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Abstract. The U(�)-algebras are new triple systems, which are obtained by extend-

ing the concept of Freudenthal-Kantor triple systems introduced by I.L. Kantor [9]

and K. Yamaguti [12]. In this paper, for U(�)-algebras we de�ne the semisimplicity

and radicals and show that any semisimple U(�)-algebra is decomposed into the direct

sum of �-simple ideals. We also give a formula which describes a relationship between

the trace form of a semisimple U(�)-algebra U and the Killing form of the Lie algebra

associated with U .

Introduction

A triple system U with trilinear product (xyz) is called generalized Jordan triple system
if the identity (uv(xyz)) = ((uvx)yz)�(x(vuy)z)+(xy(uvz)) is valid for all u; v; x; y; z 2 U .
This de�nition was given by I.L. Kantor [9]. Starting from a given generalized Jordan triple

system U , he constructed a certain graded Lie algebra L =

1X
i=�1

Ui which is now called the

Kantor's algebra of U . On the other hand, B.N. Allison [1] and W. Hein [6], [7] gave the
concept of J-ternary algebra. It was based on results of H. Freudenthal [5] about the ge-
ometry of exceptional Lie groups. Reforming the axioms of J-ternary algebra, K. Yamaguti
[12] de�ned U(")-algebras for " = �1, and later, he called them Freudenthal-Kantor triple
systems. In our paper [4], we extended the concept of Freudenthal-Kantor triple systems
by replacing " = �1 with automorphisms �'s of triple systems, and constructed a graded
Lie algebra of the 2nd order from a U(�)-algebra via an Lie triple system. A U(Id)-algebra
is nothing but generalized Jordan triple system of the 2nd order and a U(�Id)-algebra
particularly is called a Freudenthal triple system. Our concern is the semisimplicity of
U(�)-algebra. N. Kamiya [8] de�ned the radical of a Freudenthal-Kantor triple system
and studied about the semisimplicity of Freudenthal-Kantor triple systems. In this paper,
we will de�ne the semisimplicity and the radical of any U(�)-algebra and show that any
semisimple U(�)-algebra is decomposed into the direct sum of �-simple ideals (Theorem
2.8). Our next concern is to generalize some results of H. Asano and S. Kaneyuki [3] on
generalized Jordan triple systems to the case of U(�)-algebras. We introduced the tace
form 
 of a U(�)-algebra in [4]. We give a formula which describes a relationship between
the trace form 
 of the U(�)-algebra U and the Killing form of the graded Lie algebra L
associated with U (Theorem 3.2).

Throughout this paper, it is assumed that any vector space is �nite dimensional vector
space over a �eld of characteristic di�erent from two.
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x1. U(�)-algebras and graded Lie algebras

Let U be a vector space over a �eld F and let B : U � U � U �! U be a trilinear
mapping. Then the pair (U;B) (or U) is called a triple system over F . We shall often write
(xyz) (or [xyz]) in stead of B(x; y; z). For any subspaces Vi (i = 1; 2; 3) of U , we denote by
(V1V2V3) the subspace spanned by all elements of the form (x1x2x3) for xi 2 Vi. A subspace
I of U is called an ideal if (UUI) + (UIU) + (IUU) � I is valid. The whole space U and
f0g are called the trivial ideals. A triple system U is said to be simple if (UUU) 6= f0g and
U has no non-trivial ideal. An endomorphism D of U is called a derivation if D(xyz) =
(Dxy z) + (xDy z) + (x y Dz); x; y; z 2 U . We denote by D(U) the set of all derivations of
U . D(U) is a Lie algebra under the usual Lie product: [D1; D2] := D1 ÆD2 �D2 ÆD1. For
x; y 2 U , let us de�ne the endomorphisms L(x; y); R(x; y); K(x; y) on U by

L(x; y)z := (xyz); R(x; y)z := (zxy); K(x; y)z := (xzy)� (yzx):

A Lie triple system (or LTS simply) is a triple system T with trilinear product [xyz]
satisfying the following conditions for u; v; x; y; z 2 T :

(L1) [xxy] = 0,
(L2) [xyz] + [yzx] + [zxy] = 0,
(L3) [uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]].

