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ABSTRACT. Let T be a bounded linear operator on a complex Hilbert space with the
polar decomposition T = U|T|. Let T(t) = |T|'U|T|*~! for 0 < t < 1,T(0) = U*UU|T|
and T(1) = |T|U. T(t) is called Aluthge transform of 7. In this paper, we investigate
spectral relations between 7' and T'(t). For example, we prove that 7" and T'(t) have the
same essential spectrum and Weyl spectrum, and prove that Weyl’s theorem holds for
T if and only if Weyl’s theorem holds for T'(%).

1. INTRODUCTION

Let H be a complex Hilbert space and B = B(7) be the set of all bounded linear operators
on H. Let |T| = (T*T)"/*. Define U € B(H) by

UlTlz =Tz, for |T|x €ran |T|,
Ux =0, for zé€ (ran T)J' = ker T™*.

Then U is a partial isometry with the initial space the closure of the range of |7'| and the final
space the closure of the range of T. Also, we have that T = U|T|, U*U|T| = |T| = |T|U*U
and ker T' = ker |T| = ker U. In this paper, we say that T' = U|T| is the polar decomposition
of T. We remark that there may exist another partial isometry V such that T = V|T|. For
example, if T' is normal, then there exisits unitary V' such that T = V|T|. But, in this
paper, we consider only U in the above definition with the polar decomposition T = U|T.

Let T(t) = |T|'U|T|'~" for 0 < t < 1. We think that it is natural to define |T|° = U*U
since |T|" — U*U (+ = +0) strongly. Hence we define

T(0) = |TI°U|T|" = U*UU

T|
and
T(1) = T|'U v
in this paper. We remark that if T is invertible, then |T'| is invertible and U is unitary.
Hence T = U|T| is similar to T'(¢) if T is invertible.

T(t) is called Aluthge transform of T'. The idea of Aluthge transform is due to Aluthge [1],
in which Aluthge proved that if T = U|T)| is p-hyponormal ( (T*T)? < (TT*)?, 0 <p < %
) and U is unitary, then T'(1) is a (p + 1)-hyponormal operator. This idea is powerful to
study p-hyponormal operators ([1, 4, 8, 14]).

Recently, Aluthge transform was considered for general operators by [4] and [9]. Let
o(T),0,(T) and 0,(T) denote the spectrum, the point spectrum and the approximate point
spectrum of T', respectively. Cho, Jeon, Jung, Lee and Tanahashi [4] proved the following
results.

T = |T|IUU*U = |T
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Proposition 1.1. ([4]). Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
T tU|T| for 0 <t < 1. Then

o(T) = o(T(t)),
op(T) = 0, (T(t)),
0.(T) = o, (T(1)).

In this paper, we prove that o(T) = o(T(¢)) and 0,(T) = 0, (T(t)) for t = 0,1. Also, we
prove that o,(T) = 0,(T(0)), but 0,(T) # 0,(T(1)) in general.

Let By = Bo(H) be the set of all compact operators. Let B/Bg be the Calkin algebra
and let © : B — B/Bg be the natural map. The essential spectrum o.(T) of T € B(H)
is defined by o.(T) = o(#x(T)). T is called a left (right) Fredholm operator if #(T) is
left (right) invertible. Let F; (F,) denote the set of all left (right) Fredholm operators.
T is called a semi-Fredholm operator if T € F; U F, and called a Fredholm operator if
T ¢ ANF, = F. It is known that T € F if and only if the range of T is closed,
dimkerT < oo and dimkerT* < oo. For T € F, index of T is defined by ind T =
dimker T — dimker T*. A Fredholm operator T with ind T = 0 is called a Weyl operator.
Let Fy denote the set of all Weyl operators. The Weyl spectrum o.,,(T) of T € B(H) is
defined by 0,(T) ={A € C: T — X\ & Fo}. If H is infinite dimensional, then o.(T) and
ow(T) are nonempty compact sets and o (1) C 0, (T) C o(T). In this paper, we show that
T and T(t) have the same essential spectrum and Weyl spectrum for 0 < ¢ < 1.

For T € B(H), let moo(T') be isolated points of o(T') which are eigen values of finite
multiplicity. We say that Weyl’s theorem holds for T if 0, (T) = o(T) \ moo(T"). We prove
that moo(T") = moo(T'(t)) for 0 < t < 1. Also, we prove that Weyl’s theorem holds for T' if
and only if Weyl’s theorem holds for T'(t) where 0 <t < 1.

