SPECTRAL RELATIONS FOR ALUTHGE TRANSFORM

MUNEO CHŌ AND KÔTARÔ TANAHASHI *

Received March 22, 2001

Abstract

Let T be a bounded linear operator on a complex Hilbert space with the polar decomposition $T=U|T|$. Let $T(t)=|T|^{t} U|T|^{1-t}$ for $0<t<1, T(0)=U^{*} U U|T|$ and $T(1)=|T| U . T(t)$ is called Aluthge transform of T. In this paper, we investigate spectral relations between T and $T(t)$. For example, we prove that T and $T(t)$ have the same essential spectrum and Weyl spectrum, and prove that Weyl's theorem holds for T if and only if Weyl's theorem holds for $T(t)$.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}=\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. Let $|T|=\left(T^{*} T\right)^{1 / 2}$. Define $U \in \mathcal{B}(\mathcal{H})$ by

$$
\begin{cases}U|T| x & =T x, \\ \text { for } \quad|T| x \in \operatorname{ran}|T| \\ U x & =0, \quad \text { for } \quad x \in(\operatorname{ran} T)^{\perp}=\operatorname{ker} T^{*}\end{cases}
$$

Then U is a partial isometry with the initial space the closure of the range of $|T|$ and the final space the closure of the range of T. Also, we have that $T=U|T|, U^{*} U|T|=|T|=|T| U^{*} U$ and $\operatorname{ker} T=\operatorname{ker}|T|=\operatorname{ker} U$. In this paper, we say that $T=U|T|$ is the polar decomposition of T. We remark that there may exist another partial isometry V such that $T=V|T|$. For example, if T is normal, then there exisits unitary V such that $T=V|T|$. But, in this paper, we consider only U in the above definition with the polar decomposition $T=U|T|$.

Let $T(t)=|T|^{t} U|T|^{1-t}$ for $0<t<1$. We think that it is natural to define $|T|^{0}=U^{*} U$ since $|T|^{t} \rightarrow U^{*} U(t \rightarrow+0)$ strongly. Hence we define

$$
T(0)=|T|^{0} U|T|^{1}=U^{*} U U|T|
$$

and

$$
T(1)=|T|^{1} U|T|^{0}=|T| U U^{*} U=|T| U
$$

in this paper. We remark that if T is invertible, then $|T|$ is invertible and U is unitary. Hence $T=U|T|$ is similar to $T(t)$ if T is invertible.
$T(t)$ is called Aluthge transform of T. The idea of Aluthge transform is due to Aluthge [1], in which Aluthge proved that if $T=U|T|$ is p-hyponormal $\left(\left(T^{*} T\right)^{p} \leq\left(T T^{*}\right)^{p}, 0<p<\frac{1}{2}\right.$) and U is unitary, then $T\left(\frac{1}{2}\right)$ is a $\left(p+\frac{1}{2}\right)$-hyponormal operator. This idea is powerful to study p-hyponormal operators ($[1,4,8,14]$).

Recently, Aluthge transform was considered for general operators by [4] and [9]. Let $\sigma(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Chō, Jeon, Jung, Lee and Tanahashi [4] proved the following results.

[^0]Proposition 1.1. ([4]). Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$. Then

$$
\begin{aligned}
\sigma(T) & =\sigma(T(t)), \\
\sigma_{p}(T) & =\sigma_{p}(T(t)), \\
\sigma_{a}(T) & =\sigma_{a}(T(t))
\end{aligned}
$$

In this paper, we prove that $\sigma(T)=\sigma(T(t))$ and $\sigma_{p}(T)=\sigma_{p}(T(t))$ for $t=0,1$. Also, we prove that $\sigma_{a}(T)=\sigma_{a}(T(0))$, but $\sigma_{a}(T) \neq \sigma_{a}(T(1))$ in general.