The condition (L3) shows that L(x; y) is a derivation of T , which is called an inner

derivation. We denote by L(T; T ) the space spanned by all inner derivations of T . A vector
space direct sum

L = T � L(T; T )

becomes a Lie algebra with respect to the product

[x1 +D1; x2 +D2] = D1x2 �D2x1 + [D1; D2] + L(x1; x2);

where xi 2 T; Di 2 L(T; T ) (i = 1; 2). The Lie algebra L is called the standard enveloping

Lie algebra of T .

De�nition. A triple system (U;B) is called a U(�)-algebra if there exists an automorphism
� of (U;B) satisfying the following identities:

(U1) [L(u; v); L(x; y)] = L(L(u; v)x; y)� L(x; L(v; �u)y),
(U2) K(K(u; v)x; y) = L(y; x)K(u; v) +K(u; v)L(x; �y),

where u; v; x; y 2 U .

The U(�Id)-algebras are nothing but the Freudenthal-Kantor triple systems U("); " =
�1 (cf. [12]), particularly, the U(Id)-algebras are the generalized Jordan triple systems (or
GJTS simply) of the 2nd order (cf. [9]) and the U(�Id)-algebras are the Freudenthal triple
systems (cf. [5]).

Let (U;B) be a GJTS of the 2nd order. A non-singular linear transformation ' is called
a weak automorphism of (U;B) if there exists a linear transformation ' of U such that

'B(x; y; z) = B('x; 'y; 'z); 'B(x; y; z) = B('x; 'y; 'z):

For a weak automorphism ' of (U;B), we de�ne a new triple product in U by

B'(x; y; z) := B(x; 'y; z):
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Then (U;B') becomes a U(�)-algebra for � = ('')�1 and is called the '-modi�cation of
(U;B) (cf. [4]). The notion of '-modi�cation was de�ned by H. Asano [2] for an involutive
automorphism ' of a GJTS (U;B). In this case, the '-modi�cation is also a GJTS of the
2nd order.

Let H be the set of all quaternion numbers and de�ne a triple product in H by

B(x; y; z) := xyz + zyx� yxz;

where x denotes the conjugate quaternion of x. Then it is easy to verify that the triple
system (H ; B) is a GJTS of the 2nd order. Moreover, it is easily seen that the mapping
' : x 7! ax is an automorphism of (H ; B) for a �xed quaternion number a such that jaj = 1.
Therefore (H ; B' ) becomes a U(�)-algebra for � = '�2. If a = �1, (H ; B' ) is a GJTS of
the 2nd order and if a is a pure quaternion number, (H ; B' ) is an FTS.

Let U be a U(�)-algebra, and let us consider the vector space direct sum

T = T (U) = U � U:

An element a�x of T (U) is also denoted as

�
a

x

�
in column vector form. De�ne a trilinear

product in T (U) by

(1:1)

��
a

x

��
b

y

��
c

z

��
:=

�
L(a; y)c� L(b; x)c+K(a; b)z

K(x; y)�c+ L(x; �b)z � L(y; �a)z

�

=

�
L(a; y)� L(b; x) K(a; b)

K(x; y)� L(x; �b)� L(y; �a)

��
c

z

�
,

where a; b; c; x; y; z 2 U . Then T (U) becomes an LTS with respect to this product ([4]
Proposition 2.2). The Lie triple system T (U) is called the LTS associated with U . By L(U)
we denote the standard enveloping Lie algebra of the LTS T (U). Let Li (i = 0;�1;�2) be
subspaces of L(U) as follows:

L�2 is the subspace spanned by all operators L(

�
a

0

�
;

�
b

0

�
),

L�1 is the subspace spanned by all elements a� 0 2 T (U),

L0 is the subspace spanned by all operators L(

�
a

0

�
;

�
0
y

�
),

L1 is the subspace spanned by all elements 0� x 2 T (U),

L2 is the subspace spanned by all operators L(

�
0
x

�
;

�
0
y

�
).

