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ERROR ANALYSIS OF THE SHORTLEY-WELLER
FINITE DIFFERENCE METHOD
APPLIED TO TWO-POINT BOUNDARY VALUE PROBLEMS
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ABSTRACT. In this paper the Shortley-Weller finite difference method applied to the
two-point boundary value problems —(p(z)u’)’ = f with the Dirichlet boundary condi-
tion is considered. We show several error bounds of the Shortley-Weller finite difference
solutions in the case where p and f have certain regularity using Yamamoto’s explicit
inversion formula for tridiagonal matrices. We also consider the cases where p and f
are discontinuous.

1 Introduction Let I := (a,b) C R be a one-dimensional bounded interval. Let p €
L (I). We consider the following two-point boundary value problem: for a given f(z) find
u(z) such that

(1.1) —(p(x)/(2)) = f(z) in I, wu(a)=u(b)=0.

It is well-known that if there exists a positive constant ¢ such that p(z) > ¢ > 0, then (1.1)
has a unique solution u € H}(I) for any f € H~1(I). Furthermore, it has been known (see
[5]) that, if 1/p € L*°(I) and fI dx/p(x) # 0, then the equation (1.1) has a unique solution
u € W’Ol’q(f) for any f € W=14(I) with any ¢, 1 < ¢ < co. In this paper we always suppose
that (1.1) has a unique solution. In the above, LY(I), Wk4(I), (1 < ¢ < oo, k is an integer),
H}(I), H7'(I) are usual Lebesgue and Sobolev spaces. For the exact definitions see, for
example, [1]. Also C*P(I) (k is a positive integer, and 0 < § < 1) denotes usual Holder
space. Note that by Sobolev’s imbedding theorem W4 (T) c C*=11=(/9)(]) for a positive
integer k. Note also that, in particular, W*(I) = C*=11(]) since any Lipschitz functions
are differentiable a.e. in 1.

We approximate the solution of (1.1) by the Shortley-Weller finite difference method
(see, for example, [3]). Let

(1.2) a=xg <1 < - <a; < < Xpy1 =b, h;:=x; —x;—1, h:=maxh;
2

be a triangulation (or partition) of the interval I. We also set w;,1 := 3@ + zig1),
Pipl = p(mi_i_%)7 and f; := f(x;). Then the Shortley-Weller finite difference approximation
of (1.1) is defined by

. Uig1—Ui ) U —Uj_1
_p1+% hit1 Pi-i
higi1+h;
2

(1.3) =f, i=12-,n.

Let U(x;) be the solution of (1.3). By a usual interpolation U may be regarded as a
piecewise linear function defined on I.
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In this paper we will develop a detailed analysis on the error
max{|u(z;) —U(x;)| 11 =1, ,n}.
First, in Section 3, we recall the recently obtained error estimates

max |u(z;) — U(z;)| = O(R?)

by Fang-Tsuchiya-Yamamoto [2] on the non-uniform partition (1.2) under the assump-
tion p € CY'(I). We will give a proof which is slightly different from theirs. As a di-
rect consequence from our proof, we then show that the superconvergence phenomenon,
which is originally observed and proven for uniform partition of two-dimensional domains
by Matsunaga- Yamamoto [4], occurs on the non-uniform partition (1.2) as well.

Let us describe it more precisely. Let y be either y = a or y = b, and K a positive
constant. Then, there exists a positive constant C' such that, for sufficiently small A > 0
and any nodal point z;,

lvi —y| < Kh = |u(x;) = U(xi)] < CR®.

In Section 4 we consider the cases where p and f are discontinuous at finitely many
points in I. Our conclusion is that, if the set of nodal points includes discontinuous points,
then the above estimates still hold. In Section 5 we give numerical examples which confirm
the analysis in the previous sections.

2 Yamamoto’s formula and other useful lemmas In this section we recall the
explicit formula of the solutions of the Shortley-Weller finite difference approximation
(1.3) given by Yamamoto [6, 7]. The matrix form of (1.3) is written as A = HAq and
AU = f, where U := (U(zy),-- ,U(xn)), F = (F(z1),--, f(za))', H := diag(2(hy +
hZ)_lv e 72(hn + hn+1)_1)s

ay + ag —az
—agz ag +az  —as
AO = —as )

