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Abstract. In this paper the Shortley-Weller �nite di�erence method applied to the

two-point boundary value problems �(p(x)u0)0 = f with the Dirichlet boundary condi-

tion is considered. We show several error bounds of the Shortley-Weller �nite di�erence

solutions in the case where p and f have certain regularity using Yamamoto's explicit

inversion formula for tridiagonal matrices. We also consider the cases where p and f

are discontinuous.

1 Introduction Let I := (a; b) � R be a one-dimensional bounded interval. Let p 2

L1(I). We consider the following two-point boundary value problem: for a given f(x) �nd

u(x) such that

�(p(x)u0(x))0 = f(x) in I; u(a) = u(b) = 0:(1.1)

It is well-known that if there exists a positive constant Æ such that p(x) � Æ > 0, then (1:1)

has a unique solution u 2 H1
0 (I) for any f 2 H�1(I). Furthermore, it has been known (see

[5]) that, if 1=p 2 L1(I) and
R
I
dx=p(x) 6= 0, then the equation (1:1) has a unique solution

u 2W
1;q
0 (I) for any f 2W�1;q(I) with any q, 1 � q � 1. In this paper we always suppose

that (1:1) has a unique solution. In the above, Lq(I),W k;q(I), (1 � q � 1, k is an integer),

H1
0 (I), H

�1(I) are usual Lebesgue and Sobolev spaces. For the exact de�nitions see, for

example, [1]. Also Ck;�(�I) (k is a positive integer, and 0 < � � 1) denotes usual H�older

space. Note that by Sobolev's imbedding theorem W k;q(I) � Ck�1;1�(1=q)(�I) for a positive

integer k. Note also that, in particular,W k;1(I) = Ck�1;1(�I) since any Lipschitz functions

are di�erentiable a.e. in I.

We approximate the solution of (1:1) by the Shortley-Weller �nite di�erence method

(see, for example, [3]). Let

a = x0 < x1 < � � � < xi < � � � < xn+1 = b; hi := xi � xi�1; h := max
i

hi(1.2)

be a triangulation (or partition) of the interval I. We also set xi+ 1
2
:= 1

2
(xi + xi+1),

pi+ 1
2
:= p(xi+ 1

2
), and fi := f(xi). Then the Shortley-Weller �nite di�erence approximation

of (1:1) is de�ned by

�
pi+1

2

ui+1�ui

hi+1
� pi� 1

2

ui�ui�1

hi

hi+1+hi
2

= fi; i = 1; 2; � � � ; n:(1.3)

Let U(xi) be the solution of (1:3). By a usual interpolation U may be regarded as a

piecewise linear function de�ned on I.
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In this paper we will develop a detailed analysis on the error

max
�
ju(xi) � U(xi)j : i = 1; � � � ; n

	
:

First, in Section 3, we recall the recently obtained error estimates

max
i
ju(xi) �U(xi)j = O(h2)

by Fang-Tsuchiya-Yamamoto [2] on the non-uniform partition (1:2) under the assump-

tion p 2 C1;1(�I). We will give a proof which is slightly di�erent from theirs. As a di-

rect consequence from our proof, we then show that the superconvergence phenomenon,

which is originally observed and proven for uniform partition of two-dimensional domains

by Matsunaga-Yamamoto [4], occurs on the non-uniform partition (1:2) as well.

Let us describe it more precisely. Let y be either y = a or y = b, and K a positive

constant. Then, there exists a positive constant C such that, for suÆciently small h > 0

and any nodal point xi,

jxi � yj � Kh ) ju(xi) �U(xi)j � Ch3:

In Section 4 we consider the cases where p and f are discontinuous at �nitely many

points in I. Our conclusion is that, if the set of nodal points includes discontinuous points,

then the above estimates still hold. In Section 5 we give numerical examples which con�rm

the analysis in the previous sections.