Then it follows that

L(U) =

2X
i=�2

Li; [Li;Lj ] � Li+j ;

that is, L(U) is a graded Lie algebra (or GLA simply) of the 2nd order, which is called the
GLA associated with U . We have obviously

(1:2) L(T; T ) = L�2 � L0 � L2; T (U) = L�1 � L1:
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De�ne a linear transformation � of T (U) by

�

�
a

x

�
=

�
��1x

a

�
:

It is easy to check that � is an automorphism of the LTS T (U). By putting

�(L(X;Y )) = L(�(X); �(Y )); X; Y 2 T (U);

this automorphism can be extended to an automorphism � (we use the same symbol) of
L(U). Then the automorphism � is grade-reversing, that is, �(Li) = L�i (i = 0;�1;�2).

Proposition 1.1. If a U(�)-algebra U satis�es (UUU) = U , then [T (U)T (U)T (U)] =
T (U) is valid.

Proof. Since (UUU) = U , we have

[L0;L�1]

= f[L(

�
a

0

�
;

�
0
y

�
);

�
c

0

�
]gspan = f

�
L(a; y)c

0

�
gspan =

�
(UUU)

0

�
=

�
U

0

�
=

L�1:

Using this equality, also we have

[L0;L1] = [�(L0); �(L�1)] = �([L0;L�1]) = �(L�1) = L1:

Hence we get

[L(T (U); T (U)); T (U)] � [L0;L�1 � L1] = L�1 � L1 = T (U):

Since the converse inclusion is clear, we obtain [L(T (U); T (U)); T (U)] = T (U). 2

Let U be a U(�)-algebra. The bilinear form 
 on U de�ned by

(1:3) 
(x; y) :=
1

2
Trf2R(y; x) + 2R(�x; y)� L(x; y)� L(y; �x)g

is called the trace form of U [4]. Let � and � be the Killing forms of L(U) and T (U)
respectively. It is well known (see [11]) that �(X;Y ) = 2�(X;Y ) for X;Y 2 T (U). From
[4] Lemma 2.3, we have

(1:4) �(

�
a

x

�
;

�
b

y

�
) = 2�(

�
a

x

�
;

�
b

y

�
) = 2f
(a; y) + 
(b; x)g;

where a; b; x; y 2 U . We note that the trace form 
 is neither symmetric nor anti-symmetric
except in case � = �Id. But the right non-degeneration of 
 is equivalent to the left one.
Therefore we say that 
 is non-degenerate if 
 is right non-degenerate or left non-degenerate.
From (1.4) and Theorem 2.1 in [11], the non-generations of �, � and 
 are equivalent each
other. The following lemma will be needed later on.

Lemma 1.2 ([4] Lemma 2.4). For any u; v; x; y 2 U , the following identities hold:

(1.5) 
(L(u; v)x; y) = 
(x; L(v; �u)y),
(1.6) 
(R(u; v)x; y) = 
(x;R(�v; u)y),
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(1.7) 
(y; x) = 
(��1x; y) = 
(x; �y).

Proposition 1.3. If the trace form 
 of a U(�)-algebra U is identically zero, then the
GLA L(U) associated with U is solvable.

Proof. Put T = T (U) and L = L(U). From (1.4), the Killing form � of L is identically
zero on T . Since L(T; T ) = [T; T ], every element D 2 L(T; T ) can be written as D =X
i

[Xi; Yi] (Xi; Yi 2 T ). Then, for an arbitrary element D0
2 L(T; T ), we have

�(D;D0) =
X
i

�([Xi; Yi]; D
0) =

X
i

�(Xi; [Yi; D
0]) = 0:

This means that � is identically zero on L(T; T ). Since L =
P
Li is a GLA, we have

�(Li;Lj) = 0 if i+ j 6= 0. Hence we have �(L(T; T ); T ) = 0. Consequently, � is identically
zero on L. Therefore L is solvable. 2

x2. The semisimplicity of a U(�)-algebras

In this section, we consider about the semisiplicity of a U(�)-algebras. For this purpose,
we de�ne the radical of a U(�)-algebra (cf. [10],[8]). Throughout this section, we assume
that the base �eld is of characteristic zero.

For two ideals I; J of U , we put

(2:1) I �J = (IJU) + (JIU) + (IUJ) + (JUI) + (UIJ) + (UJI):

It is clear that I �J = J �I .

Lemma 2.1. If I; J are �-invariant ideals of a U(�)-algebra U , then so is I �J .