—ay
—ap dpn +an+1

and a; = pi_%/hi. By the GD-decomposition given in [7, Theorem 3.1], we know that
A™! = GD, where D = H™' = diag((h1 +h2)/2,- -+, (hn +hnt1)/2), and G = A" = (gi;)

with
n+1 =1 i n+1
hk ) (Z hk > Z hk ) '
2 (i <J),
<k—1 pki% k=1 pk*% k= j+1 pk*%
2.1) J =

ntl R ntl
;hk> ( hk>( hk) o
(i > 7).
<; Pr—3 kz:; Pr—1 k:zi-:i—l Pr—1

We immediately notice that each entry g¢;; of the matrix G is an approximation of G(z;, z;),
where G(x,y) is the Green function of the differential operator P, Pu := —(pu’)’ defined
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on the functional space {u € C?[a,b] | u(a) = u(b) = 0}, whose explicit form is
-1
/bds /Ids/bds ( <y)
rT>Y)
Ja p(s) o p(s)Jy pls)
-1
/bds /yds/bds (x> )
r>y).
o Ps) o P(s)Jo pls)

From the above equations we obtain the explicit formula of the solution U of the Shortley-

(2.2) G(z,y) :=

Weller finite difference approximation (1.3) as
- hi+h h h
Ulz;) = Zg M ZC (i, + ]+1f( 5
j=1 2

=1

(2.3)

7] (i, 2j1) f(xj=1) + Glai, 25) f(x))

IIM+

which, as is pointed out in [6] and [2], is an approxnnation of

b
(2.4) ua) = / G(xi,y)f(y)dy

by the trapezoidal rule. Therefore, the error analysis of the Shortley-Weller finite difference
method is reduced to error estimates of numerical integration by the mid-point and trape-
zoidal rules. We make use the following lemmas in our error analysis. Although they are
well known, we here give their proofs for convenience of the readers.

Lemma 2.1 Let h > 0 and .J := (0,h). Suppose that F is a function of W24(.J), (1< q<
o0) class. Let o € [0,1]. Then there ezists a positive constant C independent of o, ¢, and
F such that

2

h
h ,
/ F(t)dt — hF(ah) + ~-(2a — 1)F'(ah)| < CR*H VD F|| o g,
o 2

where ¢' € [1,00] such that (1/q) + (1/¢') =1
Proof. Define K € L>=(J) by
2 <t<a«a
K(t) = t*/2, ) 0<t<ah,
(h—1)*/2, ah<t<h.

Then, integrating by parts, we have
h

h ~ach
/ K(t)F"(t)dt = / K(t)F"(t)dt +/ K(t)F"(t)dt
0 0 ah
_ K "
5 —(2a — 1)F'(ah) — hF(ah) + / F(t)dt.
0
The Holder inequality yields ‘foh K(t)F”(t:)dt‘ < HKHLq/(J)||F”||Lq(J). It is easy to verify
that there exists a positive constant C independent of o and ¢ such that

) R2tQ/d) [ 24 +1 +(1- oz)qu'*'1 1 24(1/¢")
15 ey = =5 2 +1 s e

for any a € [0,1] and g € [1,00]. O
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Lemma 2.2 Let h > 0 and J := (0,h). Suppose that F is a function of WH4(J), (1 < ¢ <
oo) class. Let o € [0,1]. Then there exists a positive constant C independent of o, ¢, and
F such that

h
/ F(t)dt — hF(ah)| < CR OO F|| 1 ),
0

where ¢ € [1,00] such that (1/q) + (1/¢) = 1.
Proof. Define G € L™(J) by
¢ <t<ah
Gy=4b  0stsah
t—h, ah<t<h.

Then Lemma 2.2 is proved similarly as above by considering foh G)F'(t)dt . O

Lemma 2.3 Let h > 0 and J := (0,h). Suppose that F € W%1(.J), (1 < ¢ < o) and
F(0) = F(h) = 0. Then there exists a positive constant C independent of q and F such that

/0 ' F(t)dt

where ¢' € [1,00] such that (1/q) + (1/¢') = 1. If F € Wh(J), (1 < q < o0) and
F(0) = F(h) =0, then we have

/Oh F(t)dt

Proof. Firstly, suppose that F' € W24(.J). Using Lemma 2.1 with o = 0,1 and F(0) =
F(h) =0, we obtain

