ON MAXIMAL IDEALS OF ORDERED SEMIGROUPS

Niovi Kehayopulu and Michael Tsingelis

Received February 9, 2001

Abstract

For a semigroup (or ordered semigroup) S, we denote by $\mathcal{I}(M)$ the ideal of S generated by $M(M \subseteq S)$. In this note we prove the following: If S is an ordered semigroup (or a semigroup), then a proper ideal M of S is a maximal ideal of S if and only if for every $a \in S \backslash M$, we have $\mathcal{I}(M \cup\{a\})=S$. If S is a finitely generated ordered semigroup (or a semigroup), then each proper ideal of S is contained in a maximal ideal of S. If S is an ordered semigroup (or a semigroup) for which there exists an element a of S such that $\mathcal{I}(a)=S$, then each proper ideal of S is contained in a maximal ideal of S. Similar results hold if, in the results above, we replace the word "ideal" by "left ideal" or "right ideal".

If ($S, ., \leq$) is an ordered semigroup, a non-empty subset A of S is called a left (resp. right) ideal of S if 1) $S A \subseteq A$ (resp. $A S \subseteq A$) and 2) $a \in A, S \ni b \leq a$ implies $b \in A$. The non-empty subset A of S is called an ideal of S if it both a left and a right ideal of S [1]. An ideal I of a semigroup (resp. ordered semigroup) S is called prime if $a, b \in S$ such that $a b \in I$ implies $a \in I$ or $b \in I$. Equivalent Definition: $A, B \subseteq S$ such that $A B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$ [1].
If S is an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$, we denote by $\mathcal{I}(A)$ the ideal of S generated by A i.e. the smallest -under inclusion relation- ideal of S containing A. We denote by $\mathcal{L}(A)$ (resp. $\mathcal{R}(A)$) the left (resp. right) ideal of S generated by A. If S is an ordered semigroup and $H \subseteq S$, we denote $(H]:=\{t \in S \mid t \leq h$ for some $h \in H\}$. For an ordered semigroup S, we have $\mathcal{I}(A)=(A \cup S A \cup A S \cup S A S], \quad \mathcal{L}(A)=(A \cup S A], \mathcal{R}(A)=$ $(A \cup A S]$ (cf. [1]). For a semigroup S, we have $\mathcal{I}(A)=A \cup S A \cup A S \cup S A S, \quad \mathcal{L}(A)=$ $A \cup S A, \quad \mathcal{R}(A)=A \cup A S$. For $A=\{a\}$, we write $\mathcal{I}(a)$ instead of $\mathcal{I}(\{a\})$. Similarly, we write $\mathcal{L}(a), \quad \mathcal{R}(a)$.
We denote by $S \backslash M$ the complement of S to M.

1. An ideal M of a semigroup (resp. ordered semigroup) S is called proper if $M \neq S[2]$. A proper ideal M of a semigroup (resp. ordered semigroup) S is called maximal if there exists no ideal T of S such that $M \subset T \subset S$, equivalently, if for each ideal T of S such that $M \subseteq T$, we have $T=M$ or $T=S$ (cf. also [1]).

Proposition 1. Let S be an ordered semigroup (resp. semigroup) and M a proper ideal of S. Then M is a maximal ideal of S if and only if for every $a \in S \backslash M$, we have $\mathcal{I}(M \cup\{a\})=$ S.

Proof. \Rightarrow. Let $a \in S \backslash M$. Since $M \subseteq M \cup\{a\} \subseteq \mathcal{I}(M \cup\{a\}), \quad \mathcal{I}(M \cup\{a\})$ is an ideal of S and M a maximal ideal of S, we have $\mathcal{I}(M \cup\{a\})=M$ or $\mathcal{I}(M \cup\{a\})=S$. Since