Proof. By applying (U1) to an element z, we have

(2:2) (uv(xyz)) = (xy(uvz)) + ((uvx)yz)� (x(v �u y)z):

In (2.2), let u; v; z 2 U; x 2 I and y 2 J . Since I; J are ideals of U , we get

(uv(xyz)) 2 (IJ(UUU)) + (((UUI)JU) + (I(UUJ)U) � (IJU) � I �J:

This means that (UU(IJU)) � I �J . Similarly we can obtain that

(UU(IUJ)) � I �J; (UU(UIJ)) � I �J:

Permuting I and J , we have

(UU(JIU)) � I �J; (UU(JUI)) � I �J; (UU(UJI)) � I �J:

Consequently we get

(U U I �J) � I �J:

Equation (2.2) is rewritten as

((uvx)yz) = (uv(xyz))� (xy(uvz)) + (x(v �u y)z):
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Since I; J are �-invariant, using this identity, we have

((IUJ)UU) � I �J; ((JUI)UU) � I �J; ((UIJ)UU) � I �J; ((UJI)UU) � I �J:

From (U2), we get

(2.3) ((uxv)zy) = (yz(uxv)) + (yx(uzv)) + (u(x�y z)v) + ((vxu)zy)
�(yz(vxu))� (yx(vzu))� (v(x�y z)u):

In (2.3), let v; y; z 2 U; u 2 I and x 2 J , then we have

((uxv)zy) 2 (UU(IJU)) + (UJ(IUU)) + (I(JUU)U) + ((UJI)UU) + (UU(UJI))
+(UJ(UUI)) + (U(JUU)I)
� (UU(I �J)) + (UJI) + (IJU) + ((I �J)UU) + (UU(I �J)) � I �J .

This means that ((IJU)UU) � I �J . Permuting I and J , we get ((JIU)UU) � I �J .
Therefore we have

((I �J)UU) � I �J:

Again rewriting (2.2), we have

(x(v �u y)z) = (xy(uvz)) + ((uvx)yz)� (uv(xyz)):

In this identity, let x; y; z 2 U v 2 I and u 2 J , then we have

(x(v �u y)z) 2 (UU(JIU)) + ((JIU)UU) + (JI(UUU))
� (UU(I �J)) + ((I �J)UU) + (JIU) � I �J .

Since �(J) = J , this means that (U(IJU)U) � I � J . Permuting I and J , we have
(U(JIU)U) � I �J . Similarly we can show that

(U(IUJ)U) � I �J; (U(JUI)U) � I �J; (U(UIJ)U) � I �J; (U(UJI)U) � I �J:

The above means that (U(I �J)U) � I �J is valid. Therefore I �J is an ideal of U . It is
clear that I �J is �-invariant. 2

For an �-invariant ideal I of U , we de�ne a sequence of ideals of U by

(2:4) I(0) = I; I(n) = I(n�1) � I(n�1) (n � 1):

The ideal I is called solvable in U if there exists an integer n such that I(n) = f0g.

Let U be a U(�)-algebra and I an ideal of U . Then the quotient space U=I becomes a
triple system with respect to the trilinear product (x y z) := (xyz), where x = x+I; (x 2 U).
If I is �-invariant, then the mapping � : x 7�! �(x) is also an automorphism of U=I
satisfying the conditions (U1) and (U2). Hence the quotient space U=I is a U(�)-algebra.

Proposition 2.2. Let U be a U(�)-algebra and I; J �-invariant ideals of U .
(1) If I and U=I are solvable, then U is solvable.
(2) If I; J are solvable, then so is I + J .

Proof. (1)There exists an integer n such that (U=I)(n) = f0g. By �, we denote the
canonical homomorphism of U onto U=I . Then

�(U (n)) = (U=I)(n) = f0g;

and therefore
U (n)

� I = Ker�:
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Since I(m) = f0g for some m, we have

U (n+m) = (U (n))(m)
� I(m) = f0g;

therefore U is solvable.
(2)Obviously I + J is a �-invariant ideal. By the mathematical induction, it is easily

seen that

(2:5) (I + J)(n) � I(n) + J (n) + I \ J:

Since I; J are solvable, we have I(n) = J (n) = f0g for large enough n. Hence

(I + J)(n) � I \ J � I;

and
(I + J)(2n) � I(n) = f0g:

Therefore I + J is solvable. 2

From this proposition, we see that for any �nite dimensional U(�)-algebra U there exists
the unique maximal solvable �-invariant ideal, which is called the radical of U . We denote
it by Rad(U). A U(�)-algebra U is said to be semisimple if Rad(U) = f0g.

