REMARK ON ORDERED GROUPOIDS

NIOVI KEHAYOPULU AND MICHAEL TSINGELIS

Received March 28, 2001

ABSTRACT. For an ordered groupoid G, we denote by G^0 the ordered groupoid arising from G by the adjunction of a zero element. We first prove the following: If S is an ordered groupoid, then there exists a proper prime ideal of S if and only if there exists and ordered group G and a mapping f of S onto G^0 which is a homomorphism. The following question arises: Given an ordered groupoid S under what conditions there exists and ordered group G such that S is isomorphic to G^0 ? We prove the following: If S is an ordered groupoid with a zero element θ such that $S \setminus \{\theta\}$ is a subgroup of S, then there exists an ordered group G such that S is isomorphic to G^0 . The converse statement also holds: If S is an ordered groupoid and G an ordered group such that S is isomorphic to G^0 , then there exists a zero element θ of S such that $S \setminus \{\theta\}$ is a subgroup of S.

For an ordered groupoid (S, \circ, \leq) we denote by S^0 the ordered groupoid arising from S by the adjunction of a zero element, constructed as follows:

We consider an element 0 which does not belong to S $(0 \notin S)$, and the set $S^0 := S \cup \{0\}$ with the following multiplication-order.

$$*: S^0 \times S^0 \to S^0 \mid (a,b) \to \begin{cases} a \circ b & \text{if } a, b \in S \\ 0 & \text{otherwise} \end{cases}$$

$$\leq_0 : = \leq_S \cup \{(0, x) \mid x \in S^0\}.$$

In particular, if (S, \circ, \leq) is an ordered semigroup, then $(S^0, *, \leq_0)$ is an ordered semigroup, as well, and 0 is the zero of S^0 .

In the following, the multiplication and the order on S^0 are always denoted by " *" and \leq_0 ".

If $(S,.,\leq)$ is an ordered groupoid, a zero element of S is an element of S, denoted by 0, such that 0x = x0 = 0 and $0 \leq x$ for every $x \in S$ [1]. Let $(S,.,\leq)$, $(T,*,\leq)$ be ordered groupoids, $f: S \to T$ a mapping of S into T. f is called isotone if $x \leq y$ implies $f(x) \leq f(y)$. f is called reverse isotone if $x, y \in S$, $f(x) \leq f(y)$ imply $x \leq y$. f is called a homomorphism if it is isotone and satisfies f(xy) = f(x) * f(y) for all $x, y \in S$. f is called an isomorphism if it is a homomorphism, onto, an reverse isotone. S and T are called isomorphic, in symbol $S \cong T$, if there exists an isomorphism between them. Each reverse isotone mapping is (1-1).

²⁰⁰⁰ Mathematics Subject Classification. 06F05, 20N02.

Key words and phrases. Ordered groupoid (group, semigroup), ideal of an ordered groupoid, proper ideal, ordered group with zero, adjunction of a zero to an ordered groupoid.

Indeed: Let $x, y \in S$, f(x) = f(y). Since $f(x) \leq f(y)$, we have $x \leq y$. Since $f(y) \leq f(x)$, we have $y \leq x$. Then x = y [2].

If $(S, ., \leq)$ is an ordered groupoid, by an ideal of S, we mean a non-empty subset P of S such that 1) $SP \subseteq P$ and $PS \subseteq P$. 2) $a \in P$ and $S \ni b \leq a$ implies $b \in P$. An ideal P of S is called prime if $a, b \in S$, $ab \in T$ implies $a \in T$ or $b \in T$. Equivalent Definition: $A, B \subseteq S$, $AB \subseteq T$ implies $A \subseteq T$ or $B \subseteq T$ [3]. An ideal P of S is called proper if $P \neq S$ [4].

Theorem 1. Let $(S, ., \leq)$ is an ordered groupoid. The following are equivalent:

- 1) There exists a proper prime ideal of S.
- 2) There exists an ordered group (G, \circ, \leq_G) and a mapping

 $\begin{array}{l} f:(S,.,\leq)\to(G^0,*,\leq_0)\\ which \ is \ homomorphism \ and \ onto. \end{array}$

Proof. 1) \Rightarrow 2). Let P be a proper prime ideal of S. We consider the set $G = \{e\}$ with the multiplication " \circ " and the order " \leq_G " on G defined by:

$$e \circ e := e, \quad \leq_G := \{(e, e)\}$$

Then (G, \circ, \leq_G) is an ordered group and e is the unit of G. Let $0 \notin G$. We consider the set $G^0 := G \cup \{0\}$ with the multiplication and the order below:

$$\begin{array}{c|cccc}
 & e & 0 \\
 \hline
 e & e & 0 \\
 \hline
 0 & 0 & 0 \\
 \end{array}$$

$$\leq_0 = \{(e, e), (0, 0), (0, e)\}.$$

Since P is a proper ideal of S, we have $P \subseteq S$ and $P \neq S$. Then $P \neq \emptyset$ and $S \setminus P \neq \emptyset$. We consider the mapping:

$$f: (S, \cdot, \leq) \to (G^0, *, \leq_0) \mid a \to f(a) := \begin{cases} e & \text{if } a \in S \setminus P \\ 0 & \text{if } a \in P \end{cases}$$

1) The mapping f is well defined.