2. RESULTS
It A,B € B(H), then it is well known that o(AB) \ {0} = o(BA) \ {0} (see [7]). The

following results are due to B. A. Barnes [2] and play important roles in this paper.
Proposition 2.1. ([2]). Let A,B € B(H). Then

op(AB) \ {0} = 0, (BA) \ {0},

7o(AB) \ {0} = 0,(BA) \ {0},

o(AB)\ {0} = 0. (BA) \ {0},

ow(AB) \ {0} = 0, (BA)\ {0}.

Let S be the unilateral shift on (2. Then o(S*S) = {1} and ¢(SS*) = {0,1}. Hence we

cannot delete {0} in these relations. In this paper, we prove that T and T'(¢) have the same

essential spectrum and Weyl spectrum for 0 <¢ < 1.
See [6, IX Theorem 2.5] for the proof of Lemma 2.2.

Lemma 2.2, Let T = U|T| be the polar decomposition of T € B(H). Then following
assertions are equivalent.

(2.1) T c F.

(2.2) IT| € F.

(2.3) |T|° € F for some positive number s.
(2.4) |T|* € F for any positive number s.

And, wn this case, we have that ind T =ind U.
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First we prove that T and T'(t) have the same essential spectrum and Weyl spectrum for
0<t<1.

Theorem 2.3. Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
\TIU|T|* ! for 0 <t <1 and let T(0) = U*UU|T|,T(1) = |T|U. Then, for 0 <t <1,
(25) 0u(T) = 0u(T(1)),

(2.6) ow(T) = ou(T(1)).

Proof. (2.5) By Proposition 2.1, we have that

oe(T()\ {0} = o (ITI'TITI )\ {0} = o (UIT|"|T[") \ {0}
o (UIT)\ {0} = o (IT|U) \ {0}
= 0 ([TIUUU) \ {0} = o (UTUU[T]) \ {0}

Hence we have to prove that 0 & o.(T) if and only if 0 & o.(T(t)).

Let 0 & 0.(T). Then T = U|T| € F. Hence |T| € F by Lemma 2.2. Hence
U, U* |T|'|T|*"" € F. Hence T(t) € F and 0 &€ o (T(t)).

Conversely, let 0 < t < 1 and let 0 € o.(T(t)). Then T(t) = |T|'U|T|*"* € F and
#(|T|'U|T]*~Y) is invertible. Hence n(|T|17") is left invertible and |T|'~' € F; N F, = F.
Hence |T| € F by Lemma 2.2. Hence U € F and T = U|T| € F. The proofs of cases t = 0, 1

are similar.

(2.6) By Proposition 2.1, we have to prove that 0 & o,,(T) if and only if 0 & o, (T(1)).
Let 0 € 04,(T). Then T =U|T| € F and ind T = 0. By (2.1), T(¢) € F and

ind T(t) = ind |T'U|T|* " = ind U = 0.

Thus 0 & 0, (T'(t)). The rest of the proof is similar.
|

Theorem 2.4. Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
ITI'U|T)M " for 0 <t <1 and let T(0) = U*UU|T|, T(1) = |T|U. Then, for 0 <t <1,

(2.7) o(T) = o(T(1)),
(2.8) op(T) = op(T(1)).

Proof. (2.7)  We have to prove that 0 ¢ o(T) if and only if 0 ¢ o(T'(¢)) for t = 0,1 by
Propositions 1.1 and 2.1.

First we prove the case t = 1. Let 0 € o(T). Then T = U|T| is invertible. Hence |T is
invertible and U is unitary. Hence T(1) = |T|U and T(0) = U*UU|T| are invertible.

Conversely, let 0 € o(T(1)) = o(|T|U). Then |T|U is invertible and U*|T| is invertible.
Hence |T| is bijective. Hence |T| is invertible and U = |T|~'T(1). This implies that U and
T are invertible.

The proof of the case t = 0 is similar.

(2.8)  We have to prove that 0 € 0,(T) if and only if 0 € ¢,(T(t)) for t = 0,1 by
Propositions 1.1 and 2.1.

Let 0 € 0,(T). Then there exists non-zero vector @ € H such that T@ = 0. Then
x €kerT = ker |T| = ker U. Hence T(1)z = |T|Uz = 0 and T(0)a = U*UU|T|x = 0.

Conversely, let 0 € o,(T(1)). Then there exists a non-zero vector @ € H such that
T(Nae = |T|Uz =0. f Uz =0, then ¢ € kerU =kerT. If Uz # 0, then TUz = U|T|Ux =
0. Hence 0 € 0,,(T).
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Let 0 € 0,(T(0)). Then there exists a non-zero vector © € H such that T(0)x
U*UU|T|z = 0. Then

(UU|T |2, UU|T|z) = (U*UU|T|z,U|T|z) = 0.
Hence UU|T|e = UT2x = 0. If Te # 0, then Tx € ker U = ker T. Hence 0 € o,(T).

