_{2}=2 \operatorname{Tr}_{U}\left(D_{1} D_{2}\right)$,
(3.2) $\operatorname{Tr}_{T} \mathrm{ad} E \mathrm{ad} F=\operatorname{Tr}_{U}(E F)$.

Proof. From (1.1), we have

$$
\operatorname{ad}_{T} D_{i}=\left(\begin{array}{cc}
L\left(a_{i}, y_{i}\right) & 0 \\
0 & -L\left(y_{i}, \sigma a_{i}\right)
\end{array}\right), \quad \operatorname{ad}_{T} E=E, \quad \operatorname{ad}_{T} F=F
$$

Hence it follows that

$$
\begin{equation*}
\operatorname{Tr}_{T} \operatorname{ad} D_{1} \operatorname{ad} D_{2}=\operatorname{Tr}_{U}\left\{L\left(a_{1}, y_{1}\right) L\left(a_{2}, y_{2}\right)+L\left(y_{1}, \sigma a_{1}\right) L\left(y_{2}, \sigma a_{2}\right)\right\} \tag{3.3}
\end{equation*}
$$

Since the trace form γ is non-degenerate, we denote by φ^{*} the right adjoint operator of an endomorphism φ on U with respect to $\gamma, \gamma(\varphi x, y)=\gamma\left(x, \varphi^{*} y\right)$. From (1.5), we get

$$
\begin{align*}
& \operatorname{Tr}_{U} L\left(y_{1}, \sigma a_{1}\right) L\left(y_{2}, \sigma a_{2}\right)=\operatorname{Tr}_{U} L\left(a_{1}, y_{1}\right)^{*} L\left(a_{2}, y_{2}\right)^{*}=\operatorname{Tr}_{U} L\left(a_{2}, y_{2}\right)^{*} L\left(a_{1}, y_{1}\right)^{*} \tag{3.4}\\
& \quad=\operatorname{Tr}_{U}\left\{L\left(a_{1}, y_{1}\right) L\left(a_{2}, y_{2}\right)\right\}^{*}=\operatorname{Tr}_{U} L\left(a_{1}, y_{1}\right) L\left(a_{2}, y_{2}\right)=\operatorname{Tr}_{U}\left(D_{1} D_{2}\right) .
\end{align*}
$$

From (3.3) and (3.4), equation (3.1) follows. Since

$$
\operatorname{ad}_{T} E \mathrm{ad}_{T} F=\left(\begin{array}{cc}
K(a, b) K(x, y) \sigma & 0 \\
0 & 0
\end{array}\right)
$$

it follows that

$$
\operatorname{Tr}_{T} \operatorname{ad} E \operatorname{ad} F=\operatorname{Tr}_{U}(K(a, b) K(x, y) \sigma)=\operatorname{Tr}_{U}(E F)
$$

Hence we have (3.2).

Theorem 3.2. Let U be a semisimple $U(\sigma)$-algebra and γ its trace form. Let $\mathfrak{L}(U)=$ $\sum_{i=-2}^{2} \mathfrak{L}_{i}$ be the GLA associated with U and α its Killing form. Let α_{0} be the Killing form of the subalgebra $L(T, T)$ of $\mathfrak{L}(U)$. For $X_{i}=E_{i}+a_{i}+D_{i}+x_{i}+F_{i} \in \mathfrak{L}(U)(i=1,2)$, where $E_{i} \in \mathfrak{L}_{-2}, a_{i} \in \mathfrak{L}_{-1}(=U), D_{i} \in \mathfrak{L}_{0}, x_{i} \in \mathfrak{L}_{1}(=U), F_{i} \in \mathfrak{L}_{2}$, we have

$$
\begin{align*}
\alpha\left(X_{1}, X_{2}\right)= & \alpha_{0}\left(E_{1}, F_{2}\right)+\alpha_{0}\left(D_{1}, D_{2}\right)+\alpha_{0}\left(F_{1}, E_{2}\right)+\operatorname{Tr}_{U}\left(E_{1} F_{2}+2 D_{1} D_{2}+F_{1} E_{2}\right) \tag{3.5}\\
& +2\left\{\gamma\left(a_{1}, x_{2}\right)+\gamma\left(a_{2}, x_{1}\right)\right\} .
\end{align*}
$$