2) f is a homomorphism. Let $a, b \in S$ (\Rightarrow f(ab) = f(a) * f(b)?) If $a \in P$, then f(a) := 0, f(a) * f(b) = 0 * f(b) = 0, $ab \in PS \subseteq P$, f(ab) := 0. Then f(ab) = f(a) * f(b).

Let $a \notin P$. Then f(a) := e, f(a) * f(b) = e * f(b). Since $f(b) \in G^0$, we have f(b) = e or f(b) = 0. If f(b) = e, then e * f(b) = e * e := e = f(b). If f(b) = 0, then e * f(b) = e * 0 := 0 = f(b). Thus we have f(a) * f(b) = f(b)......(*)

Then: If $b \in P$, then f(b) := 0, $ab \in PS \subseteq P$, f(ab) := 0. Then, by (*), f(a) * f(b) = f(ab).

If $b \notin P$, then f(b) := e, $ab \notin P$ (since $ab \in P$ implies $a \in P$ or $b \in P$), f(ab) := e. Then, by (*), f(a) * f(b) = f(ab).

Let $a, b \in S$, $a \leq b$ (\Rightarrow $f(a) \leq_0 f(b)$?) Let $b \in P$. Then f(b) := 0, $a \leq b \in P$, $a \in P$, f(a) := 0. Then $f(a) \leq_0 f(b)$. Let $b \notin P$. Then f(b) := e. Since $f(a) \in G^0 := \{0, e\}$, by the definition of " \leq_0 ", we have $f(a) \leq_0 f(b)$.

3) f is onto. Since $G^0 = \{0, e\}, P \neq \emptyset$ and $S \setminus P \neq \emptyset$.

We finally remark that $P = f^{-1}(0)$. Indeed: Let $a \in f^{-1}(0)$. Then f(a) = 0, and $a \in P$ (since $a \notin P$ implies $0 = f(a) := e \in G$. Impossible).

2) \Rightarrow 1). Let (G, \circ, \leq_G) be an ordered group and $f : (S, ., \leq) \rightarrow (G^0, *, \leq_0)$ a mapping which is homomorphism and onto. Since $0 \in G^0$ and f onto, there exists $x \in S$ such that f(x) = 0. Then $x \in f^{-1}(0)$, and $\emptyset \neq f^{-1}(0) \subseteq S$.

The set $f^{-1}(0)$ is a proper ideal of S. In fact: Let $a \in S$, $b \in f^{-1}(0)$. Then f(b) = 0. Since f is a homomorphism, f(ab) = f(a) * f(b) = 0. Then $ab \in f^{-1}(0)$. Similarly $f^{-1}(0)S \subset f^{-1}(0)$.

Let $b \in f^{-1}(0)$ and $S \ni a \leq b$. Then $f(a) \leq_0 f(b) = 0$. Since 0 is the zero of G^0 , we have f(a) = 0. Then $a \in f^{-1}(0)$.

Let $a, b \in S$, $ab \in f^{-1}(0)$. Then f(a) * f(b) = f(ab) = 0. We have $f(a), f(b) \in G^0$. If $f(a) \neq 0$ and $f(b) \neq 0$, then $f(a), f(b) \in G$ and

 $0 = f(a) * f(b) = f(a) \circ f(b) \in G$. Impossible.

Thus f(a) = 0 or f(b) = 0. Then $a \in f^{-1}(0)$ and $b \in f^{-1}(0)$.

 $f^{-1}(0) \neq S$. Indeed: Let *e* be the unit of *G*. Then $e \neq 0$. Since $e \in G^0$ and *f* onto, there exists $y \in S$ such that f(y) = e. If $y \in f^{-1}(0)$, then f(y) = 0, and $0 = e \in G$. Impossible. Thus $y \notin f^{-1}(0)$.

Corollary. Let $(S, ., \leq)$ be an ordered groupoid and $P \subseteq S$. The following are equivalent: 1) The set P is a proper prime ideal of S.

2) There exists an ordered group G and a mapping $f : S \to G^0$ which is homomorphism and onto such that $P = f^{-1}(0)$.

Definition. Let $(S, ., \leq)$ be an ordered groupoid. S is called an ordered group with zero if there exists an ordered group (G, \circ, \leq_G) such that $S \cong G^0$.

Theorem 2. Let $(S, ., \leq)$ be an ordered groupoid. The following are equivalent: 1) S is an ordered group with zero.