O
Theorem 2.5. Let T = U|T| be the polar decomposition of T € B(H). Let T(0) =
U*UU|T|. Then
(2.9) 0a(T) = 0,(T(0)).

Proof. We have to prove that 0 € o,(T) if and only if 0 € o,(7(0)) by Proposition 2.1.
Let 0 € 0,(T(0)). Then there exist unit vectors z, such that T(0)z, = U*UU|T|z,, — 0.
If ker |T| = {0}, then U*U = I. Hence Tx,, = U|T |z, = U*UU|T|z, — 0. If ker |T| =
ker(|T|) # {0}, then there exists a non-zero vector y € H such that |T|y = 0. Hence
Ty =U|T|y = 0. Thus 0 € 04(T). The converse implication is clear.

O

Remark 2.6. We prove that o4(T) # 04,(T(1)) in general.

Let H = L*([0,1]). Define S € B(H) by

(Sf)(t) = tf(t)a t €[0,1].
We can write H = L*([0,1]) = L*([0, 3]) @ L*([3,1]).

Let {ey, e, e5,--- } C L*([0,1]) be a complete orthonormal basis of L*([0, 1]) and {e2, 4, €, - - -

1
2
Lz([%, 1]) be a complete orthonormal basis of LZ([%, 1]). Define U € B(H) by
Uep, =€, n=1,2,---.

Then U is isometry and UH = L*([5,1]). Let T =US. Then |T|* = T*T = S*U*US = §*
and |T| = S. Since |T|H = SH is dense, T has the polar decomposition T = US = U|T|.
Since 0 € 04(S5), there exist unit vectors fn, € H such that Sf, — 0. Hence U|T|f, =
USfn—=0and 0 € c,(UIT]) = 04(T).
Let f € H be any unit vector. Let g = Uf. Since U is isometry, we have that ||g| =
[Ufll=Ifll=1. Since g=Uf € LQ([%, 1]), we have that

I1TIUf1* = (T

9,

ﬂm=At%mW&

_/ZZGVﬁ>1/HUWﬁ—HH2—Hﬂ2
_%g —4%9 = g9l = i

Hence

1T

S
This implies that 0 € o,(|T|U) = 0,(T(1)). (We remark that 0 € o.(|T|U).)
B. A. Barnes [2] proved that
o.(AB) \ {0} = 0.(BA) \ {0},
o, (AB)\ {0} = o(BA) \ {0}

for A,B € B(H), where o.(T) and o.(T) denote the continuous spectrum and the residual
spectrum of T, respectively. The above example shows that we cannot delete {0} in these
relations.

}C



SPECTRAL RELATIONS FOR ALUTHGE TRANSFORM 117

T € B(H) is called isoloid if any isolated point of o(T) is an eigen value of T. If T is
hyponormal (TT* < T*T), then T is isoloid by [11].

Theorem 2.7. Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
\TIU|T|* ! for 0 < t < 1 and let T(0) = U*UU|T|,T(1) = |T|U. Then T is isoloid if
and only if T(t) 1s 1soloid where 0 <t < 1.

Proof. Let T be isoloid. Let A € o(T(¢)) be an isolated point of T. Since o(T(t)) = o(T)
by Proposition 1.1 and Theorem 2.4, X is an isolated point of o(T'). Since T is isoloid, we

have that A € 0,(T) = 0,(T(t)) by Proposition 1.1 and Theorem 2.4. Hence T'(#) is isoloid.
The proof of the converse is similar. O

T € B(H) is called a log-hyponormal operator, if T is invertible and log(TT*) <
log(T*T). It is known that invertible p-hyponormal operators are log-hyponormal and
that there exists a log-hyponormal operator which is not p-hyponormal for any p > 0 ([12]).
The authors [4] proved that log-hyponormal operators are isoloid. Also, Cho, Itoh and
Oshiro [3] proved that p-hyponormal operators are isoloid.

Corollary 2.8. IfT € B(H) is p-hyponormal or log-hyponormal operator, then T is isoloid.