2 Yamamoto's formula and other useful lemmas In this section we recall the

explicit formula of the solutions of the Shortley-Weller �nite di�erence approximation

(1:3) given by Yamamoto [6, 7]. The matrix form of (1:3) is written as A = HA0 and

A~U = ~f , where ~U := (U(x1); � � � ; U(xn))
t, ~f := (f(x1); � � � ; f(xn))

t, H := diag(2(h1 +

h2)
�1; � � � ; 2(hn + hn+1)

�1),

A0 :=

0
BBBBBB@

a1 + a2 �a2
�a2 a2 + a3 �a3

�a3
. . .

. . .

. . .
. . . �an
�an an + an+1

1
CCCCCCA
;

and ai := pi� 1
2
=hi. By the GD-decomposition given in [7, Theorem 3.1], we know that

A�1 = GD, where D = H�1 = diag((h1+ h2)=2; � � � ; (hn+hn+1)=2), and G = A�10 = (gij )

with

gij :=

8>>>>>><
>>>>>>:

 
n+1X
k=1

hk

pk� 1
2

!�1 iX
k=1

hk

pk� 1
2

!0
@ n+1X

k=j+1

hk

pk� 1
2

1
A (i � j);

 
n+1X
k=1

hk

pk� 1
2

!�1 jX
k=1

hk

pk� 1
2

! 
n+1X
k=i+1

hk

pk� 1
2

!
(i � j):

(2.1)

We immediately notice that each entry gij of the matrix G is an approximation of G(xi; xj ),

where G(x; y) is the Green function of the di�erential operator P , Pu := �(pu0)0 de�ned
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on the functional space
�
u 2 C2[a; b]

�� u(a) = u(b) = 0
	
, whose explicit form is

G(x; y) :=

8>>>>><
>>>>>:

 Z b

a

ds

p(s)

!�1 Z x

a

ds

p(s)

Z b

y

ds

p(s)
(x � y);

 Z b

a

ds

p(s)

!�1 Z y

a

ds

p(s)

Z b

x

ds

p(s)
(x � y):

(2.2)

From the above equations we obtain the explicit formula of the solution U of the Shortley-

Weller �nite di�erence approximation (1:3) as

U(xi) =

nX
j=1

gij
hj + hj+1

2
f(xj ) �

nX
j=1

G(xi; xj)
hj + hj+1

2
f(xj )

=

n+1X
j=1

hj

2
(G(xi; xj�1)f(xj�1) +G(xi; xj )f(xj ))

(2.3)

which, as is pointed out in [6] and [2], is an approximation of

u(xi) =

Z b

a

G(xi; y)f(y)dy(2.4)

by the trapezoidal rule. Therefore, the error analysis of the Shortley-Weller �nite di�erence

method is reduced to error estimates of numerical integration by the mid-point and trape-

zoidal rules. We make use the following lemmas in our error analysis. Although they are

well known, we here give their proofs for convenience of the readers.

Lemma 2.1 Let h > 0 and J := (0; h). Suppose that F is a function of W 2;q(J), (1 � q �

1) class. Let � 2 [0; 1]. Then there exists a positive constant C independent of �, q, and

F such that�����
Z h

0

F (t)dt � hF (�h) +
h2

2
(2�� 1)F 0(�h)

����� � Ch2+(1=q
0)kF 00kLq(J);

where q0 2 [1;1] such that (1=q) + (1=q0) = 1.

Proof. De�ne K 2 L1(J) by

K(t) :=

(
t2=2; 0 � t � �h;

(h� t)2=2; �h < t � h:

Then, integrating by parts, we haveZ h

0

K(t)F 00(t)dt =

Z �h

0

K(t)F 00(t)dt +

Z h

�h

K(t)F 00(t)dt

=
h2

2
(2�� 1)F 0(�h) � hF (�h) +

Z h

0

F (t)dt:

The H�older inequality yields
���R h
0
K(t)F 00(t)dt

��� � kKkLq0 (J)kF
00kLq(J). It is easy to verify

that there exists a positive constant C independent of � and q such that

kKkLq0 (J) =
h2+(1=q

0)