[^0]$a \in \mathcal{I}(M \cup\{a\})$ and $a \notin M$, we have $\mathcal{I}(M \cup\{a\}) \neq M$. So $\mathcal{I}(M \cup\{a\})=S$.
\Leftarrow. Let S be an ordered semigroup, T an ideal of $S, M \subseteq T$ and $M \neq T$. Let $a \in T, a \notin M$. Since $a \in S \backslash M$, we have $\mathcal{I}(M \cup\{a\})=S$. Since $M \subseteq T$ and $a \in T$, we have $M \cup\{a\} \subseteq T$. Thus we have
\[

$$
\begin{aligned}
S=\mathcal{I}(M \cup\{a\}) & =((M \cup\{a\}) \cup S(M \cup\{a\}) \cup(M \cup\{a\}) S \cup S(M \cup\{a\}) S] \\
& \subseteq(T \cup S T \cup T S \cup S T S]=(T]=T
\end{aligned}
$$
\]

A chain is, by definition, a non-empty set.
Lemma 1. If (P, \leq) is an ordered set and $\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$ a chain in P, then there exists an element $a_{k} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$ such that $a_{i} \leq a_{k}$ for every $i=1,2, \ldots ., n$.

Proof. If $a_{i} \leq a_{1}$ for every $i=1,2, \ldots, n$, then we finish.
Suppose for the element $a_{2} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$ we have $a_{2} \not \leq a_{1}$. (Otherwise, we change the order of the elements in $\left.\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}\right)$. Then $a_{1} \leq a_{2}$.
If $a_{i} \leq a_{2}$ for every $i=3,4, \ldots ., n$, then we have
$a_{1} \leq a_{2}, \quad a_{3}, a_{4}, \ldots ., a_{n} \leq a_{2}$, and we finish.
Suppose for the element $a_{3} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$, we have $a_{3} \not \leq a_{2}$. Then $a_{2} \leq a_{3}$.
We continue this way.
Suppose for the element $a_{n-2} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$, we have $a_{n-2} \not \leq a_{n-3}$. Then $a_{n-3} \leq a_{n-2}$. If $a_{i} \leq a_{n-2}$ for every $i=n-1, n$, then we have
$a_{1} \leq a_{2} \leq \ldots . \leq a_{n-3} \leq a_{n-2}, \quad a_{n-1}, a_{n} \leq a_{n-2}$, and we finish.
Suppose for the element $a_{n-1} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$, we have $a_{n-1} \not \leq a_{n-2}$. Then $a_{n-2} \leq a_{n-1}$. If $a_{n} \leq a_{n-1}$, then we have $a_{1} \leq a_{2} \leq \ldots . \leq a_{n-2} \leq a_{n-1}, a_{n} \leq a_{n-1}$, and we finish. If $a_{n} \not \leq a_{n-1}$, then $a_{n-1} \leq a_{n}$, and $a_{1} \leq a_{2} \leq \ldots . \leq a_{n-2} \leq a_{n-1} \leq a_{n}$.

By Lemma 1, we have the Lemma 2 below:
Lemma 2. If S is a non-empty set and $\left\{A_{1}, A_{2}, \ldots ., A_{n}\right\}$ a chain in $(\mathcal{P}(S), \subseteq)$, then there exists a set $A_{k} \in\left\{A_{1}, A_{2}, \ldots ., A_{n}\right\}$ such that $A_{i} \subseteq A_{k}$ for every $i=1,2, \ldots ., n \quad \square$.

Let S be an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$. We say that S is generated by A, and write $S=<A>$, if
For each $x \in S$ there exist $a_{1}, a_{2}, \ldots . . a_{n} \in A$ (n natural number) such that $x=a_{1}, a_{2}, \ldots . a_{n}$. For $A=\left\{b_{1}, b_{2}, \ldots . b_{n}\right\}$, we write $<b_{1}, b_{2}, \ldots . b_{n}>$ instead of $<\left\{b_{1}, b_{2}, \ldots . b_{n}\right\}>$.

Proposition 2. Let S be a finitely generated ordered semigroup (resp. semigroup). Then, each proper ideal of S is contained in a maximal ideal of S.

