REMARK ON ORDERED GROUPOIDS

Niovi Kehayopulu and Michael Tsingelis

Received March 28, 2001

Abstract

For an ordered groupoid G, we denote by G^{0} the ordered groupoid arising from G by the adjunction of a zero element. We first prove the following: If S is an ordered groupoid, then there exists a proper prime ideal of S if and only if there exists and ordered group G and a mapping f of S onto G^{0} which is a homomorphism. The following question arises: Given an ordered groupoid S under what conditions there exists and ordered group G such that S is isomorphic to G^{0} ? We prove the following: If S is an ordered groupoid with a zero element θ such that $S \backslash\{\theta\}$ is a subgroup of S, then there exists an ordered group G such that S is isomorphic to G^{0}. The converse statement also holds: If S is an ordered groupoid and G an ordered group such that S is isomorphic to G^{0}, then there exists a zero element θ of S such that $S \backslash\{\theta\}$ is a subgroup of S.

For an ordered groupoid (S, \circ, \leq) we denote by S^{0} the ordered groupoid arising from S by the adjunction of a zero element, constructed as follows:
We consider an element 0 which does not belong to $S(0 \notin S)$, and the set $S^{0}:=S \cup\{0\}$ with the following multiplication-order.

$$
\begin{gathered}
*: S^{0} \times S^{0} \rightarrow S^{0} \left\lvert\,(a, b) \rightarrow \begin{cases}a \circ b & \text { if } a, b \in S \\
0 & \text { otherwise }\end{cases} \right. \\
\leq_{0}:=\leq_{S} \cup\left\{(0, x) \mid x \in S^{0}\right\}
\end{gathered}
$$

In particular, if (S, \circ, \leq) is an ordered semigroup, then $\left(S^{0}, *_{,} \leq_{0}\right)$ is an ordered semigroup, as well, and 0 is the zero of S^{0}.
In the following, the multiplication and the order on S^{0} are always denoted by "*" and $\leq 0 "$.

If $(S, ., \leq)$ is an ordered groupoid, a zero element of S is an element of S, denoted by 0 , such that $0 x=x 0=0$ and $0 \leq x$ for every $x \in S[1]$. Let $(S, ., \leq),(T, *, \preceq)$ be ordered groupoids, $f: S \rightarrow T$ a mapping of S into T. f is called isotone if $x \leq y$ implies $f(x) \preceq f(y)$. f is called reverse isotone if $x, y \in S, f(x) \preceq f(y)$ imply $x \leq y . f$ is called a homomorphism if it is isotone and satisfies $f(x y)=f(x) * f(y)$ for all $x, y \in S . f$ is called an isomorphism if it is a homomorphism, onto, an reverse isotone. S and T are called isomorphic, in symbol $S \cong T$, if there exists an isomorphism between them. Each reverse isotone mapping is (1-1).

2000 Mathematics Subject Classification. 06F05, 20 N 02.
Key words and phrases. Ordered groupoid (group, semigroup), ideal of an ordered groupoid, proper ideal, ordered group with zero, adjunction of a zero to an ordered groupoid.

Indeed: Let $x, y \in S, f(x)=f(y)$. Since $f(x) \preceq f(y)$, we have $x \leq y$. Since $f(y) \preceq f(x)$, we have $y \leq x$. Then $x=y$ [2].
If $(S, ., \leq)$ is an ordered groupoid, by an ideal of S, we mean a non-empty subset P of S such that 1) $S P \subseteq P$ and $P S \subseteq P$. 2) $a \in P$ and $S \ni b \leq a$ implies $b \in P$. An ideal P of S is called prime if $a, b \in S, a b \in T$ implies $a \in T$ or $b \in T$. Equivalent Definition: $A, B \subseteq S$, $A B \subseteq T$ implies $A \subseteq T$ or $B \subseteq T$ [3]. An ideal P of S is called proper if $P \neq S$ [4].