2

 
�2q

0+1 + (1� �)2q
0+1

2q0 + 1

!1=q0
� Ch2+(1=q

0)

for any � 2 [0; 1] and q 2 [1;1]. �



102 KAZUKI YOSHIDA

Lemma 2.2 Let h > 0 and J := (0; h). Suppose that F is a function of W 1;q(J), (1 � q �

1) class. Let � 2 [0; 1]. Then there exists a positive constant C independent of �, q, and

F such that �����
Z h

0

F (t)dt� hF (�h)

����� � Ch1+(1=q
0)kF 0kLq(J);

where q0 2 [1;1] such that (1=q) + (1=q0) = 1.

Proof. De�ne G 2 L1(J) by

G(t) :=

(
t; 0 � t � �h;

t� h; �h < t � h:

Then Lemma 2.2 is proved similarly as above by considering
R h
0
G(t)F 0(t)dt . �

Lemma 2.3 Let h > 0 and J := (0; h). Suppose that F 2 W 2;q(J), (1 � q � 1) and

F (0) = F (h) = 0. Then there exists a positive constant C independent of q and F such that�����
Z h

0

F (t)dt

����� � Ch2+(1=q
0)
kF 00kLq(J);

where q0 2 [1;1] such that (1=q) + (1=q0) = 1. If F 2 W 1;q(J), (1 � q � 1) and

F (0) = F (h) = 0, then we have�����
Z h

0

F (t)dt

����� � Ch1+(1=q
0)
kF 0kLq(J):

Proof. Firstly, suppose that F 2 W 2;q(J). Using Lemma 2.1 with � = 0; 1 and F (0) =

F (h) = 0, we obtainZ h

0

F (t)dt �
h2

2
F 0(0) = O(h2+(1=q

0));

Z h

0

F (t)dt+
h2

2
F 0(h) = O(h2+(1=q

0)):

Since

jF 0(h)� F 0(0)j �

Z h

0

jF 00(t)jdt � h1=q
0

kF 00kLq(J);

the �rst inequality of Lemma 2.3 follows. The second inequality is obtained immediately

from Lemma 2.2. �

Lemma 2.4 Let h > 0 and J := (0; h). Suppose that F 2 W 2;q(J), (1 � q � 1). Then

there exists a positive constant C independent of q and F such that�����
Z h

0

F (t)dt �
h

2

�
F (0) + F (h)

������ � Ch2+(1=q
0)
kF 00kLq(J);

where q0 2 [1;1] such that (1=q) + (1=q0) = 1. If F 2W 1;q(J), (1 � q �1) then we have�����
Z h

0

F (t)dt �
h

2

�
F (0) + F (h)

������ � Ch1+(1=q
0)kF 0kLq(J):

Proof. Apply Lemma 2.3 to the function

F (t)�

�
F (h)� F (0)

h
t+ F (0)

�
: �
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3 Error bounds of Shortley-Weller �nite di�erence solutions In this section we

give several error bounds of Shortley-Weller �nite di�erence solution U . First, we recall the

error bound given in [2].

Theorem 3.1 (Fang-Tsuchiya-Yamamoto) Let I := (a; b) be a bounded interval. Let

u be the exact solution of (1:1) and U the corresponding Shortley-Weller �nite di�erence

solution on the non-uniform partition (1:2). Suppose that f 2 C1;1(�I). Then, we have the

following estimates for the Shortley-Weller �nite di�erence solution U :

u(xi)� U(xi) =

(
o(h) if p 2 C1(�I);

O(h2) if p 2 C1;1(�I):

In this paper, we show the following theorem which is a slight generalization of Theo-

rem 3.1.

