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ON THE CATEGORIES OF LFNS AND QFTVS
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Abstract. The main results of this paper are the following: (1) the category of linear fuzzy
neighborhood spaces ( for short, LFNS) is isomorphic to that of co-towers of topological vector
spaces and (2) the intersection of LFNS with the category of (QL)-type fuzzy topological
vector spaces is exactly the category of induced fuzzy topological vector spaces.

1. Introduction

In 1982 Lowen [8] introduced a very important class of fuzzy topological spaces-fuzzy

neighborhood spaces (according to the standardized terminology in [12], fuzzy topological

spaces are also called [0,1]-topological space sometimes), since then, this kind of spaces has

received wide attention in fuzzy topology. Combining this kind of fuzzy topological structure

with vector structure, A.K.Katsaras [2] introduced the concept of linear fuzzy neighborhood

spaces in 1985, and discussed many properties of this spaces in [3]. From then on, this

method was generalized by T. M. G. Ahsanullah, he combined the fuzzy neighborhood

structure with group structure, ring and modules, etc. The concepts of fuzzy neighborhood

groups [9] and fuzzy neighborhood rings ([10], [11]) were introduced one after another. At

the same time, Wu and Fang [13] introduced an important class of fuzzy topological vector

spaces called (QL)-type fuzzy topological vector spaces in 1985. Based on this idea, fuzzy

normble, locally bounded and locally convex of fuzzy topological vector spaces were studied

([14]-[16]). Moreover, this method was also generalized to the research of fuzzy topological

groups and fuzzy topological algebras, etc. Here we must point out there are two di�erent

kind of neighborhood structures in these researches. It is a natural question to make clear

the relationship between linear fuzzy neighborhood spaces and (QL)-type fuzzy topological

vector spaces. The main purpose of this paper is to answer this question.

First, we �x some notations. In this paper, I = [0; 1]; I0 = (0; 1]; I1 = [0; 1); IX will

denote the family of all fuzzy sets of X; ~X will denote the set of all fuzzy points. For all

r 2 [0; 1]; r� is the fuzzy set which takes the constant value r on X. A fuzzy point x�
is said to be quasi-coincident with fuzzy set U , denoted by x�q̂U , i� U(x) > 1 � �: For

A 2 IX ; � 2 I1; ��(A) = f x 2 X j � < A(x)g; A[�] = f x 2 X j � � A(x)g. Other

symbols which is not mentioned here we refer to [4], [5].

De�nition 1.1 [2] Let X be a vector space over K (where K= R or C). A fuzzy

neighborhood system N on X is called linear if the functions

+ : X �X ! X; (x; y) ! x+ y and � : K�X ! X; (k; x)! kx;

are n-continuous when K is equipped with the usual fuzzy neighborhood system NK and

X �X K�X have the corresponding product fuzzy neighborhood systems.
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De�nition 1.2 [5] Let (X;�) be a fuzzy topological space and x� 2 ~X, A fuzzy set U

in X is called a Q-neighborhood of x� i� there exists G 2 � such that G � U and x�q̂G.

De�nition 1.3 [13], [4] Let (X;�) be a fuzzy topological vector space. (X;�) is called

a (QL)-type fuzzy topological vector space i� there exists a family of fuzzy sets U in X such

that for each � 2 I0

U� = f U ^ �� j U 2 U ; � 2 (1� �; 1] g

is a Q-neighborhood base of �� in (X;�): U is called a Q-prebase of (X;�).

The following de�nition is a special case of the de�nition of co-tower of topologies [7].

De�nition 1.4 A co-tower of topologies on a set X (indexed by I1) is a family of

topologies � = f �a j a 2 I1g such that �a is generated by
S
a<b �b as a subbasis. �a is called

the a-level topology of �.

Particularly, if each �a is a vector topology for a 2 I1, then we say � is a co-tower of

vector topologies and (X;�) is called a co-tower vector space for short. A linear function

between two co-tower vector spaces is called continuous if it is continuous with respect to

every level topology. The category of co-towers vector spaces is denoted TVSc.