Theorem 1. Let $(S, ., \leq)$ is an ordered groupoid. The following are equivalent:

1) There exists a proper prime ideal of S.
2) There exists an ordered group $\left(G, \circ, \leq_{G}\right)$ and a mapping
$f:(S, ., \leq) \rightarrow\left(G^{0}, *, \leq_{0}\right)$
which is homomorphism and onto.
Proof. 1) $\Rightarrow 2$). Let P be a proper prime ideal of S. We consider the set $G=\{e\}$ with the multiplication " \circ " and the order $" \leq_{G} "$ on G defined by:

$$
e \circ e:=e, \quad \leq_{G}:=\{(e, e)\} .
$$

Then $\left(G, \circ, \leq_{G}\right)$ is an ordered group and e is the unit of G.
Let $0 \notin G$. We consider the set $G^{0}:=G \cup\{0\}$ with the multiplication and the order below:

.	e	0
e	e	0
0	0	0

$$
\leq_{0}=\{(e, e),(0,0),(0, e)\} .
$$

Since P is a proper ideal of S, we have $P \subseteq S$ and $P \neq S$. Then $P \neq \emptyset$ and $S \backslash P \neq \emptyset$. We consider the mapping:

$$
f:(S, \cdot, \leq) \rightarrow\left(G^{0}, *, \leq_{0}\right) \mid a \rightarrow f(a):= \begin{cases}e & \text { if } a \in S \backslash P \\ 0 & \text { if } a \in P\end{cases}
$$

1) The mapping f is well defined.
2) f is a homomorphism.

Let $a, b \in S \quad(\Rightarrow \quad f(a b)=f(a) * f(b) \quad$? $)$
If $a \in P$, then $f(a):=0, \quad f(a) * f(b)=0 * f(b)=0, \quad a b \in P S \subseteq P, \quad f(a b):=0$. Then $f(a b)=f(a) * f(b)$.

Let $a \notin P$. Then $f(a):=e, f(a) * f(b)=e * f(b)$. Since $f(b) \in G^{0}$, we have $f(b)=e$ or $f(b)=0$. If $f(b)=e$, then $e * f(b)=e * e:=e=f(b)$. If $f(b)=0$, then $e * f(b)=e * 0:=$ $0=f(b)$. Thus we have $f(a) * f(b)=f(b) \ldots \ldots \ldots(*)$
Then: If $b \in P$, then $f(b):=0, \quad a b \in P S \subseteq P, \quad f(a b):=0$. Then, by $(*), f(a) * f(b)=$ $f(a b)$.
If $b \notin P$, then $f(b):=e, a b \notin P$ (since $a b \in P$ implies $a \in P$ or $b \in P), f(a b):=e$. Then, by $\left({ }^{*}\right), f(a) * f(b)=f(a b)$.
Let $a, b \in S, a \leq b \quad\left(\Rightarrow \quad f(a) \leq_{0} f(b) \quad ?\right)$
Let $b \in P$. Then $f(b):=0, a \leq b \in P, a \in P, f(a):=0$. Then $f(a) \leq_{0} f(b)$.

Let $b \notin P$. Then $f(b):=e$. Since $f(a) \in G^{0}:=\{0, e\}$, by the definition of $" \leq_{0} "$, we have $f(a) \leq_{0} f(b)$.
3) f is onto.