Proposition 2.3. For any U(�)-algebra U , the U(�)-algebra U=Rad(U) is semisimple.

Proof. Let � be the canonical homomorphism of U onto U=Rad(U), and put R =
��1(Rad(U=Rad(U))). Obviously R is an ideal of U containing Rad(U). Moreover R
is �-invariant since � Æ� = � Æ�. Since R=Rad(U)=�(R)=Rad(U=Rad(U)), R=Rad(U) is
solvable in R=Rad(U). Since Rad(U) is also solvable, from Proposition 2.2 (1), R is solv-
able. Therefore we get R � Rad(U). Hence Rad(U=Rad(U)) = R=Rad(U) = f0g. Thus
U=Rad(U) is semisimple. 2

In an LTS T , by conditions (L1) and (L2), a subspace A is an ideal of T if and only if
[ATT ] � A. The derived series of an ideal A of T is de�ned by

A(0) = A; A(n) = [A(n�1)TA(n�1)] (n = 1; 2; 3; � � � ):

Lemma 2.4. Let U be a U(�)-algebra, and let T (U) be the LTS associated with U . If I is
an �-invariant ideal of U , then I� I is an ideal of T (U). Furthermore the following relation
is valid for any positive integer n:

(2:6) (I � I)(n) = I(n) � I(n):

Proof. Since I is �-invariant, by (1.1) we have

��
I

I

��
U

U

��
U

U

��
�

�
(IUU) + (UIU) + (UUI)
(IUU) + (UUI) + (UIU)

�
�

�
I

I

�
:

Therefore I� I is an ideal of T . We will prove (2.6) by induction on n. From (1.1), we have

�
(xyz)
0

�
=

��
x

0

��
0
y

��
z

0

��
:
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Hence, using (L1) and (L2), we have
�
(IIU)
0

�
�

��
I

0

��
0
I

��
U

0

��
�

��
I

I

��
I

I

��
U

U

��
�

��
I

I

��
U

U

��
I

I

��
;

that is, (IIU) � f0g � (I � I)(1). Similarly we obtain (IUI) � f0g � (I � I)(1) and
(UII)�f0g � (I � I)(1). Consequently we have I(1)�f0g � (I � I)(1). Since �(I) = I and

�
0

(x�y z)

�
=

��
0
x

��
y

0

��
0
z

��
;

similarly we get f0g� I(1) � (I � I)(1). Thus we have I(1)� I(1) � (I � I)(1). On the other
hand, we obtain

(I � I)(1) =

��
I

I

��
U

U

��
I

I

��
�

�
I(1)

I(1)

�
= I(1) � I(1):

Thus we get (I � I)(1) = I(1) � I(1). In this, exchanging I for I(n�1), we have

(I(n�1) � I(n�1))(1) = (I(n�1))(1) � (I(n�1))(1):

By the de�nition, (I(n�1))(1) = I(n). Therefore by the assumption of induction, we obtain

(I(n�1) � I(n�1))(1) = ((I � I)(n�1))(1) = (I � I)(n):

Thus we have (I � I)(n) = I(n) � I(n). 2

Lemma 2.5. Let U be a U(�)-algebra, and let T = T (U) be the LTS associated with U .
Let Rad(U) and Rad(T ) be the radicals of U and T , respectively. Then we have

(2:7) Rad(T ) = Rad(U)�Rad(U):

Proof. For large enough n, we have Rad(U)(n) = f0g and therefore, by Lemma 2.4,
(Rad(U) � Rad(U))(n) = Rad(U)(n) � Rad(U)(n) = f0g. Hence Rad(U) � Rad(U) is
solvable and therefore Rad(U)� Rad(U) � Rad(T ). We will prove the converse inclusion.
We de�ne an endomorphism � of T by

�

�
a

x

�
=

�
�a

x

�
:

Then we have

��

��
a

x

��
b

y

��
c

z

��
=

�
�

�
a

x

�
�

�
b

y

�
�

�
c

z

��
:

