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SPECTRAL RELATIONS FOR ALUTHGE TRANSFORM
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Abstract. Let T be a bounded linear operator on a complex Hilbert space with the

polar decomposition T = U jT j. Let T (t) = jT jtU jT j1�t for 0 < t < 1; T (0) = U�UU jT j
and T (1) = jT jU . T (t) is called Aluthge transform of T . In this paper, we investigate

spectral relations between T and T (t). For example, we prove that T and T (t) have the

same essential spectrum and Weyl spectrum, and prove that Weyl's theorem holds for

T if and only if Weyl's theorem holds for T (t).

1. Introduction

Let H be a complex Hilbert space and B = B(H) be the set of all bounded linear operators

on H. Let jT j = (T �T )
1=2

. De�ne U 2 B(H) by(
U jT jx = Tx; for jT jx 2 ran jT j;

Ux = 0; for x 2 (ran T )
?

= kerT �:

Then U is a partial isometry with the initial space the closure of the range of jT j and the �nal

space the closure of the range of T . Also, we have that T = U jT j, U�U jT j = jT j = jT jU�U

and kerT = ker jT j = kerU . In this paper, we say that T = U jT j is the polar decomposition

of T . We remark that there may exist another partial isometry V such that T = V jT j. For

example, if T is normal, then there exisits unitary V such that T = V jT j. But, in this

paper, we consider only U in the above de�nition with the polar decomposition T = U jT j.

Let T (t) = jT jtU jT j1�t for 0 < t < 1. We think that it is natural to de�ne jT j0 = U�U

since jT jt ! U�U (t! +0) strongly. Hence we de�ne

T (0) = jT j0U jT j1 = U�UU jT j

and

T (1) = jT j1U jT j0 = jT jUU�U = jT jU

in this paper. We remark that if T is invertible, then jT j is invertible and U is unitary.

Hence T = U jT j is similar to T (t) if T is invertible.

T (t) is called Aluthge transform of T . The idea of Aluthge transform is due to Aluthge [1],

in which Aluthge proved that if T = U jT j is p-hyponormal ( (T �T )p � (TT �)p; 0 < p < 1

2

) and U is unitary, then T (1
2
) is a (p + 1

2
)-hyponormal operator. This idea is powerful to

study p-hyponormal operators ([1, 4, 8, 14]).

Recently, Aluthge transform was considered for general operators by [4] and [9]. Let

�(T ); �p(T ) and �a(T ) denote the spectrum, the point spectrum and the approximate point

spectrum of T , respectively. Ch�o, Jeon, Jung, Lee and Tanahashi [4] proved the following

results.
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Proposition 1.1. ([4]): Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1. Then

�(T ) = �(T (t));

�p(T ) = �p(T (t));

�a(T ) = �a(T (t)):

In this paper, we prove that �(T ) = �(T (t)) and �p(T ) = �p(T (t)) for t = 0; 1. Also, we

prove that �a(T ) = �a(T (0)), but �a(T ) 6= �a(T (1)) in general.

Let B0 = B0(H) be the set of all compact operators. Let B=B0 be the Calkin algebra

and let � : B ! B=B0 be the natural map. The essential spectrum �e(T ) of T 2 B(H)

is de�ned by �e(T ) = �(�(T )). T is called a left (right) Fredholm operator if �(T ) is

left (right) invertible. Let Fl (Fr) denote the set of all left (right) Fredholm operators.

T is called a semi-Fredholm operator if T 2 Fl [ Fr and called a Fredholm operator if

T 2 Fl \ Fr = F . It is known that T 2 F if and only if the range of T is closed,

dimkerT < 1 and dimkerT � < 1. For T 2 F , index of T is de�ned by ind T =

dimkerT � dimkerT �. A Fredholm operator T with ind T = 0 is called a Weyl operator.

Let F0 denote the set of all Weyl operators. The Weyl spectrum �w(T ) of T 2 B(H) is

de�ned by �w(T ) = f� 2 C : T � � 62 F0g. If H is in�nite dimensional, then �e(T ) and

�w(T ) are nonempty compact sets and �e(T ) � �w(T ) � �(T ). In this paper, we show that

T and T (t) have the same essential spectrum and Weyl spectrum for 0 � t � 1.

For T 2 B(H), let �00(T ) be isolated points of �(T ) which are eigen values of �nite

multiplicity. We say that Weyl's theorem holds for T if �w(T ) = �(T ) n �00(T ). We prove

that �00(T ) = �00(T (t)) for 0 � t � 1. Also, we prove that Weyl's theorem holds for T if

and only if Weyl's theorem holds for T (t) where 0 � t � 1.