Theorem 3.2 Let u be the exact solution of (1:1) and U the corresponding Shortley-Weller

�nite di�erence solution on the non-uniform partition (1:2). Let p, f 2 W 2;q(I) with

1 � q �1. Suppose that p(x) � Æ > 0 for any x 2 I with a positive constant Æ. Then there

exists a positive constant C depends only on I, Æ, and k1=pkW2;q (I) such that

ju(xi)� U(xi)j � C(b� xi)(xi � a)h1+(1=q
0)kfkW2;q (I)(3.1)

for any xi, i = 1; � � � ; n, where q0 2 [1;1] with (1=q) + (1=q0) = 1. If p, f 2 W 1;q(I) with

1 � q �1, then we have

ju(xi) � U(xi)j � C(b� xi)(xi � a)h1=q
0

kfkW1;q (I);(3.2)

where the constant C depends only on I, Æ, and k1=pkW1;q (I).

Proof. We suppose �rstly that p, f 2 W 2;q(I), 1 � q � 1. From (2:1) and (2:3) we have

an explicit formula for U(xi):

U(xi) = ��1h

 
n+1X
k=i+1

hk

pk� 1
2

!
i�1X
j=1

 
jX

k=1

hk

pk� 1
2

!
hj + hj+1

2
f(xj )

+ ��1h

 
iX

k=1

hk

pk� 1
2

! 
n+1X

k=i+1

hk

pk� 1
2

!
hi + hi+1

2
f(xi)

+ ��1h

 
iX

k=1

hk

pk� 1
2

!
nX

j=i+1

0
@ n+1X

k=j+1

hk

pk� 1
2

1
A hj + hj+1

2
f(xj );

(3.3)

where �h :=
Pn+1

k=1
hk

p
k� 1

2

. From (2:2) and (2:4) we have

u(xi) = ��1

 Z b

xi

ds

p(s)

!Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy

+ ��1
�Z xi

a

ds

p(s)

�Z b

xi

 Z b

y

ds

p(s)

!
f(y)dy;

(3.4)
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where � :=
R b
a

ds
p(s)

. We write

��1

 Z b

xi

ds

p(s)

!Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy

� ��1h

 
n+1X
k=i+1

hk

pk� 1
2

!2
4i�1X
j=1

 
jX

k=1

hk

pk� 1
2

!
hj + hj+1

2
f(xj ) +

 
iX

k=1

hk

pk� 1
2

!
hi

2
f(xi)

3
5

=
�
��1 � ��1h

� Z b

xi

ds

p(s)

!Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy

+ ��1h

 Z b

xi

ds

p(s)

!2
4Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy �

i�1X
j=1

�Z xj

a

ds

p(s)

�
hj + hj+1

2
f(xj )

�

�Z xi

a

ds

p(s)

�
hi

2
f(xi)

3
5

+ ��1h

(Z b

xi

ds

p(s)
�

n+1X
k=i+1

hk

pk� 1
2

)2
4i�1X
j=1

�Z xj

a

ds

p(s)

�
hj + hj+1

2
f(xj )

+

�Z xi

a

ds

p(s)

�
hi

2
f(xi)

3
5

+ ��1h

 
n+1X
k=i+1

hk

pk� 1
2

!"
i�1X
j=1

(Z xj

a

ds

p(s)
�

jX
k=1

hk

pk� 1
2

)
hj + hj+1

2
f(xj )

+

(Z xi

a

ds

p(s)
�

iX
k=1

hk

pk� 1
2

)
hi

2
f(xi)

#
:

(3.5)

From Lemma 2.1 with � = 1=2 we have
R xk
xk�1

ds
p(s)

�
hk

p
k� 1

2

= k1=pkW2;q(I)O(h
2+(1=q0)
k ).

Combining this estimate we see that

� � �h = (b � a)k1=pkW2;q (I)O(h
1+(1=q0));Z b

xi

ds

p(s)
�

n+1X
k=i+1

hk

pk� 1
2

= (b � xi)k1=pkW2;q (I)O(h
1+(1=q0));

Z xj

a

ds

p(s)
�

jX
k=1

hk

pk� 1
2

= (xj � a)k1=pkW2;q (I)O(h
1+(1=q0));

n+1X
k=i+1

hk

pk� 1
2

= (b � xi)O(1):

(3.6)