2) There exists a zero element θ of S such that $S \setminus \{\theta\}$ is a subgroup of S.

The element θ is the zero of S. Indeed: Let $x \in S$. We have

$$f(x\theta) = f(x) * f(\theta) = f(x) * 0 = 0 = f(\theta)$$
 (by (*)).

Since f is (1-1), we have $x\theta = \theta$. Similarly, $\theta x = \theta$. Since $f(x) \in G^0$ and 0 is the zero of G^0 , we have $0 \le f(x)$. Then $f(\theta) \le f(x)$, and $\theta \le x$. Let $a, b \in S \setminus \{\theta\}$. Then $ab \in S$. If $ab = \theta$, then $f(ab) = f(\theta) = 0$. Since f is a homomorphism, f(a) * f(b) = 0. If $f(a), f(b) \in G$, then

$$0 = f(a) * f(b) := f(a) \circ f(b) \in G.$$

Impossible. Thus f(a) = 0 or f(b) = 0. Then $f(a) = f(\theta)$ or $f(b) = f(\theta)$, then $a = \theta$ or $b = \theta$. Impossible. Then $ab \in S \setminus \{\theta\}$.

Let $a \in S \setminus \{\theta\}$ $(\Rightarrow \exists 1_S \in S \setminus \{\theta\} \text{ such that } 1_S a = a 1_S = a$?) Let e be the unit of G. Since $e \in G^0$, there exists $1_S \in S$ such that

 $f(1_S) = e....(**)$

If $1_S = \theta$, then $f(1_S) = f(\theta) = 0$, and $G \ni e = 0$. Impossible. Thus $1_S \in S \setminus \{\theta\}$. We have $f(1_S a) = f(1_S) * f(a) = e * f(a) = f(a)$ (by (**)). Since f is (1-1), $1_S a = a$. Similarly, $a1_S = a$.

Let $a \in S \setminus \{\theta\}$ $(\Rightarrow \exists a^{-1} \in S \setminus \{\theta\} \text{ such that } a^{-1}a = aa^{-1} = 1_S$?) Since $a \in S$, we have $f(a) \in G^0$. If f(a) = 0, then $f(a) = f(\theta)$, and $S \ni a = \theta$. Impossible. Thus $f(a) \in G$. Since G is a group, there exists $g \in G$ such that

$$f(a) \circ g = g \circ f(a) = e,$$

where e is the unit of G. Since $g \in G \subseteq G^0$, there exists $a^{-1} \in S$ such that $f(a^{-1}) = g$. Then we have

$$f(a) \circ f(a^{-1}) = f(a^{-1}) \circ f(a) = f(1_S)$$

by (**). Since $f(a), f(a^{-1}) \in G$, we have $f(a) * f(a^{-1}) = f(a) \circ f(a^{-1})$ and $f(a^{-1}) * f(a) = f(a^{-1}) \circ f(a)$. Since f is a homomorphism, $f(a^{-1}a) = f(aa^{-1}) = f(1_S)$. Since f is (1-1), $a^{-1}a = aa^{-1} = 1_S$.

2) \Rightarrow 1). By hypothesis, the set $G := S \setminus \{\theta\}$ with the multiplication " \circ " and the order " \leq_G " on G defined by

is an ordered group. We consider the set $G^0 := G \cup \{0\}$, where $0 \notin G$ with the multiplication and the order on G^0 defined by

$$a * b := \begin{cases} a \circ b & \text{if } a, b \in G \\ 0 & \text{otherwise} \end{cases} \quad (a, b \in G^0)$$
$$\leq_0 := \leq_G \cup \{(0, x) \mid x \in G^0\}.$$

We have already seen in [5] that $(G^0, *, \leq_0)$ is an ordered groupoid and 0 is the zero of G^0 . The mapping

$$f: (S, \cdot, \leq) \to (G^0, *, \leq_0) \mid x \to \begin{cases} x & \text{if } x \in S \setminus \{\theta\} \\ 0 & \text{if } x = \theta \end{cases}$$

is an isomorphism. The proof is easy.

This research was supported by the Special Research Account (No. 70/4/4205) of the University of Athens.

References

- G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ. Vol. XXV, Providence, Rh. Island, 1967.
- [2] N. Kehayopulu and M. Tsingelis, On subdirectly irreducible ordered semigroups, Semigroup Forum, 50 (1995), 161–177.
- [3] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, 35 (No. 6) (1990), 1051-1056.
- [4] N. Kehayopulu, Note on Green's relations in ordered semigroups, Mathematica Japonica, 36 (No. 2) (1991), 211–214.
- [5] N. Kehayopulu and M. Tsingelis, A note on ordered groupoids, semigroups, Scientiae Mathematicae, 3 (No. 2) (2000), 315-319.

University of Athens, Department of Mathematics Mailinig (home) address: Nikomidias 18, 161 22 Kesariani, Greece e-mail: nkehayop@cc.uoa.gr