Since $G^{0}=\{0, e\}, \quad P \neq \emptyset$ and $S \backslash P \neq \emptyset$.
We finally remark that $P=f^{-1}(0)$. Indeed: Let $a \in f^{-1}(0)$. Then $f(a)=0$, and $a \in P$ (since $a \notin P$ implies $0=f(a):=e \in G$. Impossible).
$2) \Rightarrow 1)$. Let $\left(G, \circ, \leq_{G}\right)$ be an ordered group and $f:(S, ., \leq) \rightarrow\left(G^{0}, *, \leq_{0}\right)$ a mapping which is homomorphism and onto.
Since $0 \in G^{0}$ and f onto, there exists $x \in S$ such that $f(x)=0$. Then $x \in f^{-1}(0)$, and $\emptyset \neq f^{-1}(0) \subseteq S$.
The set $f^{-1}(0)$ is a proper ideal of S. In fact: Let $a \in S, \quad b \in f^{-1}(0)$. Then $f(b)=0$. Since f is a homomorphism, $f(a b)=f(a) * f(b)=0$. Then $a b \in f^{-1}(0)$.
Similarly $f^{-1}(0) S \subseteq f^{-1}(0)$.
Let $b \in f^{-1}(0)$ and $S \ni a \leq b$. Then $f(a) \leq_{0} f(b)=0$. Since 0 is the zero of G^{0}, we have $f(a)=0$. Then $a \in f^{-1}(0)$.
Let $a, b \in S, \quad a b \in f^{-1}(0)$. Then $f(a) * f(b)=f(a b)=0$. We have $f(a), f(b) \in G^{0}$. If $f(a) \neq 0$ and $f(b) \neq 0$, then $f(a), f(b) \in G$ and
$0=f(a) * f(b)=f(a) \circ f(b) \in G$. Impossible.
Thus $f(a)=0$ or $f(b)=0$. Then $a \in f^{-1}(0)$ and $b \in f^{-1}(0)$.
$f^{-1}(0) \neq S$. Indeed: Let e be the unit of G. Then $e \neq 0$. Since $e \in G^{0}$ and f onto, there exists $y \in S$ such that $f(y)=e$. If $y \in f^{-1}(0)$, then $f(y)=0$, and $0=e \in G$. Impossible. Thus $y \notin f^{-1}(0)$.

Corollary. Let $(S, ., \leq)$ be an ordered groupoid and $P \subseteq S$. The following are equivalent:

1) The set P is a proper prime ideal of S.
2) There exists an ordered group G and a mapping $f: S \rightarrow G^{0}$ which is homomorphism and onto such that $P=f^{-1}(0)$.

Definition. Let $(S, ., \leq)$ be an ordered groupoid. S is called an ordered group with zero if there exists an ordered group $\left(G, \circ, \leq_{G}\right)$ such that $S \cong G^{0}$.

Theorem 2. Let $(S, ., \leq)$ be an ordered groupoid. The following are equivalent:

1) S is an ordered group with zero.
2) There exists a zero element θ of S such that $S \backslash\{\theta\}$ is a subgroup of S.

Proof. 1) $\Rightarrow 2)$. Let $\left(G, \circ, \leq_{G}\right)$ be an ordered group, and
$f:(S, ., \leq) \rightarrow\left(G^{0}, *, \leq_{G}\right)$ be an isomorphism (0 is the zero of G^{0}).
Since $0 \in G^{0}$, there exists $\theta \in S$ such that $f(\theta)=0$ \qquad
The element θ is the zero of S. Indeed: Let $x \in S$. We have

$$
f(x \theta)=f(x) * f(\theta)=f(x) * 0=0=f(\theta)(\text { by }(*)) .
$$

Since f is (1-1), we have $x \theta=\theta$. Similarly, $\theta x=\theta$.
Since $f(x) \in G^{0}$ and 0 is the zero of G^{0}, we have $0 \leq f(x)$. Then $f(\theta) \leq f(x)$, and $\theta \leq x$.

Let $a, b \in S \backslash\{\theta\}$. Then $a b \in S$. If $a b=\theta$, then $f(a b)=f(\theta)=0$. Since f is a homomorphism, $f(a) * f(b)=0$. If $f(a), f(b) \in G$, then

$$
0=f(a) * f(b):=f(a) \circ f(b) \in G
$$

Impossible. Thus $f(a)=0$ or $f(b)=0$. Then $f(a)=f(\theta)$ or $f(b)=f(\theta)$, then $a=\theta$ or $b=\theta$. Impossible. Then $a b \in S \backslash\{\theta\}$.

Let $a \in S \backslash\{\theta\} \quad\left(\Rightarrow \exists 1_{S} \in S \backslash\{\theta\}\right.$ such that $1_{S} a=a 1_{S}=a \quad$? $)$
Let e be the unit of G. Since $e \in G^{0}$, there exists $1_{S} \in S$ such that

$$
\begin{equation*}
f\left(1_{S}\right)=e \ldots \ldots \ldots \tag{**}
\end{equation*}
$$

If $1_{S}=\theta$, then $f\left(1_{S}\right)=f(\theta)=0$, and $G \ni e=0$. Impossible. Thus $1_{S} \in S \backslash\{\theta\}$. We have $f\left(1_{S} a\right)=f\left(1_{S}\right) * f(a)=e * f(a)=f(a)\left(\right.$ by $\left.\left({ }^{* *}\right)\right)$. Since f is $(1-1), 1_{S} a=a$. Similarly, $a 1_{S}=a$.