Let $\mathcal{B}_{0}=\mathcal{B}_{0}(\mathcal{H})$ be the set of all compact operators. Let $\mathcal{B} / \mathcal{B}_{0}$ be the Calkin algebra and let $\pi: \mathcal{B} \rightarrow \mathcal{B} / \mathcal{B}_{0}$ be the natural map. The essential spectrum $\sigma_{e}(T)$ of $T \in \mathcal{B}(\mathcal{H})$ is defined by $\sigma_{e}(T)=\sigma(\pi(T))$. $\quad T$ is called a left (right) Fredholm operator if $\pi(T)$ is left (right) invertible. Let $\mathcal{F}_{l}\left(\mathcal{F}_{r}\right)$ denote the set of all left (right) Fredholm operators. T is called a semi-Fredholm operator if $T \in \mathcal{F}_{l} \cup \mathcal{F}_{r}$ and called a Fredholm operator if $T \in \mathcal{F}_{l} \cap \mathcal{F}_{r}=\mathcal{F}$. It is known that $T \in \mathcal{F}$ if and only if the range of T is closed, $\operatorname{dim} \operatorname{ker} T<\infty$ and $\operatorname{dim} \operatorname{ker} T^{*}<\infty$. For $T \in \mathcal{F}$, index of T is defined by ind $T=$ $\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$. A Fredholm operator T with ind $T=0$ is called a Weyl operator. Let \mathcal{F}_{0} denote the set of all Weyl operators. The Weyl spectrum $\sigma_{w}(T)$ of $T \in \mathcal{B}(\mathcal{H})$ is defined by $\sigma_{w}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin \mathcal{F}_{0}\right\}$. If \mathcal{H} is infinite dimensional, then $\sigma_{e}(T)$ and $\sigma_{w}(T)$ are nonempty compact sets and $\sigma_{e}(T) \subset \sigma_{w}(T) \subset \sigma(T)$. In this paper, we show that T and $T(t)$ have the same essential spectrum and Weyl spectrum for $0 \leq t \leq 1$.

For $T \in \mathcal{B}(\mathcal{H})$, let $\pi_{00}(T)$ be isolated points of $\sigma(T)$ which are eigen values of finite multiplicity. We say that Weyl's theorem holds for T if $\sigma_{w}(T)=\sigma(T) \backslash \pi_{00}(T)$. We prove that $\pi_{00}(T)=\pi_{00}(T(t))$ for $0 \leq t \leq 1$. Also, we prove that Weyl's theorem holds for T if and only if Weyl's theorem holds for $T(t)$ where $0 \leq t \leq 1$.

2. Results

If $A, B \in \mathcal{B}(\mathcal{H})$, then it is well known that $\sigma(A B) \backslash\{0\}=\sigma(B A) \backslash\{0\}$ (see [7]). The following results are due to B. A. Barnes [2] and play important roles in this paper.

Proposition 2.1. ([2]). Let $A, B \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{aligned}
\sigma_{p}(A B) \backslash\{0\} & =\sigma_{p}(B A) \backslash\{0\}, \\
\sigma_{a}(A B) \backslash\{0\} & =\sigma_{a}(B A) \backslash\{0\}, \\
\sigma_{e}(A B) \backslash\{0\} & =\sigma_{e}(B A) \backslash\{0\}, \\
\sigma_{w}(A B) \backslash\{0\} & =\sigma_{w}(B A) \backslash\{0\} .
\end{aligned}
$$

Let S be the unilateral shift on ℓ^{2}. Then $\sigma\left(S^{*} S\right)=\{1\}$ and $\sigma\left(S S^{*}\right)=\{0,1\}$. Hence we cannot delete $\{0\}$ in these relations. In this paper, we prove that T and $T(t)$ have the same essential spectrum and Weyl spectrum for $0 \leq t \leq 1$.

See [6, IX Theorem 2.5] for the proof of Lemma 2.2.
Lemma 2.2. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Then following assertions are equivalent.

$$
\begin{align*}
T & \in \mathcal{F}_{l} \tag{2.1}\\
|T| & \in \mathcal{F} \tag{2.2}\\
|T|^{s} & \in \mathcal{F} \text { for some positive number } s \tag{2.3}\\
|T|^{s} & \in \mathcal{F} \text { for any positive number } s \text {. } \tag{2.4}
\end{align*}
$$

And, in this case, we have that ind $T=$ ind U.