Note that constants hidden in \O" depend only on the constant C in Lemma 2.1 and Æ. It

follows immediately from (3:5) and (3:6) that

jthe �rst term of the right-hand side of (3:5)j � C1(b � xi)(xi � a)h1+(1=q
0)
kfkL1(I):

(3.7)
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Setting F1(y) :=
�R y

a
ds=p(s)

�
f(y) we estimate the second term of the right-hand side

of (3:5). Combining

Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy �

i�1X
j=1

�Z xj

a

ds

p(s)

�
hj + hj+1

2
f(xj ) �

�Z xi

a

ds

p(s)

�
hi

2
f(xi)

=

Z xi

a

F1(y)dy �

i�1X
j=1

F1(xj )
hj + hj+1

2
� F1(xi)

hi

2

=

iX
j=1

 Z xj

xj�1

F1(y)dy �
hj

2
(F1(xj�1) + F1(xj))

!

= (xi � a)kF1kW2;q (I)O(h
1+(1=q0)) (by Lemma 2.4);

with (3:6) we obtain

jthe second term of the right-hand side of (3:5)j � C2(b � xi)(xi � a)h1+(1=q
0)
kfkW2;q (I):

(3.8)

Similarly, combining

i�1X
j=1

�Z xj

a

ds

p(s)

�
hj + hj+1

2
f(xj ) +

�Z xi

a

ds

p(s)

�
hi

2
f(xi)

=

iX
j=1

hj

2
(F1(xj�1) + F1(xj )) = (xi � a)kfkL1(I)O(1)

with (3:6) we obtain

jthe third term of the right-hand side of (3:5)j � C3(b� xi)(xi � a)h1+(1=q
0)kfkL1(I):

(3.9)

Finally, setting F2(y) := (y � a)f(y)k1=pkW2;q (I), and applying (3:6) to

i�1X
j=1

(Z xj

a

ds

p(s)
�

jX
k=1

hk

pk� 1
2

)
hj + hj+1

2
f(xj ) +

(Z xi

a

ds

p(s)
�

iX
k=1

hk

pk� 1
2

)
hi

2
f(xi)

=

iX
j=1

hj

2
(F2(xj�1) + F2(xj ))O(h

1+(1=q0));

we obtain

jthe fourth term of the right-hand side of (3:5)j � C4(b � xi)(xi � a)h1+(1=q
0)
kfkL1(I):

(3.10)

Note that the positive constants C1, C2, C3 and C4 depend only on I, Æ, and k1=pkW2;q (I).
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Gathering the inequalities (3:7){(3:10) we conclude that

�������1
 Z b

xi

ds

p(s)

!Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy

� ��1h

 
n+1X
k=i+1

hk

pk� 1
2

!2
4i�1X
j=1

 
jX

k=1

hk

pk� 1
2

!
hj + hj+1

2
f(xj ) +

 
iX

k=1

hk

pk� 1
2

!
hi

2
f(xi)

3
5
�����

� C5(b� xi)(xi � a)h1+(1=q
0)
kfkW2;q (I):

(3.11)

By the exactly same manner we obtain

�������1
�Z xi

a

ds

p(s)

�Z b

xi

 Z b

y

ds

p(s)

!
f(y)dy

� ��1h

 
iX

k=1

hk

pk� 1
2

!2
4 nX
j=i+1

0
@ n+1X

k=j+1

hk

pk� 1
2

1
A hj + hj+1

2
f(xj ) +

 
n+1X
k=i+1

hk

pk� 1
2

!
hi

2
f(xi)

3
5
�����

� C6(b � xi)(xi � a)h1+(1=q
0)
kfkW2;q (I):

(3.12)

Therefore, from (3:3), (3:4), (3:11) and (3:12) we �nally obtain (3:1). Supposing p,

f 2W 1;q(I), 1 � q �1, (3:2) is obtained by the exactly same manner. �

From Theorem 3.2 we immediately obtain the following superconvergence estimate near

the end-points.