2. Results

If A;B 2 B(H), then it is well known that �(AB) n f0g = �(BA) n f0g (see [7]). The

following results are due to B. A. Barnes [2] and play important roles in this paper.

Proposition 2.1. ([2]): Let A;B 2 B(H). Then

�p(AB) n f0g = �p(BA) n f0g;

�a(AB) n f0g = �a(BA) n f0g;

�e(AB) n f0g = �e(BA) n f0g;

�w(AB) n f0g = �w(BA) n f0g:

Let S be the unilateral shift on `2. Then �(S�S) = f1g and �(SS�) = f0; 1g. Hence we

cannot delete f0g in these relations. In this paper, we prove that T and T (t) have the same

essential spectrum and Weyl spectrum for 0 � t � 1.

See [6, IX Theorem 2.5] for the proof of Lemma 2.2.

Lemma 2.2. Let T = U jT j be the polar decomposition of T 2 B(H). Then following

assertions are equivalent.

T 2 Fl:(2.1)

jT j 2 F :(2.2)

jT js 2 F for some positive number s:(2.3)

jT js 2 F for any positive number s:(2.4)

And, in this case, we have that ind T = ind U .
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First we prove that T and T (t) have the same essential spectrum and Weyl spectrum for

0 � t � 1.

Theorem 2.3. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1 and let T (0) = U�UU jT j; T (1) = jT jU . Then, for 0 � t � 1,

�e(T ) = �e(T (t));(2.5)

�w(T ) = �w(T (t)):(2.6)

Proof. (2.5) By Proposition 2.1, we have that

�e(T (t)) n f0g = �e(jT j
tU jT j1�t) n f0g = �e(U jT j

1�tjT jt) n f0g

= �e(U jT j) n f0g = �e(jT jU) n f0g

= �e(jT jU
�UU) n f0g = �e(U

�UU jT j) n f0g:

Hence we have to prove that 0 62 �e(T ) if and only if 0 62 �e(T (t)).

Let 0 62 �e(T ). Then T = U jT j 2 F . Hence jT j 2 F by Lemma 2.2. Hence

U;U�; jT jt; jT j1�t 2 F . Hence T (t) 2 F and 0 62 �e(T (t)).

Conversely, let 0 < t < 1 and let 0 62 �e(T (t)). Then T (t) = jT jtU jT j1�t 2 F and

�(jT jtU jT j1�t) is invertible. Hence �(jT j1�t) is left invertible and jT j1�t 2 Fl \ Fr = F .

Hence jT j 2 F by Lemma 2.2. Hence U 2 F and T = U jT j 2 F : The proofs of cases t = 0; 1

are similar.

(2.6) By Proposition 2.1, we have to prove that 0 62 �w(T ) if and only if 0 62 �w(T (t)).

Let 0 62 �w(T ). Then T = U jT j 2 F and ind T = 0. By (2.1), T (t) 2 F and

ind T (t) = ind jT jtU jT j1�t = ind U = 0:

Thus 0 62 �w(T (t)). The rest of the proof is similar.

Theorem 2.4. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1 and let T (0) = U�UU jT j; T (1) = jT jU . Then, for 0 � t � 1,

�(T ) = �(T (t));(2.7)

�p(T ) = �p(T (t)):(2.8)

Proof. (2.7) We have to prove that 0 62 �(T ) if and only if 0 62 �(T (t)) for t = 0; 1 by

Propositions 1.1 and 2.1.

First we prove the case t = 1. Let 0 62 �(T ). Then T = U jT j is invertible. Hence jT j is

invertible and U is unitary. Hence T (1) = jT jU and T (0) = U�UU jT j are invertible.

Conversely, let 0 62 �(T (1)) = �(jT jU). Then jT jU is invertible and U�jT j is invertible.

Hence jT j is bijective. Hence jT j is invertible and U = jT j�1T (1). This implies that U and

T are invertible.

The proof of the case t = 0 is similar.

(2.8) We have to prove that 0 2 �p(T ) if and only if 0 2 �p(T (t)) for t = 0; 1 by

Propositions 1.1 and 2.1.

Let 0 2 �p(T ). Then there exists non-zero vector x 2 H such that Tx = 0. Then

x 2 kerT = ker jT j = kerU . Hence T (1)x = jT jUx = 0 and T (0)x = U�UU jT jx = 0.

Conversely, let 0 2 �p(T (1)). Then there exists a non-zero vector x 2 H such that

T (1)x = jT jUx = 0. If Ux = 0, then x 2 kerU = kerT . If Ux 6= 0, then TUx = U jT jUx =

0. Hence 0 2 �p(T ).
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Let 0 2 �p(T (0)). Then there exists a non-zero vector x 2 H such that T (0)x =

U�UU jT jx = 0. Then

hUU jT jx;UU jT jxi = hU�UU jT jx;U jT jxi = 0:

Hence UU jT jx = UTx = 0. If Tx 6= 0, then Tx 2 kerU = kerT . Hence 0 2 �p(T ).