First we prove that T and $T(t)$ have the same essential spectrum and Weyl spectrum for $0 \leq t \leq 1$.

Theorem 2.3. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$ and let $T(0)=U^{*} U U|T|, T(1)=|T| U$. Then, for $0 \leq t \leq 1$,

$$
\begin{align*}
\sigma_{e}(T) & =\sigma_{\epsilon}(T(t)) \tag{2.5}\\
\sigma_{w}(T) & =\sigma_{w}(T(t)) \tag{2.6}
\end{align*}
$$

Proof. (2.5) By Proposition 2.1, we have that

$$
\begin{aligned}
\sigma_{e}(T(t)) \backslash\{0\} & =\sigma_{e}\left(|T|^{t} U|T|^{1-t}\right) \backslash\{0\}=\sigma_{e}\left(U|T|^{1-t}|T|^{t}\right) \backslash\{0\} \\
& =\sigma_{e}(U|T|) \backslash\{0\}=\sigma_{e}(|T| U) \backslash\{0\} \\
& =\sigma_{e}\left(|T| U^{*} U U\right) \backslash\{0\}=\sigma_{e}\left(U^{*} U U|T|\right) \backslash\{0\} .
\end{aligned}
$$

Hence we have to prove that $0 \notin \sigma_{\epsilon}(T)$ if and only if $0 \notin \sigma_{\epsilon}(T(t))$.
Let $0 \notin \sigma_{e}(T)$. Then $T=U|T| \in \mathcal{F}$. Hence $|T| \in \mathcal{F}$ by Lemma 2.2. Hence $U, U^{*},|T|^{t},|T|^{1-t} \in \mathcal{F}$. Hence $T(t) \in \mathcal{F}$ and $0 \notin \sigma_{\epsilon}(T(t))$.

Conversely, let $0<t<1$ and let $0 \notin \sigma_{e}(T(t))$. Then $T(t)=|T|^{t} U|T|^{1-t} \in \mathcal{F}$ and $\pi\left(|T|^{t} U|T|^{1-t}\right)$ is invertible. Hence $\pi\left(|T|^{1-t}\right)$ is left invertible and $|T|^{1-t} \in \mathcal{F}_{l} \cap \mathcal{F}_{r}=\mathcal{F}$. Hence $|T| \in \mathcal{F}$ by Lemma 2.2. Hence $U \in \mathcal{F}$ and $T=U|T| \in \mathcal{F}$. The proofs of cases $t=0,1$ are similar.
(2.6) By Proposition 2.1, we have to prove that $0 \notin \sigma_{w}(T)$ if and only if $0 \notin \sigma_{w}(T(t))$. Let $0 \notin \sigma_{w}(T)$. Then $T=U|T| \in \mathcal{F}$ and ind $T=0$. By $(2.1), T(t) \in \mathcal{F}$ and

$$
\text { ind } T(t)=\text { ind }|T|^{t} U|T|^{1-t}=\operatorname{ind} U=0
$$

Thus $0 \notin \sigma_{w}(T(t))$. The rest of the proof is similar.

Theorem 2.4. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$ and let $T(0)=U^{*} U U|T|, T(1)=|T| U$. Then, for $0 \leq t \leq 1$,

$$
\begin{align*}
\sigma(T) & =\sigma(T(t)) \tag{2.7}\\
\sigma_{p}(T) & =\sigma_{p}(T(t)) \tag{2.8}
\end{align*}
$$

Proof. (2.7) We have to prove that $0 \notin \sigma(T)$ if and only if $0 \notin \sigma(T(t))$ for $t=0,1$ by Propositions 1.1 and 2.1.

First we prove the case $t=1$. Let $0 \notin \sigma(T)$. Then $T=U|T|$ is invertible. Hence $|T|$ is invertible and U is unitary. Hence $T(1)=|T| U$ and $T(0)=U^{*} U U|T|$ are invertible.

Conversely, let $0 \notin \sigma(T(1))=\sigma(|T| U)$. Then $|T| U$ is invertible and $U^{*}|T|$ is invertible. Hence $|T|$ is bijective. Hence $|T|$ is invertible and $U=|T|^{-1} T(1)$. This implies that U and T are invertible.