Proof. Let $a_{1}, a_{2}, \ldots ., a_{n} \in S$ such tha $S=<a_{1}, a_{2}, \ldots ., a_{n}>$, and I a proper ideal of S. We consider the set:

$$
\mathcal{A}:=\{J \mid J \text { ideal of } S, I \subseteq J \subseteq S\}
$$

We have $\mathcal{A} \neq \emptyset$ (since $I \in \mathcal{A})$, thus (\mathcal{A}, \subseteq) is an ordered set.
Let \mathcal{B} be a chain in \mathcal{A}. The set $\bigcup\{B \mid B \in \mathcal{B}\}$ is an upper bound of \mathcal{B} in \mathcal{A}. In fact:
Since $\mathcal{B} \neq \emptyset$, the set $\bigcup\{B \mid B \in \mathcal{B}\}$ is an ideal of S-the proof is easy.
$I \subseteq \bigcup\{B \mid B \in \mathcal{B}\} \subset S$. In fact:
Since $I \subseteq B \subset S \forall B \in \mathcal{A} \supseteq \mathcal{B}$, we have $I \subseteq \bigcup\{B \mid B \in \mathcal{B}\} \subseteq S$.
Let $I \subseteq \bigcup\{B \mid B \in \mathcal{B}\}=S$. Since $a_{1}, a_{2}, \ldots ., a_{n} \in S$, we have

$$
a_{1}, a_{2}, \ldots ., a_{n} \in \bigcup\{B \mid B \in \mathcal{B}\}
$$

Let $a_{1} \in B_{1}, a_{2} \in B_{2}, \ldots ., a_{n} \in B_{n}$ for some $B_{1}, B_{2}, \ldots ., B_{n} \in \mathcal{B}$.
Since \mathcal{B} is a chain in (\mathcal{A}, \subseteq) and $\mathcal{A} \subseteq \mathcal{P}(S), \mathcal{B}$ is a chain in $\mathcal{P}(S), \mathcal{B}$ is a chain in $(\mathcal{P}(S), \subseteq)$. Since $B_{1}, B_{2}, \ldots ., B_{n} \in \mathcal{B},\left\{B_{1}, B_{2}, \ldots ., B_{n}\right\}$ is a chain in $(\mathcal{P}(S), \subseteq)$. By Lemma 2 , there exists $B_{k} \in\left\{B_{1}, B_{2}, \ldots ., B_{n}\right\}$ such that $B_{1}, B_{2}, \ldots ., B_{n} \subseteq B_{k}$. Then $a_{i} \in B_{k}$ for every $i=1,2, \ldots ., n$.
We have $B_{k}=S$. Indeed: Let $x \in S$. Since $S=<a_{1}, a_{2}, \ldots . a_{n}>$, we have

$$
x=b_{1} \ldots . b_{m} \text { for some } b_{1}, \ldots ., b_{m} \in\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}
$$

Since $b_{m}=a_{1}\left(\in B_{1}\right)$ or $b_{m}=a_{2}\left(\in B_{2}\right)$ or \ldots. or $b_{m}=a_{n}\left(\in B_{n}\right)$, we have $b_{m} \in B_{k}$. Then we have $x \in S B_{k} \subseteq B_{k}$.
On the other hand, since $B_{k} \in \mathcal{B} \subseteq \mathcal{A}$, we have $B_{k} \subset S$. Contradiction.

By Zorn's Lemma, there exists a maximal element in \mathcal{A}, say M.
Since $M \in \mathcal{A}$, we have $I \subseteq M$, and $M \subset S$ (that is, M is a proper ideal of S).
Let T be an ideal of S such that $M \subseteq T$ and $T \neq M \quad(\Rightarrow \quad T=S \quad ?)$
Let $T \neq S$. Since $I \subseteq M$, we have $I \subseteq T \subset S$, and $T \in \mathcal{A}$.
Since $M \subseteq T \in \mathcal{A}$ and M maximal in \mathcal{A}, we have $M=T$. Impossible.
If S is an ordered semigroup (resp. semigroup), a unit of S is an element $e \in S$ such that $e x=x e=x$ for all $x \in S$.