Theorem 2.5. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (0) =

U�UU jT j. Then

�a(T ) = �a(T (0)):(2.9)

Proof. We have to prove that 0 2 �a(T ) if and only if 0 2 �a(T (0)) by Proposition 2.1.

Let 0 2 �a(T (0)). Then there exist unit vectors xn such that T (0)xn = U�UU jT jxn ! 0.

If ker jT j = f0g, then U�U = I. Hence Txn = U jT jxn = U�UU jT jxn ! 0. If ker jT j =

ker(jT j) 6= f0g, then there exists a non-zero vector y 2 H such that jT jy = 0. Hence

Ty = U jT jy = 0. Thus 0 2 �a(T ). The converse implication is clear.

Remark 2.6. We prove that �a(T ) 6= �a(T (1)) in general.

Let H = L2([0; 1]). De�ne S 2 B(H) by

(Sf)(t) = tf(t); t 2 [0; 1]:

We can write H = L2([0; 1]) = L2([0; 1
2
]) � L2([1

2
; 1]).

Let fe1; e3; e5; � � � g � L2([0; 1
2
]) be a complete orthonormal basis of L2([0; 1

2
]) and fe2; e4; e6; � � � g �

L2([1
2
; 1]) be a complete orthonormal basis of L2([1

2
; 1]). De�ne U 2 B(H) by

Uen = e2n; n = 1; 2; � � � :

Then U is isometry and UH = L2([1
2
; 1]). Let T = US. Then jT j2 = T �T = S�U�US = S2

and jT j = S. Since jT jH = SH is dense, T has the polar decomposition T = US = U jT j.

Since 0 2 �a(S), there exist unit vectors fn 2 H such that Sfn ! 0. Hence U jT jfn =

USfn ! 0 and 0 2 �a(U jT j) = �a(T ).

Let f 2 H be any unit vector. Let g = Uf . Since U is isometry, we have that kgk =

kUfk = kfk = 1. Since g = Uf 2 L2([1
2
; 1]), we have that

kjT jUfk2 = hjT jg; jT jgi =

Z 1

0

t2jg(t)j2dt

=

Z 1

1

2

t2jg(t)j2dt �
1

4

Z 1

1

2

jg(t)j2dt =
1

4
kgk2 =

1

4
kfk2:

Hence

kjT jUfk �
1

2
kfk:

This implies that 0 62 �a(jT jU) = �a(T (1)). (We remark that 0 2 �r(jT jU).)

B. A. Barnes [2] proved that

�c(AB) n f0g = �c(BA) n f0g;

�r(AB) n f0g = �r(BA) n f0g

for A;B 2 B(H), where �c(T ) and �r(T ) denote the continuous spectrum and the residual

spectrum of T , respectively. The above example shows that we cannot delete f0g in these

relations.
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T 2 B(H) is called isoloid if any isolated point of �(T ) is an eigen value of T . If T is

hyponormal (TT � � T �T ), then T is isoloid by [11].

Theorem 2.7. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1 and let T (0) = U�UU jT j; T (1) = jT jU . Then T is isoloid if

and only if T (t) is isoloid where 0 � t � 1.

Proof. Let T be isoloid. Let � 2 �(T (t)) be an isolated point of T . Since �(T (t)) = �(T )

by Proposition 1.1 and Theorem 2.4, � is an isolated point of �(T ). Since T is isoloid, we

have that � 2 �p(T ) = �p(T (t)) by Proposition 1.1 and Theorem 2.4. Hence T (t) is isoloid.

The proof of the converse is similar.

T 2 B(H) is called a log-hyponormal operator, if T is invertible and log(TT �) �

log(T �T ). It is known that invertible p-hyponormal operators are log-hyponormal and

that there exists a log-hyponormal operator which is not p-hyponormal for any p > 0 ([12]).

The authors [4] proved that log-hyponormal operators are isoloid. Also, Ch�o, Itoh and
�Oshiro [3] proved that p-hyponormal operators are isoloid.

Corollary 2.8. If T 2 B(H) is p-hyponormal or log-hyponormal operator, then T is isoloid.

Proof. Let T = U jT j be the polar decomposition of T . Then, at least, T (1
2
) is 1

2
-hyponormal

by [12] or [14]. Let T (1
2
) = V jT (1

2
)j be the polar decomposition of T (1

2
) and S =

jT (1
2
)j

1

2V jT (1
2
)j

1

2 . Then S is hyponormal by [14]. Since S is isoloid by [11], T ( 1
2
) and

T are isoloid by Theorem 2.7.