The proof of the case $t=0$ is similar.
(2.8) We have to prove that $0 \in \sigma_{p}(T)$ if and only if $0 \in \sigma_{p}(T(t))$ for $t=0,1$ by Propositions 1.1 and 2.1.

Let $0 \in \sigma_{p}(T)$. Then there exists non-zero vector $x \in \mathcal{H}$ such that $T x=0$. Then $x \in \operatorname{ker} T=\operatorname{ker}|T|=\operatorname{ker} U$. Hence $T(1) x=|T| U x=0$ and $T(0) x=U^{*} U U|T| x=0$.

Conversely, let $0 \in \sigma_{p}(T(1))$. Then there exists a non-zero vector $x \in \mathcal{H}$ such that $T(1) x=|T| U x=0$. If $U x=0$, then $x \in \operatorname{ker} U=\operatorname{ker} T$. If $U x \neq 0$, then $T U x=U|T| U x=$ 0 . Hence $0 \in \sigma_{p}(T)$.

Let $0 \in \sigma_{p}(T(0))$. Then there exists a non-zero vector $x \in \mathcal{H}$ such that $T(0) x=$ $U^{*} U U|T| x=0$. Then

$$
\langle U U| T|x, U U| T|x\rangle=\left\langle U^{*} U U\right| T|x, U| T|x\rangle=0
$$

Hence $U U|T| x=U T x=0$. If $T x \neq 0$, then $T x \in \operatorname{ker} U=\operatorname{ker} T$. Hence $0 \in \sigma_{p}(T)$.

Theorem 2.5. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(0)=$ $U^{*} U U|T|$. Then

$$
\begin{equation*}
\sigma_{a}(T)=\sigma_{a}(T(0)) \tag{2.9}
\end{equation*}
$$

Proof. We have to prove that $0 \in \sigma_{a}(T)$ if and only if $0 \in \sigma_{a}(T(0))$ by Proposition 2.1. Let $0 \in \sigma_{a}(T(0))$. Then there exist unit vectors x_{n} such that $T(0) x_{n}=U^{*} U U|T| x_{n} \rightarrow 0$. If $\operatorname{ker}|T|=\{0\}$, then $U^{*} U=I$. Hence $T x_{n}=U|T| x_{n}=U^{*} U U|T| x_{n} \rightarrow 0$. If ker $|T|=$ $\operatorname{ker}(|T|) \neq\{0\}$, then there exists a non-zero vector $y \in \mathcal{H}$ such that $|T| y=0$. Hence $T y=U|T| y=0$. Thus $0 \in \sigma_{a}(T)$. The converse implication is clear.

Remark 2.6. We prove that $\sigma_{a}(T) \neq \sigma_{a}(T(1))$ in general.
Let $\mathcal{H}=L^{2}([0,1])$. Define $S \in \mathcal{B}(\mathcal{H})$ by

$$
(S f)(t)=t f(t), t \in[0,1]
$$

We can write $\mathcal{H}=L^{2}([0,1])=L^{2}\left(\left[0, \frac{1}{2}\right]\right) \oplus L^{2}\left(\left[\frac{1}{2}, 1\right]\right)$.
Let $\left\{e_{1}, e_{3}, e_{5}, \cdots\right\} \subset L^{2}\left(\left[0, \frac{1}{2}\right]\right)$ be a complete orthonormal basis of $L^{2}\left(\left[0, \frac{1}{2}\right]\right)$ and $\left\{e_{2}, e_{4}, e_{6}, \cdots\right\} \subset$ $L^{2}\left(\left[\frac{1}{2}, 1\right]\right)$ be a complete orthonormal basis of $L^{2}\left(\left[\frac{1}{2}, 1\right]\right)$. Define $U \in B(\mathcal{H})$ by

$$
U e_{n}=e_{2 n}, n=1,2, \cdots .
$$

Then U is isometry and $U \mathcal{H}=L^{2}\left(\left[\frac{1}{2}, 1\right]\right)$. Let $T=U S$. Then $|T|^{2}=T^{*} T=S^{*} U^{*} U S=S^{2}$ and $|T|=S$. Since $|T| \mathcal{H}=S \mathcal{H}$ is dense, T has the polar decomposition $T=U S=U|T|$.