Corollary 3.3 Let u be the exact solution of (1:1) and U the corresponding Shortley-Weller

�nite di�erence solution on the non-uniform partition (1:2). Let p, f 2 W k;q(I) with

k = 1; 2, 1 � q � 1. Suppose that p(x) � Æ > 0 for any x 2 I with a positive constant

Æ. Let y be either y = a or y = b and K a positive constant. Then there exists a positive

constant C depends only on I, Æ, K, and k1=pkWk;q (I) such that

jxi � yj � Kh =) ju(xi) � U(xi)j � Chk+(1=q
0)
kfkWk;q (I)

for any xi, i = 1; � � � ; n, where q0 2 [1;1] with (1=q) + (1=q0) = 1.

4 Error analysis with non-smooth data In this section we consider the cases where p

and f are discontinuous at �nitely many points in I = (a; b). More precisely, let I be divided

into �nitely many subintervals Jl := (yl�1; yl), l = 1; � � � ;m+1, that is, Jl \ Js = ;, (l 6= s)

and I =
�Sm+1

l=1 Jl

�Æ
. We consider the cases where p, f 2 L1(I) and pjJl, f jJl 2W k;q(Jl),

where k = 1; 2 and l = 1; � � � ;m+ 1. In the following theorem we claim that even if p and

f are discontinuous at yl the error estimates obtained in the previous section remain valid

with appropriate modi�cations.

Theorem 4.1 Let Jl := (yl�1; yl), y0 = a and ym+1 = b be such that Jl \ Js = ;, (l 6= s)

and I =
�Sm+1

l=1 Jl

�Æ
. Suppose that

fylg
m+1
l=0 � fxig

n+1
i=0 ;(4.1)
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where xi, (i = 1; � � � ; n + 1) are nodal points of the non-uniform partition (1:2). Let p,

f 2 L1(I) and pjJl , f jJl 2 W k;q(Jl), where k = 1; 2, l = 1; � � � ;m + 1 and 1 � q � 1.

Suppose that jp(x)j � Æ > 0 and

R b
a
dx=p(x) 6= 0. Then, the equation (1:1) has a unique

solution u for any given f . Let U be the Shortley-Weller �nite di�erence solution of (1:3)

with

fi :=
hi

hi + hi+1
f(yl � 0) +

hi+1

hi + hi+1
f(yl + 0)(4.2)

at the discontinuous point xi = yl.

Then there exists a positive constant C depends only on I, Æ and p such that

ju(xi)� U(xi)j � C(b� xi)(xi � a)hk�1+(1=q
0)

m+1X
l=1

f jJlWk;q (Jl)

for any xi, i = 1; � � � ; n, where q0 2 [1;1] with (1=q) + (1=q0) = 1.

Proof. Obviously the proof should be very similar to that of Theorem 3.2 except handling

the discontinuity of f (and p) at yl. We modify the proof of Theorem 3.2 according to our

present situation. First, we suppose that k = 2.

We note that, with the assumption (4:1) and the de�nition (4:2), the equation (3:3) is

rewritten as

U(xi) = ��1h

 
n+1X
k=i+1

hk

pk� 1
2

!
i�1X
j=1

 
jX

k=1

hk

pk� 1
2

!�
hj

2
f(xj � 0) +

hj+1

2
f(xj + 0)

�

+ ��1h

 
iX

k=1

hk

pk� 1
2

! 
n+1X
k=i+1

hk

pk� 1
2

!�
hi

2
f(xi � 0) +

hi+1

2
f(xi + 0)

�

+ ��1h

 
iX

k=1

hk

pk� 1
2

!
nX

j=i+1

0
@ n+1X

k=j+1

hk

pk� 1
2

1
A�hj

2
f(xj � 0) +

hj+1

2
f(xj + 0)

�
:

To rewrite (3:5), therefore, we only need to replace

hj + hj+1

2
f(xj ) by

hj

2
f(xj � 0) +

hj+1

2
f(xj + 0)

and

hi

2
f(xi) by

hi

2
f(xi � 0)

in (3:5). By the assumption (4:1), p is continuous at xi+ 1
2
, and thus (3:6) and (3:7) hold in

our present situation. To show that (3:8) holds, we write that

Z xi

a

�Z y

a

ds

p(s)

�
f(y)dy �

i�1X
j=1

�Z xj

a

ds

p(s)

��
hj

2
f(xj � 0) +

hj+1

2
f(xj + 0)

�

�

�Z xi

a

ds

p(s)

�
hi

2
f(xi � 0) =

iX
j=1

 Z xj

xj�1

F1(y)dy �
hj

2

�
F1(xj�1 + 0) + F1(xj � 0)

�!