Theorem 2.9. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1 and let T (0) = U�UU jT j; T (1) = jT jU . Then, for 0 � t � 1,

�00(T ) = �00(T (t)):(2.10)

Proof. We can prove that

�00(T ) n f0g = �00(T (t)) n f0g

for 0 � t � 1 by similar arguments of the proof of Proposition 2.1. Hence we have to prove

that 0 2 �00(T ) if and only if 0 2 �00(T (t)).

(Case 0 < t < 1) Let 0 2 �00(T ) = �00(U jT j). Then dimkerT = dimker jT j < 1.

Since �(T ) = �(T (t)) and �p(T ) = �p(T (t)) by Proposition 1.1, we have that 0 is an isolated

point of �(T (t)) which is an eigen value of T . Assume 0 62 �00(T (t)) and letM = ker(T (t)).

Then dimM =1. Let x 2 M. Then we can write x = x1�x2 2 ker jT j� (ker jT j)?. Since

x1 2 ker jT j = ker jT j1�t �M;

we have that x2 = x� x1 2 M. This implies that

M = (M\ ker jT j)�
�
M\ (ker jT j)

?

�
:

Since dim (M\ ker jT j) � dimker jT j < 1, we have that dimM\ (ker jT j)
?

= 1. Hence

there exist orthogonal unit vectors xn 2 (ker jT j)
?

such that T (t)xn = jT jtU jT j1�txn = 0.

We prove that U jT j1�tx1; � � � ; U jT j
1�txn are linearly independent. Let

c1U jT j
1�tx1 + � � �+ cnU jT j

1�txn = U jT j1�t (c1x1 + � � �+ cnxn) = 0:

Then

jT j1�t (c1x1 + � � � + cnxn) = U�U jT j1�t (c1x1 + � � �+ cnxn) = 0:

Hence c1x1 + � � �+ cnxn 2 ker jT j1�t = ker jT j. Hence c1x1 + � � �+ cnxn = 0 and c1 = � � � =

cn = 0.
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Since

TU jT j1�txj = U jT j1�tjT jtU jT j1�txj = 0;

we have that U jT j1�txj 2 kerT . Hence dimkerT =1. This is a contradiction.

Conversely, let 0 2 �00(T (t)). Then 0 is an isolated point of �(T ) which is an eigen

value of T by Proposition 1.1. Since kerT = ker jT j = ker jT j1�t � kerT (t), we have that

dimkerT � dimkerT (t) <1. Hence 0 2 �00(T ).

(Case t = 1) Let 0 2 �00(T ) = �00(U jT j). Then dimkerT = dimker jT j < 1 and

0 is an isolated point of �(T (t)) which is an eigen value of T by Theorem 2.4. Assume

0 62 �00(T (1)) = �00(jT jU) and let M = ker jT jU . Then dimM = 1. Let x 2 M. Then

we can write x = x1 � x2 2 ker jT j � (ker jT j)?. Since

x1 2 ker jT j = kerU � ker jT jU =M;

we have that x2 = x� x1 2 M. This implies that

M = (M\ ker jT j)�
�
M\ (ker jT j)

?

�
:

Since dimM\ker jT j � dimker jT j <1, we have that dimM\(ker jT j)
?

=1. Hence there

exist orthogonal unit vectors xn 2 (ker jT j)
?

such that jT jUxn = 0. Since Ux1; � � � ; Uxn
are linearly independent and TUxj = U jT jUxj = 0, we have that dimkerT = 1. This is

a contradiction.

Conversely, let 0 2 �00(T (t)). Then 0 is an isolated point of �(T ) which is an eigen

value of T by Theorem 2.4. Since kerT = ker jT j = kerU � ker jT jU , we have that

dimkerT � dimker jT jU <1. Hence 0 2 �00(T ).

We can prove the case t = 0 similarly. This completes the proof.

Theorem 2.10. Let T = U jT j be the polar decomposition of T 2 B(H). Let T (t) =

jT jtU jT j1�t for 0 < t < 1 and let T (0) = U�UU jT j; T (1) = jT jU . Then Weyl's theorem

holds for T if and only if Weyl's theorem holds for T (t) where 0 � t � 1.

Proof. Let Weyl's theorem hold for T . Then

�w(T ) = �(T ) n �00(T )

= �(T (t)) n �00(T (t))

by Theorem 2.9, Proposition 1.1 and Theorem 2.4. Since �w(T ) = �w(T (t)) by Theorem

2.3, we have that

�w(T (t)) = �(T (t)) n �00(T (t)):

Hence Weyl's theorem holds for T (t). The proof of the converse is similar.
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