< Cp2t0 /") HF”H Le(r),

S Ch1+(1/ql)“F’HL<1(J)-

h 2 h 2
h : h /
/ F(t)dt — - F'(0) = O(n** /1), / F(t)dt + 5 F'(h) = O(h**+ /),
Jo 0
Since
h !
F0) = PO < [P 0lde < 0 F g,
Jo
the first inequality of Lemma 2.3 follows. The second inequality is obtained immediately

from Lemma 2.2. O

Lemma 2.4 Let h > 0 and J := (0,h). Suppose that F € W24(.J), (1 < q < o). Then
there exists a positive constant C independent of ¢ and F such that

h
h ,
/0 F(t)dt — §(F(0) + F(h)| < Ch¥H YD F" 1o sy,

where ¢' € [1,00] such that (1/q) + (1/¢') = 1. If F € WHe(J), (1 < g < o) then we have

2

h
h ’
/0 F(t)dt — o (F(0) + F(h))| < CRH D) | o,

Proof. Apply Lemma 2.3 to the function

F(t) — <wt+ﬁ“(0)> . O
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3 Error bounds of Shortley-Weller finite difference solutions In this section we
give several error bounds of Shortley-Weller finite difference solution U. First, we recall the
error bound given in [2].

Theorem 3.1 (Fang-Tsuchiya-Yamamoto) Let I := (a,b) be a bounded interval. Let
u be the ezact solution of (1.1) and U the corresponding Shortley-Weller finite difference
solution on the non-uniform partition (1.2). Suppose that f € CYY(I). Then, we have the
following estimates for the Shortley-Weller finite difference solution U:

o(h) if pe CH(I)

u(zi) = Ufzi) = {0<h2> if pe CHY(I).

In this paper, we show the following theorem which is a slight generalization of Theo-
rem 3.1.

Theorem 3.2 Let u be the ezact solution of (1.1) and U the corresponding Shortley- Weller
finite difference solution on the non-uniform partition (1.2). Let p, f € W4(I) with
1 < g <. Suppose that p(x) > >0 for any x € I with a positive constant 6. Then there
exists a positive constant C' depends only on I, 6, and ||1/p||w=.q(ry such that

(3.1) u(ws) = U(i)] < Cb— i) (s — a)h" || fllwaa )

for any z;, i =1,-++ .n, where ¢ € [1,00] with (1/q) + (1/¢') = 1. If p, f € WHi4(I) with
1< g < oo, then we have

(3.2) u(a;) — Uai)| < C(b— i) (zi — )T || fllwra (),
where the constant C' depends only on I, 8, and ||1/p|lwr.a(r).-

Proof. We suppose firstly that p, f € W*9(I), 1 < ¢ < co. From (2.1) and (2.3) we have
an explicit formula for U(z;):

R i—1 j _ _
Ulwi) = 6" ( >, i )Z (Z i > & +2h]+1f(fj)

k=ip1 PR=3% ) 520 \iem Pr—4
Lok Kby \ hi+h
1 7 141
(3.3) +5; <Z ) < >, Flw:)
k=1 PR=% ) \u=iga Pr—3 2
L h "R ke \ hythy
3-1 k k J J+1 .
() 3 (5 e b
k=1 2 J=1+1 k=j+1 2
where G, := Zii phi"“. From (2.2) and (2.4) we have
K-l - -

(3.4)
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where 3 := fab p‘(iz). We write

(3.5)

(L) [ ) o

Bk 2 ke \ by by, ke \
— (Z ’“1) [Z (Zpk" ) T fag) + (Zpkk1> E.fm)]
" k=1 )

i+1

=t ([5) (L) s

B

([ 5) [ ()£ ) e

B

ow{ ot B B U ) e

-1 n+1 hk 1—1 i g J hk hj n hj+1 |
v (B ) [0 s )
"X ds 7 hk hl.
+{/ 7_2 }f(w,‘)].
a P(s) 1 Pr—3 2

= ”1/pHW2v4(I)O(hi+(1/‘I ))_

From Lemma 2.1 with a = 1/2 we have f o p(g) -
el

Combining this estimate we see that

B B = (b— a)[1/pllwoany ORI/,

n+1 h
k '
/ = (b_351‘)H1/P||1/V2,q([)(9(h1"'(1/q))7
pk__
(3.6) .7' ) |
/ pkk = (T7 _a)”1/?”W2:q(I)C/J(hH'(l/q))7

n+1 hk
Z = (b—z,)O(1).

hmip1 PR3

Note that constants hidden in “O” depend only on the constant C' in Lemma 2.1 and §. It
follows immediately from (3.5) and (3.6) that

(3.7)
|the first term of the right-hand side of (3.5)| < Cy(b — z;)(x; — a)h1+(1/q/)\|f\|Loo(I).
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Setting Fi(y) := (fay ds/p(s)) f(y) we estimate the second term of the right-hand side
of (3.5). Combining