= (xi � a)
X
k

kF1kW2;q (Jk)O(h
1+(1=q0));
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where F1(y) :=
�R y

a
ds=p(s)

�
f(y). Hence, (3:8) holds. Also, combining

i�1X
j=1

�Z xj

a

ds

p(s)

��
hj

2
f(xj � 0) +

hj+1

2
f(xj + 0)

�
+

�Z xi

a

ds

p(s)

�
hi

2
f(xi � 0)

=

iX
j=1

hj

2
(F1(xj�1 + 0) + F1(xj � 0)) = (xi � a)kfkL1(I)O(1)

with (3:6) we show that (3:9) holds. It is now easy to show that (3:10) holds. Gathering

the above consideration, we conclude that the (modi�ed) estimates (3:11) and (3:12) hold.

Therefore, Theorem 4.1 is proved in the case k = 2. The case of k = 1 is shown by the

exactly same manner. �

Corollary 4.2 Suppose that we have the same situation as in Theorem 4.1. Let y be either

y = a or y = b and K a positive constant. Then there exists a positive constant C depends

only on I, Æ, K, and p such that

jxi � yj � Kh =) ju(xi)� U(xi)j � Chk+(1=q
0)

m+1X
l=1

f jJlWk;q (Jl)

for any xi, i = 1; � � � ; n, where q0 2 [1;1] with (1=q) + (1=q0) = 1.

5 Numerical examples In this section, we give numerical examples which con�rm our

error analysis done in Sections 3 and 4. We consider the following examples.

Example 5.1 Set I := (�1; 1), p(x) := 2� x2 and f(x) := 2(2x4 � 7x2 + 2) e1�x
2

. Then

the exact solution of (1:1) is u(x) = e1�x
2

� 1.

Example 5.2 Set I := (�1; 1), p(x) := 4� x2 and

f(x) :=

�
1 (x > 0);

0 (x < 0):

Then the exact solution of (1:1) is

u(x) =

8>><
>>:

�
1

4

�
1�

log 4

log 3

�
log

2 + x

2� x
+
1

2
log(4� x2)�

1

4
log 12 (x > 0);

�
1

4

�
1�

log 4

log 3

�
log

2 + x

2� x
�
1

4
log

3

4
(x < 0):

Example 5.3 Set I := (�1; 1), f(x) := 1 and

p(x) :=

�
4� x2 (x > 0);

9� x2 (x < 0):

Then the exact solution of (1:1) is

u(x) =

8>><
>>:

3

2

�
3 log 3� 5 log 2

2 log 2 + 3 log 3

�
log

3(2� x)

2 + x
+

1

2
log(4 � x2) �

1

2
log 3 (x > 0);

�

�
3 log 3� 5 log 2

2 log 2 + 3 log 3

�
log

2(3 + x)

3� x
+

1

2
log(9 � x2) �

3

2
log 2 (x < 0):
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Example 5.4 Set I := (�1; 1),

p(x) :=

�
x2 � 2x+ 3 (x > 0);

x2 + 2x+ 2 (x < 0);

f(x) :=

(
�2(2x4 � 4x3 + 3x2 + 4x� 3) e1�x

2

(x > 0);

�2(2x4 + 4x3 + x2 � 4x� 2) e1�x
2

(x < 0):

Then the exact solution of (1:1) is u(x) = e1�x
2

� 1.