Proof. Since $\alpha\left(\mathfrak{L}_{i}, \mathfrak{L}_{j}\right)=0$ for i and j such that $i+j \neq 0$, we have

$$
\begin{equation*}
\alpha\left(X_{1}, X_{2}\right)=\alpha\left(E_{1}, F_{2}\right)+\alpha\left(D_{1}, D_{2}\right)+\alpha\left(F_{1}, E_{2}\right)+\alpha\left(a_{1}, x_{2}\right)+\alpha\left(x_{1}, a_{2}\right) \tag{3.6}
\end{equation*}
$$

From (1.4), $\alpha\left(a_{1}, x_{2}\right)=2 \gamma\left(a_{1}, x_{2}\right), \alpha\left(x_{1}, a_{2}\right)=2 \gamma\left(a_{2}, x_{1}\right)$.
Now let $Y, Z \in L(T, T)$. Since the subspaces $L(T, T)$ and T are invariant under the mapping $\operatorname{ad} Y \operatorname{ad} Z$, we have

$$
\alpha(Y, Z)=\operatorname{Tr}_{L(T, T)}(\operatorname{ad} Y \operatorname{ad} Z)+\operatorname{Tr}_{T}(\operatorname{ad} Y \operatorname{ad} Z)=\alpha_{0}(Y, Z)+\operatorname{Tr}_{T}(\operatorname{ad} Y \operatorname{ad} Z)
$$

Hence, from Lemma 3.1, we have

$$
\begin{align*}
& \alpha\left(E_{1}, F_{2}\right)=\alpha_{0}\left(E_{1}, F_{2}\right)+\operatorname{Tr}_{U}\left(E_{1} F_{2}\right), \\
& \alpha\left(D_{1}, D_{2}\right)=\alpha_{0}\left(D_{1}, D_{2}\right)+2 \operatorname{Tr}_{U}\left(D_{1} D_{2}\right), \tag{3.7}\\
& \alpha\left(F_{1}, E_{2}\right)=\alpha_{0}\left(F_{1}, E_{2}\right)+\operatorname{Tr}_{U}\left(F_{1} E_{2}\right) .
\end{align*}
$$

From (3.6) and (3.7), (3.5) follows.

References

[1] B. N. Allison, A construction of Lie algebras from J-ternary algebras, Amer. J. Math., 98(1976), 285-294.
[2] H. Asano, Classification of non-compact real simple generalized Jordan triple systems of the second kind, Hiroshima Math. J., 21(1991), 463-489.
[3] H. Asano and S. Kaneyuki, On compact generalized Jordan triple systems of the second kind, Tokyo J. Math., 11(1988), 105-118.
[4] K. Atsuyama and Y. Taniguchi, On generalized Jordan triple systems and their modifications, Yokohama Math. J., 47(2000), 165-175.
[5] H. Freudenthal, Beziehungen der E_{7} und E_{8} zur Oktavenebene. I, Indag. Math., 16(1954), 218-230.
[6] W. Hein, A construction of Lie algebras by triple sysytems, Trans. Amer. Math. Soc., 205(1975), 79-95.
[7] W. Hein, Innere Lie-Tripelsysteme und J-ternäre Algebren, Math. Ann., 213(1975), 195-202.
[8] N. Kamiya, A structure theory of Freudenthal-Kantor triple systems, J. Algebra 110(1987), 108-123.
[9] I. L. Kantor, Models of exceptional Lie algebras, Soviet Math. Dokl., 14(1973), 254-258.
[10] K. Meyberg, Lectures on algebras and triple systems, Univ. Virginia,Charlottesville, 1972.
[11] T. S. Ravisankar, Some remarks on Lie triple systems, Kumamoto J. Sci. (Math.), 11(1974), 1-8.
[12] K. Yamaguti, On the metasymplectic geometry and triple systems, Kokyuroku RIMS, Kyoto Univ., 308(1977), 55-92(in Japanese).

Nishinippon Institute of Technology, Kanda, Fukuoka 800-0394, Japan and
Sojo University, Ikeda, Kumamoto 860-0082, Japan

[^0]: 2000 Mathematics Subject Classification. 17A40, 17B70, 17C10.
 Key words and phrases. generalized Jordan triple system, Lie triple system, graded Lie algebra.
 *Research supported in part by the Grand in Aid for Fundamental Scientific Research of Ministry of Education, Science and Culture (C) 09640078.