(L st ([ i) a5 e

=1

h —l—h i+1 hl‘
/ Fi(y dy—ZFl x; %—Fl(xi)g

7j=1

: h;
Z(/ y)dy = 5 (F(;- 1>+F1<:c]>>>
=1 Tj—1

Li— )HF1HWM(I)O(h1+(1/q)) (by Lemma 2.4),
with (3.6) we obtain

(3.8)
[the second term of the right-hand side of (3.5)] < Cy(b — x;)(2; )hH'U/q )||f||W2 (I

Similarly, combining

with (3.6) we obtain

(3.9)
[the third term of the right-hand side of (3.5)] < C5(b — z;)(x; — a)h1+(1/q/)\|f\|Loo(I).

Finally, setting F3(y) == (y — a) f(y)||1/pllw2 (1), and applying (3.6) to

o ds he | hj+hisr,, o : hi
;{/ Zpk;} +J[(T/;‘,)Jr{/ Z %}2 (%)

k=1 2

- Z )+ Fy(a;)) O,

we obtaln

(3.10)
[the fourth term of the right-hand side of (3.5)] < Cy(b — 2;)(2; — a,)hH'“/q/)HfH,‘oo(,).

Note that the positive constants C, Cz, C3 and Cy depend only on I, 6, and ||1/p|[w=q(1).-
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Gathering the inequalities (3.7)—(3.10) we conclude that

(3.11)

(L) [ ) o

n+1 t—1 J ] ) [} )
_/3h_1 < Z ) Z (Z hk1> h] ‘|‘2h,7+1 f(lj) + (Z hk ) %f($1) ‘

1
keit1 PE-% =1 \j=1 Pr-4 k=1 Pr—3

< Cs(b—ai)(wi — a)h" O fllwza .
By the exactly same manner we obtain

(312)

Ll i e N hi4hiag S he \ Ry
— 8! (Z k > Z Z k j +2 ,7+1f(:cj)+<z ‘ k >§f(:c2)

= Pr=5 ) |55 \eS55 PR3 k=it1 Pr=3

< Co(b—z:)(wi — )b O Ly,

Therefore, from (3.3), (3.4), (3.11) and (3.12) we finally obtain (3.1). Supposing p,
fewhd(I), 1< q<oo, (3.2) is obtained by the exactly same manner. O

From Theorem 3.2 we immediately obtain the following superconvergence estimate near
the end-points.

Corollary 3.3 Let u be the exact solution of (1.1) and U the corresponding Shortley- Weller
finite difference solution on the non-uniform partition (1.2). Let p, f € WHEI(I) with
E=1,21<g < oco. Suppose that p(x) > § > 0 for any x € I with a positive constant
8. Lety be either y = a or y = b and K a positive constant. Then there exists a positive
constant C depends only on I, 6, K, and ||1/p|lwr.«(ry such that

ey KR = ufei) - U] < ORI flr
for any x;, i1 =1,--+ ,n, where ¢’ € [1,00] with (1/¢) +(1/¢') =1

4 Error analysis with non-smooth data In this section we consider the cases where p
and f are discontinuous at finitely many points in I = (a,b). More precisely, let I be divided
into finitely many subintervals .J; := (yi—1,y), ! = 1,--- ,m+ 1, that is, JN.Js =0, (I # s)

and [ = ( m—H Jl) We consider the cases where p, f € L=(I) and p|j,, f|5, € WE(J)),

where k =1, 2 and [ =1,--- ;m + 1. In the following theorem we claim that even if p and
f are discontinuous at y; the error estimates obtained in the previous section remain valid
with appropriate modifications.

Theorem 4.1 Let J; := (yi—1,y1), Yo = a and Ym41 = b be such that ;N Js =0, (I # 3)
and I = ( m+1 Jl) Suppose that

(4.1) {yd 25t {4y,
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where x;, (1 = 1,--- ,n + 1) are nodal points of the non-uniform partition (1.2). Let p,
f e L(I) and ply, fli, € ﬂ/'kq(Jl) where k = 1,2, 1 =1,--+ . m+1and 1 < ¢ < .
Suppose that |p(z)| > & > 0 and f dz/p(x) # 0. Then, the equation (1.1) has a unique
solution u for any given f. Let U be the Shortley-Weller finite difference solution of (1.3)
with

hi hz+1
(42) fl T hi + hi-l—l f(yl 0) h + hz+1

at the discontinuous point x; = yj.
Then there exists a positive constant C depends only on I, § and p such that

flyi +0)

m—+1

Jui) = Ulwi)| < C(b—ai)(e; — a)h* OO N F ey

=1
for any x;, i =1,--- ,n, where ¢’ € [1,00] with (1/q) 4+ (1/¢') =1
Proof. Obviously the proof should be very similar to that of Theorem 3.2 except handling
the discontinuity of f (and p) at y;. We modify the proof of Theorem 3.2 according to our
present situation. First, we suppose that & = 2.