Let $a \in S \backslash\{\theta\} \quad\left(\Rightarrow \quad \exists a^{-1} \in S \backslash\{\theta\}\right.$ such that $a^{-1} a=a a^{-1}=1_{S} \quad$?)
Since $a \in S$, we have $f(a) \in G^{0}$. If $f(a)=0$, then $f(a)=f(\theta)$, and $S \ni a=\theta$. Impossible. Thus $f(a) \in G$. Since G is a group, there exists $g \in G$ such that

$$
f(a) \circ g=g \circ f(a)=e
$$

where e is the unit of G. Since $g \in G \subseteq G^{0}$, there exists $a^{-1} \in S$ such that $f\left(a^{-1}\right)=g$. Then we have

$$
f(a) \circ f\left(a^{-1}\right)=f\left(a^{-1}\right) \circ f(a)=f\left(1_{S}\right)
$$

by $\left({ }^{* *}\right)$. Since $f(a), f\left(a^{-1}\right) \in G$, we have $f(a) * f\left(a^{-1}\right)=f(a) \circ f\left(a^{-1}\right)$ and $f\left(a^{-1}\right) * f(a)=$ $f\left(a^{-1}\right) \circ f(a)$. Since f is a homomorphism, $f\left(a^{-1} a\right)=f\left(a a^{-1}\right)=f\left(1_{S}\right)$. Since f is (1-1), $a^{-1} a=a a^{-1}=1_{S}$.
$2) \Rightarrow 1$. By hypothesis, the set $G:=S \backslash\{\theta\}$ with the multiplication " \circ " and the order $" \leq_{G} "$ on G defined by

$$
\circ: G \times G \rightarrow \dot{G} \mid \quad(a, b) \rightarrow a b
$$

$$
\leq_{G}:=\leq \cap(G \times G)
$$

is an ordered group. We consider the set $G^{0}:=G \cup\{0\}$, where $0 \notin G$ with the multiplication and the order on G^{0} defined by

$$
\begin{aligned}
a * b: & =\left\{\begin{array}{ll}
a \circ b & \text { if } a, b \in G \\
0 & \text { otherwise }
\end{array} \quad\left(a, b \in G^{0}\right)\right. \\
& \leq_{0}:=\leq_{G} \cup\left\{(0, x) \mid x \in G^{0}\right\} .
\end{aligned}
$$

We have already seen in [5] that $\left(G^{0}, *, \leq_{0}\right)$ is an ordered groupoid and 0 is the zero of G^{0}. The mapping

$$
f:(S, \cdot, \leq) \rightarrow\left(G^{0}, *, \leq_{0}\right) \left\lvert\, x \rightarrow \begin{cases}x & \text { if } x \in S \backslash\{\theta\} \\ 0 & \text { if } x=\theta\end{cases}\right.
$$

is an isomorphism. The proof is easy.
This research was supported by the Special Research Account (No. 70/4/4205) of the University of Athens.

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ. Vol. XXV, Providence, Rh. Island, 1967.
[2] N. Kehayopulu and M. Tsingelis, On subdirectly irreducible ordered semigroups, Semigroup Forum, 50 (1995), 161-177.
[3] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, 35 (No. 6) (1990), 1051-1056.
[4] N. Kehayopulu, Note on Green's relations in ordered semigroups, Mathematica Japonica, $\mathbf{3 6}$ (No. 2) (1991), 211-214.
[5] N. Kehayopulu and M. Tsingelis, A note on ordered groupoids, semigroups, Scientiae Mathematicae, 3 (No. 2) (2000), 315-319.

University of Athens, Department of Mathematics
Mailinig (home) address: Nikomidias 18, 16122 Kesariani, Greece
e-mail: nkehayop@cc.uoa.gr