We use the following partition of the interval I := (�1; 1) for computing numerical

solutions for Examples 5.1{5.4. First, we divide (�1; 1) into 2n equal subintervals, where n

is a given positive number. Then, we divide each small interval (whose length is 1=n) into

three subintervals whose lengths are 0:3=n, 0:5=n, and 0:2=n, respectively.

In the following tables we give the numerical results. In tables, \n" stands for the

positive number used to make partition, \node#" stands for number of nodes, \max-error"

means max1�i�n ju(xi)� U(xi)j, and \n.b.max-error" means

max
�
ju(xi) � U(xi)j : xi � a � Kh or b � xi � Kh

	
;

where K := 5.

On the above partition we compute Example 5.1 by the Shortley-Weller �nite di�erence

method and the �nite element method with piecewise linear elements. These results are

shown in Tables 5.1 and 5.2, respectively. The numerical result given in Table 5.1 shows

that the Shortley-Weller �nite di�erence solutions are superconvergent of O(h3) near the

end-points, which corresponds to the claim of Corollary 3.3. On the other hand, Table 5.2

shows that the �nite element solutions are superconvergent of O(h3��) near the end-points.

In Tables 5.3{5.5, we give the numerical results of the Shortley-Weller �nite di�erence

method applied to Examples 5.2{5.4. Although the given functions f(x) and p(x) have

discontinuity at x = 0, we obtain good results which con�rm the claims of Theorem 4.1 and

Corollary 4.2.

Table 5.1: The errors of the Shortley-Weller �nite di�erence solutions for Example 5.1.

n node# h max-error max-error=h2 n.b.max-error n.b.max-error=h3

50 301 1.00E-2 4.63E-5 0:463 6.21E-07 0:621

250 1501 2.00E-3 1.85E-6 0:463 3.96E-09 0:495

500 3001 1.00E-3 4.63E-7 0:463 4.81E-10 0:481

1000 6001 5.00E-4 1.16E-7 0:465 6.09E-11 0:487

Table 5.2: The errors of the Finite element solutions for Example 5.1.

n node# h max-error max-error=h2 n.b.max-error n.b.max-error=h3

50 301 1.00E-2 2.71E-6 0:0271 8.29E-07 0:829

250 1501 2.00E-3 1.09E-7 0:0271 7.24E-09 0:905

500 3001 1.00E-3 2.71E-8 0:0271 9.15E-10 0:915

1000 6001 5.00E-4 6.77E-9 0:0271 1.15E-10 0:919



110 KAZUKI YOSHIDA

Table 5.3: The errors of the Shortley-Weller �nite di�erence solutions for Example 5.2.

n node# h max-error max-error=h2 n.b.max-error n.b.max-error=h3

50 301 1.00E-2 0.458E-6 0:00458 0.715E-07 0:0715

250 1501 2.00E-3 0.183E-7 0:00458 0.607E-09 0:0758

500 3001 1.00E-3 0.457E-8 0:00457 0.765E-10 0:0765

1000 6001 5.00E-4 0.111E-8 0:00446 0.931E-11 0:0744

Table 5.4: The errors of the Shortley-Weller �nite di�erence solutions for Example 5.3.

n node# h max-error max-error=h2 n.b.max-error n.b.max-error=h3

50 301 1.00E-2 0.389E-6 0:00389 0.669E-07 0:0669

250 1501 2.00E-3 0.155E-7 0:00388 0.570E-09 0:0712

500 3001 1.00E-3 0.387E-8 0:00387 0.718E-10 0:0718

1000 6001 5.00E-4 0.979E-9 0:00392 0.919E-11 0:0735

Table 5.5: The errors of the Shortley-Weller �nite di�erence solutions for Example 5.4.

n node# h max-error max-error=h2 n.b.max-error n.b.max-error=h3

50 301 1.00E-2 0.108E-3 1:08 0.430E-05 4:30

250 1501 2.00E-3 0.431E-5 1:08 0.340E-07 4:25

500 3001 1.00E-3 0.108E-5 1:08 0.425E-08 4:25

1000 6001 5.00E-4 0.270E-6 1:08 0.532E-09 4:25
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