Proposition 1 [2] A fuzzy neighborhood system N on a vector space X is linear i�
(X; t(N)) is a fuzzy topological vector space.

Proposition 2 [7] Let f �a j a 2 I1g be a co-tower of topologies on a set X, then the
operator Æ : IX ! IX de�ned by

AÆ =
_
a2I1

a ^ inta(�a(A)) =
_
a2I1

a ^ intaA[a];

where inta is the interior operator with respect to �a, is a fuzzy interior operator on X.
Thus, it induces a fuzzy topology on X, denoted Æ(�). And a fuzzy set A is open in Æ(�)

i� �a(A) 2 �a for all a 2 I1.

Proposition 3 [7] Let (X;�) be a fuzzy topological space, then the following are equiv-
alent:

(1) For all A 2 �; a 2 I1; a�a(A) 2 �;

(2) � has a basis consisting of leveled characteristic functions,

(3) � has a subbasis consisting of leveled characteristic functions.

(4) There exists a co-tower of topologies on X; � = f�a j a 2 I1 g such that

� = Æ(�).

Proposition 3 is a special case of Theorem 3.1 [7] with L = [0; 1]. By the results in [6], [7],

[18] and [20], we know that a fuzzy topological space (X;�) satisfying one of the equivalent

conditions in the above Proposition is just a fuzzy neighborhood space in the sense of R.

Lowen [8].

Proposition 4. [19] Let (X; �) be a ftvs, then the following conclusions hold:

(1) (X; �) is a Hausdor� fuzzy topological space;

(2) For each � 2 I0, the �� is a closed fuzzy set;

(3) For each � 2 I0; x 2 X with x 6= �, there exists a Q-neighborhood U of �� such
that U(x) = 0:

Proposition 5. [4] Let (X;�) be a ftvs. Then



ON THE CATEGORIES OF LFNS AND QFTVS 95

(1) The mapping f in De�nition 1.1 (addition) is continuous i� for every fuzzy point
(x; y)� in X �X and any Q-neighborhood W of (x + y)�, there exist Q-neighborhoods U
of x� and V of y� such that U + V �W ;

(2) The mapping g in De�nition 1.1 (scalar multiplication) is continuous i� for
every fuzzy point (k; x)� in K�X and any Q-neighborhood W of kx�, there exists a Q-
neighborhood V of x� and " > 0 such that tV �W for all t 2 K with jt� kj < ".

2. The categories of LFNS and TVSc

Theorem 1. Let (X;�) be a Hausdor� [5] fuzzy topological vector space, then for each

� 2 I1; (X; ��(�)) is a crisp Hausdor� topological vector space, where ��(�) = f��(A) j

A 2 �g, called level topology of �.

Proof. For each � 2 I1, clearly (X; ��(�)) is a crisp topological space. Next we prove

this topological structure is compatible with the vector structure on X.

For each open neighborhood ��(A) of x+y, i.e., A(x+y) > � = 1� (1��), then A is an

open Q-neighborhood of (x+y)1��. By Proposition 5, there exists open Q-neighborhoodsU

of x1�� and V of y1�� such that U+V � A. So x 2 ��(U) 2 ��(�); y 2 ��(V ) 2 ��(�) and

��(U) + ��(V ) = ��(U + V ) � ��(A). Since the ��(U) and ��(V ) are open neighborhoods

of x and y respectively, the continuity of addition operator holds. Similarly we may prove

the continuity of the scalar multiplication. Hence (X; ��(�)) is a crisp topological vector

space.

Now we check that (X; ��(�)) is a Hausdor� space. For each x 6= � and 1 � � 2

I0, by Proposition 4, we have an open Q-neighborhood U of �1�� such that U(x) = 0.

Obviously ��(U) is an open neighborhood of � and x 62 ��(U), this shows that (X; ��(�))

is Hausdor�. �

For each fuzzy topology �, denote � (�) = f �� j � 2 I1g, then we have the following:

Corollary 1. The correspondence � : LFNS ! TVSc; �! � (�), is a functor.