Hence if A is an ideal of T , then so is �(A). Moreover we obtain �(A)(n) = �(A(n)) by
induction on n. Therefore we have �(Rad(T )) = Rad(T ) since � is non-singular. Hence if�

a

x

�
2 Rad(T ), then

�
�a

x

�
2 Rad(T ). This implies

�
a

0

�
2 Rad(T ) and

�
0
x

�
2

Rad(T ). We denote by R1 and R2 the images of Rad(T ) by the projection of T to U �f0g

and f0g � U respectively, then Rad(T ) = R1 � R2. Put � =

�
0 ��1

1 0

�
. Then � is an

automorphism of T . Therefore we have

Rad(T ) = ��1(Rad(T )) = ��1(R1 �R2) = R2 � �(R1):
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This implies R1 = R2 and �(R1) = R2. Therefore Rad(T ) = R1 � R1 and �(R1) = R1,
that is, R1 is �-invariant. By the de�nition of the triple product of T , we have�

(R1UU)
0

�
=

��
R1

0

��
0
U

��
U

0

��
� [Rad(T )T T ] � Rad(T ) =

�
R1

R1

�
:

This means (R1UU) � R1. Similarly we can obtain (UR1U) � R1 and (UUR1) � R1.
Thus R1 is an �-invariant ideal of U . For large enough m, Rad(T )(m) = f0g. Therefore by

Lemma 2.4, R
(m)

1
�R

(m)

1
= (R1 �R1)

(m) = Rad(T )(m) = f0g. Hence we have R
(m)

1
= f0g,

and R1 � Rad(U). Consequently Rad(T ) = R1 �R1 � Rad(U)�Rad(U). This completes
the proof. 2

Theorem 2.6. Let U be a U(�)-algebra, and let T (U) and L(U) be the LTS and the GLA
associated with U respectively. Then the following statements are equivalent each other:
(1) U is semisimple.
(2) T (U) is semisimple.
(3) L(U) is semisimple.

Proof. From Lemma 2.5, we see that (1) and (2) are equivalent one another. From the
corollary to Theorem 7 in [10] (p.55), (2) and (3) are equivalent one another. 2

The non-degenerations of the trace form 
 of U and the Killing form � of T (U) are
equivalent one another. Moreover � is non-degenerate if and only if T (U) is semisimple
([11] Theorem 2.1). Hence, from Theorem 2.6, we have

Corollary 2.7. A U(�)-algebra U is semisimple if and only if its trace form is non-
degenerate.

A U(�)-algebra U is said to be �-simple if (UUU) 6= f0g and U has no non-trivial
�-invariant ideal. We note that �-simplicity coincides with the usual simplicity if U is a
Freudenthal-Kantor triple system.

Theorem 2.8. A semisimple U(�)-algebra U is decomposed into a direct sum of �-simple
ideals of U .

Proof. Let I1( 6= f0g) be an minimal �-invariant ideal of U . We put

I?
1
= fx 2 U j
(x; I1) = 0g:

We will prove that I?
1

is an �-invariant ideal of U . By (1.5),


((U U I?
1
); I1) = 
(I?

1
; (U U I1)) = 0

and therefore (U U I?
1
) � I?

1
. Similarly we have (I?

1
U U) � I?

1
and (U I?

1
U) � I?

1
. Hence

I?
1
is an ideal of U . Using (1.7),


(�(I?
1
); I1) = 
(I?

1
; ��1(I1)) = 
(I?

1
; I1) = 0:

This means that I?
1

is �-invariant. Since I1 \ I?
1

is an �-invariant ideal of U , we have
I1 \ I?

1
= I1 or I1 \ I?

1
= f0g by the assumption of minimality. If we suppose that

I1 \ I?
1

= I1, then I1 � I?
1

and therefore 
(I1; I1) = 0. For any element y; w 2 U and
x; z 2 I1, using (1.5), we have


((xyz); w) = 
(z; (y �xw)) = 0:
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Since 
 is non-degenerate from Corollary 2.7, we have (xyz) = 0, hence (I1 U I1) = f0g.
Similarly, using the identities in Lemma 1.2, we can obtain that (U I1 I1) = f0g and

(I1 I1 U) = f0g. Thus we have I
(1)

1
= f0g, which contradicts the assumption that U is

semisimple. Consequently we get I1 \ I
?