Proposition 3. Let S be an ordered semigroup (resp. semigroup) for which there exists an element $a \in S$ such that $\mathcal{I}(a)=S$. Then, each proper ideal of S is contained in a maximal ideal of S.

Proof. Let I be a proper ideal of S. We consider the set:

$$
\mathcal{A}:=\{J \mid J \text { ideal of } S, I \subseteq J \subset S\}
$$

Since $I \in \mathcal{A}$, we have $\mathcal{A} \neq \emptyset$, then the set $M:=\bigcup\{J \mid J \in \mathcal{A}\}$ is an ideal of S, and $I \subseteq M$. The set M is a maximal ideal of S. In fact:
If $M=S$, then $a \in \bigcup\{J \mid J \in \mathcal{A}\}$. Then there exists $J \in \mathcal{A}$ such that $a \in J$. Since J is an ideal of S containing a, by hypothesis, we have $S=\mathcal{I}(a) \subseteq J$. On the other hand, since $J \in \mathcal{A}$, we have $J \subset S$. Impossible. Thus M is a proper ideal of S.
Let now T be an ideal of S such that $M \subseteq T$ and $T \neq S$. Then we have $I \subseteq M \subseteq T \subset S$, $T \in \mathcal{A}$, and $T \subseteq M$. Then $T=M$.

Remark 1. If S is an ordered semigroup (resp. semigroup) and if there is a unit element $e \in S$, then $\mathcal{I}(e)=S$. In fact: Let $x \in S$. Then

$$
x=x e \in S e \subseteq(e \cup S e \cup e S \cup S e S]=\mathcal{I}(e)
$$

By Proposition 3 and Remark 1, we have the following:

Proposition 4. Let S be an ordered semigroup (resp. semigroup) with unit. Then each proper ideal of S is contained in a maximal ideal of S.

Remark 2. Let S be an ordered semigroup. If $a \in S$ such that $(S a]=S$ (or (aS]=S or $(\mathrm{SaS}]=\mathrm{S})$, then $\mathcal{I}(a)=S$. In fact, we have

$$
S=(S a] \subseteq(a \cup S a \cup a S \cup S a S]=\mathcal{I}(a) \subseteq S
$$

If $a \in S$ such that $S a=S$, then $(S a]=(S]=S$.
If $a \in S$ such that $a S=S$ (resp. $\mathrm{SaS}=\mathrm{S}$), then $(a S]=S($ resp. $(S a S]=S)$.
If now S is a semigroup such that $S a=S$ or $a S=S$ or $S a S=S$, then $\mathcal{I}(a)=S$.
Remark 3. If for an ordered semigroup (or a semigroup) S there exists an element $a \in S$ such that $\mathcal{I}(a)=S$, then is S finitely generated ? It is not, in general:
We notice first that for each $n \in N$ (N the set of natural numbers) there exists a prime p such that $p>n$. Moreover, if $a_{1}, a_{2}, \ldots ., a_{k} \in N$ and p prime such that $p / a_{1} a_{2} \ldots . . a_{k}$, then there exists $a_{j} \in\left\{a_{1}, a_{2}, \ldots ., a_{k}\right\}$ such that p / a_{j}.
We consider now the ordered semigroup $(N, ., \leq)$ of natural numbers with the usual multiplicationorder. Since 1 is the unit of N, we have $\mathcal{I}(1)=N$. Let N be finitely generated, that is, let $a_{1}, a_{2}, \ldots ., a_{k} \in N$ such that $N=<a_{1}, a_{2}, \ldots ., a_{k}>$.
Let p be a prime such that $p>\max \left\{a_{1}, a_{2}, \ldots ., a_{k}\right\}$. Then $p>a_{1}, a_{2}, \ldots ., a_{k}$. Since $p \in N$, there exist $b_{1}, b_{2}, \ldots ., b_{m} \in\left\{a_{1}, a_{2}, \ldots ., a_{k}\right\}$ such that $p=b_{1} b_{2} \ldots . b_{m}$. Then $p / b_{1} b_{2} \ldots . b_{m}$, and p / b_{j} for some $b_{j} \in\left\{b_{1}, b_{2}, \ldots ., b_{m}\right\}$. Then $b_{j}=\mu p$ for some $\mu \in N$. Since $\mu \geq 1$, we have $b_{j}=\mu p \geq p$. Impossible.
2. Similar results hold if, in the results above, we replace the word "ideal" by "left ideal" or "right ideal".
A left ideal L (resp. right ideal R) of an ordered semigroup (resp. semigroup) S is called proper if $L \neq S$ (resp. $R \neq S$). A proper left ideal M of an ordered semigroup (resp. semigroup) S is called maximal if for every left ideal I of S such that $M \subseteq L$, we have $M=L$ or $M=S$. The definition of maximal right ideals is similar.
We have the following:
Proposition 5. Let S be an ordered semigroup (resp. semigroup) and M a proper left (resp. right) ideal of S. Then M is a maximal ideal of S if and only if for every $a \in S \backslash M$, we have $\mathcal{L}(M \cup\{a\})=S$.