Proof. Let T = U|T| be the polar decomposition of T'. Then, at least, T(%) is %—hyponormal
by [12] or [14]. Let T(%) = V|T(5)| be the polar decomposition of T(3) and S =
\T(%)\%V T(%)ﬁ Then S is hyponormal by [14]. Since S is isoloid by [11], T(%) and
T are isoloid by Theorem 2.7. U

Theorem 2.9. Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
ITIPU|T)' ™" for 0 <t <1 and let T(0) = U*UU|T|, T(1) = |T|U. Then, for 0 <t <1,

(210) 7T00(T) = Too(T(f))
Proof. We can prove that
oo (T) \ {0} = moo(T(t)) \ {0}

for 0 <t <1 by similar arguments of the proof of Proposition 2.1. Hence we have to prove

that 0 € moo(T) if and only if 0 € moo(T()).

(Case 0 <t < 1) Let 0 € moo(T) = moo(U|T|). Then dimkerT = dimker |T| < oc.
Since o(T') = o(T'(t)) and 0,(T) = 0,(T(t)) by Proposition 1.1, we have that 0 is an isolated
point of o(T(t)) which is an eigen value of T. Assume 0 € moo(T'(t)) and let M = ker(T'(¥)).
Then dim M = co. Let 2 € M. Then we can write © = 21 @2 € ker |T| @ (ker [T])L. Since

21 € ker |T| = ker |T|'™" ¢ M,
we have that 29 = v — 21 € M. This implies that
M = (MNker|T]) & (M N (ker |T|)L) .

Since dim (M Nker |T|) < dimker |T| < oo, we have that dim M N (ker |T|)J' = oo. Hence
there exist orthogonal unit vectors z,, € (ker |T|)J' such that T(t)z, = |T|'U|T|'" 'z, = 0.
We prove that U|T|*~tzy,--- ,U|T|* !z, are linearly independent. Let
c U\T|17t$1 4+ 4 cnU|T|17t;vn = U|T|17t (crzy 4+ -+ epapn) =0.
Then
|T\1_t (c1m1 + -+ cpry) = U*U|T\1_t (c1w1 4+ 4 cpryn) = 0.

Hence ciz1 + -+ + cpay € ker |17 = ker |T|. Hence cy2y +++++cprp =0and e; =+ =
c, = 0.
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Since
TU|T|" 'y = UIT|'"™T|'UIT|""z; =0,

we have that U|T|'~'z; € ker T. Hence dimker T' = oco. This is a contradiction.

Conversely, let 0 € mog(T(¢)). Then 0 is an isolated point of o(T) which is an eigen
value of T by Proposition 1.1. Since ker T = ker |T| = ker |T|'~" C ker T(#), we have that
dimker T' < dimker T(#) < co. Hence 0 € moo(T).

(Case t = 1) Let 0 € moo(T) = 7oo(U|T|). Then dimkerT = dimker|T| < oo and
0 is an isolated point of o(T'(t)) which is an eigen value of T' by Theorem 2.4. Assume
0 & mo0(T(1)) = moo(|T|U) and let M = ker |T|U. Then dim M = oco. Let 2 € M. Then
we can write ¥ = 21 & 22 € ker|T| & (ker |T|)+. Since

1 Eker |T| =kerU C ker |T|U = M,
we have that xo = v — 21y € M. This implies that
M = (Mnker|T|) & (M A (ker |T|)L) .

Since dim Mnker |T| < dimker |T| < oo, we have that dim MN(ker \T|)J' = co. Hence there
Uz, = 0. Since Uxy, -+, Uz,

are linearly independent and TUx; = U|T|Ux; = 0, we have that dimker T = co. This is

exist orthogonal unit vectors z,, € (ker |T|)J' such that |T

a contradiction.

Conversely, let 0 € moo(T(#)). Then 0 is an isolated point of ¢(T) which is an eigen
value of T by Theorem 2.4. Since kerT = ker|T| = kerU C ker|T|U, we have that
dimker T' < dimker |T|U < co. Hence 0 € moo(T).

We can prove the case t = 0 similarly. This completes the proof.

O

Theorem 2.10. Let T = U|T| be the polar decomposition of T € B(H). Let T(t) =
\TI'U|T)M ! for 0 < t < 1 and let T(0) = U*UU|T|,T(1) = |T|U. Then Weyl’s theorem
holds for T if and only if Weyl’s theorem holds for T(t) where 0 <t < 1.

Proof. Let Weyl’s theorem hold for T'. Then
ru(T) = o(T) \ moo(T)
= o(T(t) \ moo(T(t))

by Theorem 2.9, Proposition 1.1 and Theorem 2.4. Since 0, (1) = 0w (T'(t)) by Theorem
2.3, we have that

ow(T(t)) = o(T(1)) \ 7o (T())-
Hence Weyl’s theorem holds for T'(¢). The proof of the converse is similar.

O
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