1
= f0g, and U = I1 � I?

1
. Next we will prove that

I?
1
is also semisimple. Let I be an arbitrary �-invariant ideal of I?

1
. Since I1\I

?

1
= f0g, we

have (IUU) = (I I?
1
I?
1
) � I . Similarly we get (UIU) � I and (UUI) � I . Therefore I is

also an �-invariant ideal of U . Moreover it is easily seen that I(n) in I?
1
coincides with I(n)

in U . Hence I?
1
is also semisimple, and the proof of the theorem is completed by induction

on the dimension of U . 2

x3. The Killing form of L(U)

In this section, we will concretely write down the Killing form of the GLA L(U) associ-
ated with a semisimple U(�)-algebra U .

Let T = T (U) and L = L(U) =

2X
i=�2

Li be the LTS and the GLA associated with

U , respectively. Since the subspace L�1 (identi�ed with U) is invariant under an element
D 2 L0, we denote Tr(DjU ) by TrUD. For E 2 L�2 and F 2 L2, we also denote Tr(EF jU )
by TrU (EF ).

Lemma 3.1. For

Di = L(

�
ai
0

�
;

�
0
yi

�
) (i = 1; 2); E = L(

�
a

0

�
;

�
b

0

�
); F = L(

�
0
x

�
;

�
0
y

�
);

we have

(3:1) TrT adD1adD2 = 2TrU (D1D2),

(3:2) TrT adEadF = TrU (EF ).

Proof. From (1.1), we have

adTDi =

�
L(ai; yi) 0

0 �L(yi; �ai)

�
; adTE = E; adTF = F:

Hence it follows that

(3:3) TrT adD1adD2 = TrUfL(a1; y1)L(a2; y2) + L(y1; �a1)L(y2; �a2)g:

Since the trace form 
 is non-degenerate, we denote by '� the right adjoint operator of an
endomorphism ' on U with respect to 
, 
('x; y) = 
(x; '�y). From (1.5), we get

(3.4) TrUL(y1; �a1)L(y2; �a2) = TrUL(a1; y1)
�L(a2; y2)

� = TrUL(a2; y2)
�L(a1; y1)

�

= TrUfL(a1; y1)L(a2; y2)g
� = TrUL(a1; y1)L(a2; y2) = TrU (D1D2):

From (3.3) and (3.4), equation (3.1) follows. Since

adTEadTF =

�
K(a; b)K(x; y)� 0

0 0

�
;

it follows that
TrT adEadF = TrU (K(a; b)K(x; y)�) = TrU (EF ):
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Hence we have (3.2). 2

Theorem 3.2. Let U be a semisimple U(�)-algebra and 
 its trace form. Let L(U) =
2X

i=�2

Li be the GLA associated with U and � its Killing form. Let �0 be the Killing form of

the subalgebra L(T; T ) of L(U). For Xi = Ei + ai +Di + xi + Fi 2 L(U) (i = 1; 2), where
Ei 2 L�2; ai 2 L�1(= U); Di 2 L0; xi 2 L1(= U); Fi 2 L2, we have

(3.5) �(X1; X2) = �0(E1; F2) + �0(D1; D2) + �0(F1; E2) + TrU (E1F2 + 2D1D2 + F1E2)
+2f
(a1; x2) + 
(a2; x1)g.

Proof. Since �(Li;Lj) = 0 for i and j such that i+ j 6= 0, we have

(3:6) �(X1; X2) = �(E1; F2) + �(D1; D2) + �(F1; E2) + �(a1; x2) + �(x1; a2):

From (1.4), �(a1; x2) = 2
(a1; x2); �(x1; a2) = 2
(a2; x1).
Now let Y; Z 2 L(T; T ). Since the subspaces L(T; T ) and T are invariant under the mapping
adY adZ, we have

�(Y; Z) = TrL(T;T )(adY adZ) + TrT (adY adZ) = �0(Y; Z) + TrT (adY adZ):

Hence, from Lemma 3.1, we have

�(E1; F2) = �0(E1; F2) + TrU (E1F2);

(3.7) �(D1; D2) = �0(D1; D2) + 2TrU (D1D2);

�(F1; E2) = �0(F1; E2) + TrU (F1E2):

From (3.6) and (3.7), (3.5) follows. 2
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