We note that, with the assumption (4.1) and the definition (4.2), the equation (3.3) is
rewritten as

e (33 )”(i

=1 \k=1 Pr—1

n+1 ]7
+ 8, ! < ) < ; )+ ,z:l flai +0)>
k= 1pk*1§ k= i+1p""*1§ =

+67! <Z ) n f & (ﬁf@:-—owh’”‘ fla +0))
~h 9 - J 2 J .
Jj=

b1 Pr—4 it \k=j1 Pr=%

) B ey~ 0) + P pGa 4 0))

To rewrite (3.5), therefore, we only need to replace

hﬁz¢ fla)) by %f(x.f ~0+ hg 40
and
b, ) hi . _
Ef(%) by Ef(mz —0)

n (3.5). By the assumption (4.1), p is continuous at Tigls and thus (3.6) and (3.7) hold in
our present situation. To show that (3.8) holds, we write that

/;(/ayp((]z) f i(/% )(%f(xj—O)-l-}”%f(:rj—&-O))

J=1

_</p"(’_;)> %f(xi—O): 1(/ ()dy—h—(Fl( zio1 +0) + Fy(x; o)))

J
= (2;—a) Z HFl||wa,q(_;k)0(h1+“/W),
k
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where Fy(y) := (fay ds/p(s)) f(y). Hence, (3.8) holds. Also, combining

(]2 (Srtes =0+ 222t 4 00) ([ 25) gt -

i

=3 %7 (Fi(zj—1 +0) + Fi(z; = 0)) = (z; — a)|[ fll o= nO(1)

j=1

with (3.6) we show that (3.9) holds. It is now easy to show that (3.10) holds. Gathering
the above consideration, we conclude that the (modified) estimates (3.11) and (3.12) hold.
Therefore, Theorem 4.1 is proved in the case k = 2. The case of £ = 1 is shown by the
exactly same manner. [J

Corollary 4.2 Suppose that we have the same situation as in Theorem 4.1. Let y be either
y=a ory=>b and K a positive constant. Then there exists a positive constant C depends
only on I, §, K, and p such that

m—+1
lzi —y| < Kh = |u(z;) = U(zy)| < CpEH/d) Z ||f\Jl HWk»q(Jz)

=1
for any z;, i =1,--- ,n, where ¢' € [1,00] with (1/q) + (1/¢') = 1.

5 Numerical examples In this section, we give numerical examples which confirm our
error analysis done in Sections 3 and 4. We consider the following examples.

Example 5.1 Set I := (—1,1), p(z) := 2 — 2? and f(x) := 2(22* — T2? + 2) el=%" . Then
the ezact solution of (1.1) is u(z) = !™% — 1.

Example 5.2 Set [ :=(—1,1), p(z) :=4 — 2% and

Then the exact solution of (1.1) is

log 4 1 24

1 1 1
——(1- —log(4 — 2%) — =log 12 0
AT g3 ) 83— talesld—a7) = glogl2 (v >0),
- 1 1 log 4 1 242 El 3 (< 0)
4 log3) ®2_+ 1984 T
Example 5.3 Set I :=(—1,1), f(z):=1 and
[ 4=2% (2>0),
p(@) '_{ 9— 2 (x<0).
Then the exact solution of (1.1) is
3 /3log3 —5log2\ . 3(2-a) 1 o1
22082 =008 PP T ) L N4 ) — S
) 3 Sloaa g 310e3 ) 18 o, Taleel )= 5log3 (z>0),

u(z) =
3log3 —5log?2 2(34z) 1 , R 3
— = Jlog—2 + —log(9 —27) — =log2 < 0).
log2 1 3l0g3) B 3o Taleldmw) gl (v <0)
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Example 5.4 Set I :=(-1,1),

() : z2 =2z +3 (x > 0),
LS 72 4+ 22+ 2 (xr <0),

Fle) m (2t —4a® + 322 44z —3) ' (2 >0),
' T —2(2et 4 40® + 2?2 — 4z - 2) el—e’ (xz <0).