Proof. Let (X;�)) be a linear fuzzy neighborhood space [2], from the results in [17]

and Theorem 1, � (�) = f �� j � 2 I1g is a co-tower of vector topologies. We easily

prove the following fact: a linear functional f : (X;�X ) ! (Y;�Y ) is fuzzy continuous i�

f : (X; � (�X)) ! (Y; � (�Y )) is continuous, thus the conclusion holds. �

Theorem 2. Let (X;�) be a (QL)-type fuzzy topological vector space and U a Q-
prebase of it. Then for each � 2 I1; ��(U) = f ��(U) j U 2 Ug is a neighborhood base of �
in (X; ��(�)). Specially, if (X;�) is locally convex ftvs, then (X; ��(�)) is locally convex
topological vector space for all � 2 I1.

Proof. Suppose U 2 U , �rst we prove ��(U) is a neighborhood of � with respect to ��(�).

Since U is Q-prebase, for � 2 I1; U1�� = f U ^ r� j U 2 U ; r 2 (�; 1]g is a Q-neighborhood

base of �1��. Notice that U ^ r� � U , we have U is a Q-neighborhood of �1��, then ��(U)

is a neighborhood of � with respect to ��(�).

On the other hand, for each neighborhood A of � with respect to ��(�), then there exists

a ��(G) 2 ��(�) such that � 2 ��(G) � A. Since G 2 � and G(�) > �, we have G is an

open Q-neighborhood of �1��, so there are U 2 U and r > � such that U ^ r� � G, thus

� 2 ��(U ^ r�) = ��(U) � ��(G) � A:

Hence the �rst part holds. As for the second part, since (X;�) is locally convex ftvs, we

may assume U is a convex Q-prebase of it, each element in ��(U) = f ��(U) j U 2 Ug is

convex, 8� 2 I1. Therefore the conclusion holds. �
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By Proposition 2, the proof of the next Lemma is trivial.

Lemma 1. Let (X; Æ(�)) be a fuzzy topological space induced by a co-tower of topologies
� = f��g�2I1. Then for each � 2 I1 and U 2 ��; �

� ^ U 2 Æ(�).

Theorem 3. Suppose that � = f��g�2I1 be a co-tower of vector topologies on X. Then
there exists a fuzzy topology Æ(�) on X such that (X; Æ(�)) is a fuzzy topological vector
space and for each � 2 I1; ��(Æ(�)) = ��.

Proof. By Proposition 2, there exists a fuzzy topology Æ(�) on X such that for each

A 2 IX ; A 2 Æ(�) i� for each � 2 I1; ��(A) 2 ��. First we prove that Æ(�) is a fuzzy vector

topology. for each (x; y)� in X �X and any open Q-neighborhood W of (x+ y)�, we have

W (x + y) > 1 � �. Then there exists a � > 0 such that W (x + y) > 1 � � + � > 1 � �,

so (x + y) 2 �1��+�(W ) 2 �1��+�. Since (X; �1��+�) is a crisp topological vector space,

there exist open neighborhoods U of x and V of y such that U + V � �1��+�(W ), thus

(1��+�)�^U+(1��+�)�^V � (1��+�)�^(U+V ) � (1��+�)�^�1��+�(W ) �W .

By Lemma 1, (1��+�)�^U 2 Æ(�) and (1��+�)�^V 2 Æ(�), it is clear x�q̂(1��+�)�^U

and y�q̂(1��+�)�^V . This shows (1��+�)�^U and (1��+�)�^V are Q-neighborhood

of x� and y� respectively, from Proposition 5, the mapping f in De�nition 1.1 is continuous.

On the other hand, Let (k; x)� in K�X and W is an open Q-neighborhood of (kx)�.

Similarly the above proof, there exists � > 0 such that �1��+�(W ) is an open neighborhood

of kx in (X; �1��+�), then we have " > 0 and an open neighborhood V of x such that tV �

�1��+�(W ) for all t with jt�kj< ". Thus t^(1��+�)�^V � (1��+�)�^�1��(W ) �W .

Clearly (1 � � + �)� ^ V is an open Q-neighborhood of x�, then g is continuous. Hence

(X; Æ(�)) is a ftvs.