Proposition 6. Let S be a finitely generated ordered semigroup (resp. semigroup). Then, each proper left (resp. right) ideal of S is contained in a maximal left (resp. right) ideal of S.

Proposition 7. Let S be an ordered semigroup (resp. semigroup) and let $a \in S$ such that $\mathcal{L}(a)=S$ (resp. $\mathcal{R}(a)=S$). Then, each proper left (resp. right) ideal of S is contained in a maximal left (resp. right) ideal of S.

Remark 4. If S is an ordered semigroup (resp. semigroup) and if there is a unit element $e \in S$, then $\mathcal{L}(e)=S$ and $\mathcal{R}(e)=S$.

Proposition 8. Let S be an ordered semigroup (resp. semigroup) with unit. Then each proper left (resp. right) ideal of S is contained in a maximal left (resp. right) ideal of S.

Remark 5. Let S be an ordered semigroup. If $a \in S$ such that $(S a]=S$, then $\mathcal{L}(a)=S$. If $a \in S$ such that $(a S]=S$, then $\mathcal{R}(a)=S$.

Remark 6. Let S be an ordered semigroup (resp. semigroup) and let $a \in S$ such that $\mathcal{L}(a)=S$. Then, for each left ideal L of S containing a, we have $L=S$. In fact: Let L be a left ideal of S such that $a \in L$. Then $S=\mathcal{L}(a) \subseteq L \subseteq S$.
Similar results hold if we replace the word "left ideal" by "right ideal" or "ideal".
Remark 7. If S is an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$ such that $S=\langle A\rangle$ then, for each left ideal L of S such that $A \subseteq L$, we have $L=S$. In fact:
Let $x \in S$. Since $S=<A>$, there exists $a_{1}, a_{2}, \ldots ., a_{n} \in A$ such that $x=a_{1} a_{2} \ldots . . a_{n}$.
If $n=1$, then $x=a_{1} \in A \subseteq L$, and $x \in L$.
If $n \geq 2$, then $x=a_{1} a_{2} \ldots . a_{n}=\left(a_{1} a_{2} \ldots . . a_{n-1}\right) a_{n} \in S A \subseteq S L \subseteq L$, and $x \in L$.

Similarly, if S is an ordered semigroup (resp. semigroup) and $\emptyset \neq A \subseteq S$ such that $S=<A>$ then, for each right ideal R of S such that $A \subseteq R$, we have $R=S$.

This research was supported by the Special Research Account (No. 70/3/4967) of the University of Athens.

References

[1] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, $\mathbf{3 5}$ No. 6 (1990), 1051-1056.
[2] N. Kehayopulu, Note on Green's relations in ordered semigroups, Mathematica Japonica, $\mathbf{3 6}$ No. 2 (1991), 211-214.

University of Athens, Department of Mathematics
Mailinig (home) address: Nikomidias 18, 16122 Kesariani, Greece
e-mail: nkehayop@cc.uoa.gr

[^0]: 2000 Mathematics Subject Classification. 06F05.
 Key words and phrases. Proper, maximal ideal of ordered semigroups.