Then the exact solution of (1.1) is u(x) = - 1

We use the following partition of the interval I := (—1,1) for computing numerical
solutions for Examples 5.1-5.4. First, we divide (=1, 1) into 2n equal subintervals, where n
is a given positive number. Then, we divide each small interval (whose length is 1/n) into
three subintervals whose lengths are 0.3/n, 0.5/n, and 0.2/n, respectively.

In the following tables we give the numerical results. In tables, “n” stands for the
positive number used to make partition, “node#” stands for number of nodes, “max-error”
means maxi<;<n |u(z;) — U(x;)|, and “n.b.max-error” means

max{|u(mi) —U(z;)| 2 —a< Khorb—ua; < Kh},

where K := 5.

On the above partition we compute Example 5.1 by the Shortley-Weller finite difference
method and the finite element method with piecewise linear elements. These results are
shown in Tables 5.1 and 5.2, respectively. The numerical result given in Table 5.1 shows
that the Shortley-Weller finite difference solutions are superconvergent of O(h?) near the
end-points, which corresponds to the claim of Corollary 3.3. On the other hand, Table 5.2
shows that the finite element solutions are superconvergent of O(h®~¢) near the end-points.

In Tables 5.3-5.5, we give the numerical results of the Shortley-Weller finite difference
method applied to Examples 5.2-5.4. Although the given functions f(z) and p(x) have
discontinuity at = 0, we obtain good results which confirm the claims of Theorem 4.1 and
Corollary 4.2.

Table 5.1: The errors of the Shortley-Weller finite difference solutions for Example 5.1.

n | node# h max-error | max-error/h? | n.b.max-error | n.b.max-error/h>
50 301 | 1.00E-2| 4.63E-5 0.463 6.21E-07 0.621

250 | 1501 | 2.00E-3 | 1.85E-6 0.463 3.96E-09 0.495

500 | 3001 | 1.00E-3| 4.63E-7 0.463 4.81E-10 0.481

1000 | 6001 | 5.00E-4| 1.16E-7 0.465 6.09E-11 0.487

Table 5.2: The errors of the Finite element solutions for Example 5.1.

n | nodef h max-error | max-error/h? | n.b.max-error | n.b.max-error/h?
50 301 | 1.00E-2 | 2.71E-6 0.0271 8.29E-07 0.829

250 | 1501 | 2.00E-3 | 1.09E-7 0.0271 7.24E-09 0.905

500 | 3001 | 1.00E-3| 2.71E-8 0.0271 9.15E-10 0.915

1000 | 6001 | 5.00E-4| 6.77E-9 0.0271 1.15E-10 0.919
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Table 5.3: The errors of the Shortley-Weller finite difference solutions for Example 5.2.

max-error/h?

n.b.max-error

n.b.max-error/h>

n | node# h max-error

50 301 1.00E-2 | 0.458E-6 0.00458 0.715E-07 0.0715
250 | 1501 | 2.00E-3 | 0.183E-7 0.00458 0.607E-09 0.0758
500 | 3001 | 1.00E-3 | 0.457E-8 0.00457 0.765E-10 0.0765
1000 | 6001 | 5.00E-4 | 0.111E-8 0.00446 0.931E-11 0.0744

Table 5.4: The errors of the Shortley-Weller finite difference solutions for Example 5.3.

max-error/h?

n.b.max-error

n.b.max-error/h>

n | node# h max-error

50 301 1.00E-2 | 0.389E-6 0.00389 0.669E-07 0.0669
250 | 1501 | 2.00E-3 | 0.155E-7 0.00388 0.570E-09 0.0712
500 | 3001 | 1.00E-3| 0.387E-8 0.00387 0.718E-10 0.0718
1000 | 6001 | 5.00E-4 | 0.979E-9 0.00392 0.919E-11 0.0735

Table 5.5: The errors of the Shortley-Weller finite difference solutions for Example 5.4.

n.b.max-error/h3

n | node# h max-error | max-error/h? | n.b.max-error

50 301 | 1.00E-2 | 0.108E-3 1.08 0.430E-05 4.30
2560 | 1501 | 2.00E-3 | 0.431E-5 1.08 0.340E-07 4.25
500 | 3001 | 1.00E-3| 0.108E-5 1.08 0.425E-08 4.25
1000 | 6001 | 5.00E-4 | 0.270E-6 1.08 0.532E-09 4.25
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