Finally, we prove that for each � 2 I1; �� = ��(Æ(�)), if A 2 ��, then A =
S
�>�

A�;�,

here A�;� 2 ��. So for each x 2 A, there exists � > � such that x 2 A�;�, by Lemma

1, �� ^ A�;� 2 Æ(�), thus x 2 A�;� = ��(�
� ^ A�;�) 2 ��(Æ(�)). This implies A is a

neighborhood of x with respect to ��(Æ(�)), hence A 2 ��(Æ(�)). Therefore the conclusion

holds. �

Remark. By Proposition 2 and the results in [6], [7], [18], (X; Æ(�)) in Theorem 3 is a

special kind of fuzzy topological vector spaces{linear fuzzy neighborhood space. So we may

de�ne a mapping Æ : TVSc ! LFNS, �! Æ(�). Moreover, we have the following:

Theorem 4. The category LFNS is isomorphic to the category TVSc.

Proof. By Corollary 1 and the above Remark, it suÆces to show the following: Æ Æ � =

1LFNS and � Æ Æ = 1TV Sc .

For each � 2 LFNS, Æ(� (�)) � � is obvious. On the contrary, if A 2 Æ(� (�)) and

each x�q̂A, then there exists a " > 0 such that x 2 �1��+"(A) 2 �1��+"(�). Thus we have

a B 2 � such that �1��+"(A) = �1��+"(B), since (X;�) is a fuzzy neighborhood space,

from Proposition 3, (1 � � + ")� ^ �1��+"(B) 2 �. Clearly (1 � � + ")� ^ �1��+"(B) is a

Q-neighborhood of x� with respect to � and (1 � � + ")� ^ �1��+"(B) � (1 � � + ")� ^

�1��+"(A) � A, this shows A is a Q-neighborhood of x� with respect to �, so A 2 �.

Hence Æ Æ � = 1LFNS , the second part holds by Theorem 3. �

Therefore, a linear fuzzy neighborhood space can be characterized completely by a co-

tower of vector topologies.

Theorem 5. Suppose that (X; Æ(�)) be a fuzzy topological vector space determined by
�, if (X; ��) is a separated topological vector space for each � 2 I1. Then (X; Æ(�)) is also
a separated fuzzy topological vector space.
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Proof. For each � 2 I0 and x 6= �, then 1�� 2 I1, further we may choose " > 0 such that

1 � � + " 2 (0; 1). Since (X; �1��+") is a separated topological vector space. Thus there

exists an open neighborhood U of � such that x 62 U .
�
(1��+")� ^U

�
(x) = 0. By Lemma

1, we know (1� �+ ")� ^ U is a Q-neighborhood of ��. From Proposition 3, (X; Æ(�)) is a

Hausdor� fuzzy topological space. �

3. The categories of LFNS and QFTVS

In this section, we will give two Examples at �rst.

Example 1. Let X = R and U = f tA j t > 0g a family of fuzzy sets on X, where
A(x) = 1 for x 2 (�1; 1), and A(x) = 1

2
if x 62 (�1; 1). Then there exists a unique fuzzy

topology � on X such that (X;�) is a (QL)-type fuzzy topological vector space and U is
a Q-prebase of it. In addition, (X;�) is not a linear fuzzy neighborhood space.

In order to verify the above Example, at �rst we show that U satis�es (a)-(d) of Theorem

5.1 [4]. (a) and (c) follow directly from that the fuzzy set A is balanced.

(b) If tA 2 U and � 2 I0, then
t
2
A 2 U . If ( t

2
A+ t

2
A)(x) = a > 0, then for each b 2 (0; a),

there exist y; z 2 R such that t
2
A(y) > b and t

2
A(z) > b with y + z = x, so 2y

t
2 �b(A)

and 2z
t
2 �b(A), thus y 2

t
2
�b(A) and z 2 t

2
�b(A). Since t�b(A) is a crisp convex set in R,

hence x = y+ z 2
�
1
2
(t�b(A))+

1
2
(t�b(A))

�
� t�b(A), i.e. tA(x) > b, from the arbitrariness

of b 2 (0; a), we get tA(x) � a. This shows t
2
A + t

2
A � tA, thus for each r 2 (1 � �; 1], we

have ( t
2
A+ t

2
A) ^ r� � tA.

(d) If tA 2 U , then for any x� 2 ~X , then there exist a positive number s > 0 such that

x 2 (�t; t), so x�q̂s(tA):

Therefore there exists a unique fuzzy topology � on X such that (X;�) is a (QL)-type

fuzzy topological vector space and U is a Q-prebase of it. We must point out this space is not

linear fuzzy neighborhood space. Otherwise, if (X;�) is a linear fuzzy neighborhood space,

then its level topologies � (�) = f��(�) j � 2 I1g is a co-tower of vector topologies. Let
0

s

consider two levels (X; � 3
4

(�)) and (X; � 1
3

). From Theorem 2, � 3
4

(U) = f(�t; t) j t > 0g is

a neighborhood base of � with respect to � 3
4

(�) and � 1
3

(U) = fXg is a neighborhood base

of � with respect to � 1
3

(�). This contradicts with the co-tower of vector topologies � (�).

Hence (X;�) is not a linear fuzzy neighborhood space.

Example 1 indicates there exists a (QL)-type fuzzy topological vector space which is not

linear fuzzy neighborhood space.

Example 2. Let (X;J) be a crisp topological vector space and denote �J = fr� j r 2

(1
2
; 1]g

S
fU
T
r� j U 2 J; r 2 (0; 1

2
]g. Then (X;�J ) is a linear fuzzy neighborhood space

but it is not a (QL)-type fuzzy topological vector space.

It is easy to see �J is a fuzzy topology. Moreover, for each � �
1
2
; ��(�

J ) = f X; ;g

and if � 2 [0; 1
2
); ��(�

J) = J . Clearly � = � (�) = f ��g�2I1 is a co-tower of vector

topologies. By Theorem 3, there exists a fuzzy topology Æ(�) such that (X; Æ(�)) is a

linear fuzzy neighborhood space. Next we prove Æ(�) = �J , the relation Æ(�) � �J

is trivial. For each A 2 Æ(�), here A 6= ;; then for each x�q̂A, we have " > 0 such that

x 2 �1��+"(A) 2 �1��+"(�
J). If 1��+" � 1

2
, then �1��+"(A) = X, so x�q̂(1��+")

�^X =

(1 � � + ")� ^ �1��+"(A) � A, this shows A is a Q-neighborhood of x� with respect

to �J . If 1 � � + " < 1
2
, thus there exists a U 2 J such that �1��+"(A) = U , then

x�q̂(1 � � + ")� ^ U = (1 � � + ")� ^ �1��+"(A) � A, this implies A is a Q-neighborhood

of x� with respect to �J . Hence A 2 �J , then Æ(�) � �J . Therefore (X;�J ) is a linear

fuzzy neighborhood space.
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On the other hand, Wu and Fang proved that (X;�J ) is not a (QL)-type fuzzy topolog-

ical vector space in [13].

The category of induced fuzzy topological vector space is denoted by !(TVS). Then we

have the following:

Theorem 6. LFNS
T
QFTVS = !(TVS)

Proof. From the results in [2] and [13], LFNS
T
QFTVS � !(TVS) holds. Suppose

that (X;�) 2 LFNS
T
QFTVS, then � (�) is a co-tower of vector topologies and there

exists a family of fuzzy sets U such that U is a Q-prebase of �. By Theorem 2, for each

� 2 I1; f��(U) j U 2 Ug is a neighborhood base of � in (X; ��(�)). For each � 2 I1 and

� > �; � 2 I1, if A 2 ��(�) and any x 2 A, then there is a U 2 U such that x+��(U) � A.

So x+��(U) � x+��(U) � A, this shows A is a neighborhood of x with respect to ��(�).

Thus A 2 ��(�). Therefore ��(�) = ��(�) for all �; � 2 I1, i.e., all the levels of � (�) are

equal. So (X;�) is an induced fuzzy topological vector space, this shows LFNS
T
QFTVS

� !(TVS), the conclusion holds. �
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