Since $0 \in \sigma_{a}(S)$, there exist unit vectors $f_{n} \in \mathcal{H}$ such that $S f_{n} \rightarrow 0$. Hence $U|T| f_{n}=$ $U S f_{n} \rightarrow 0$ and $0 \in \sigma_{a}(U|T|)=\sigma_{a}(T)$.

Let $f \in \mathcal{H}$ be any unit vector. Let $g=U f$. Since U is isometry, we have that $\|g\|=$ $\|U f\|=\|f\|=1$. Since $g=U f \in L^{2}\left(\left[\frac{1}{2}, 1\right]\right)$, we have that

$$
\begin{aligned}
\||T| U f\|^{2} & =\langle | T|g,|T| g\rangle=\int_{0}^{1} t^{2}|g(t)|^{2} d t \\
& =\int_{\frac{1}{2}}^{1} t^{2}|g(t)|^{2} d t \geq \frac{1}{4} \int_{\frac{1}{2}}^{1}|g(t)|^{2} d t=\frac{1}{4}\|g\|^{2}=\frac{1}{4}\|f\|^{2}
\end{aligned}
$$

Hence

$$
\||T| U f\| \geq \frac{1}{2}\|f\|
$$

This implies that $0 \notin \sigma_{a}(|T| U)=\sigma_{a}(T(1))$. (We remark that $0 \in \sigma_{r}(|T| U)$.)
B. A. Barnes [2] proved that

$$
\begin{aligned}
& \sigma_{c}(A B) \backslash\{0\}=\sigma_{c}(B A) \backslash\{0\}, \\
& \sigma_{r}(A B) \backslash\{0\}=\sigma_{r}(B A) \backslash\{0\}
\end{aligned}
$$

for $A, B \in \mathcal{B}(\mathcal{H})$, where $\sigma_{c}(T)$ and $\sigma_{r}(T)$ denote the continuous spectrum and the residual spectrum of T, respectively. The above example shows that we cannot delete $\{0\}$ in these relations.
$T \in \mathcal{B}(\mathcal{H})$ is called isoloid if any isolated point of $\sigma(T)$ is an eigen value of T. If T is hyponormal ($T T^{*} \leq T^{*} T$), then T is isoloid by [11].

Theorem 2.7. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$ and let $T(0)=U^{*} U U|T|, T(1)=|T| U$. Then T is isoloid if and only if $T(t)$ is isoloid where $0 \leq t \leq 1$.

Proof. Let T be isoloid. Let $\lambda \in \sigma(T(t))$ be an isolated point of T. Since $\sigma(T(t))=\sigma(T)$ by Proposition 1.1 and Theorem 2.4, λ is an isolated point of $\sigma(T)$. Since T is isoloid, we have that $\lambda \in \sigma_{p}(T)=\sigma_{p}(T(t))$ by Proposition 1.1 and Theorem 2.4. Hence $T(t)$ is isoloid. The proof of the converse is similar.
$T \in \mathcal{B}(\mathcal{H})$ is called a \log-hyponormal operator, if T is invertible and $\log \left(T T^{*}\right) \leq$ $\log \left(T^{*} T\right)$. It is known that invertible p-hyponormal operators are \log-hyponormal and that there exists a log-hyponormal operator which is not p-hyponormal for any $p>0$ ([12]). The authors [4] proved that log-hyponormal operators are isoloid. Also, Chō, Itoh and $\overline{\text { Oshiro }}$ [3] proved that p-hyponormal operators are isoloid.
Corollary 2.8. If $T \in \mathcal{B}(\mathcal{H})$ is p-hyponormal or log-hyponormal operator, then T is isoloid.
Proof. Let $T=U|T|$ be the polar decomposition of T. Then, at least, $T\left(\frac{1}{2}\right)$ is $\frac{1}{2}$-hyponormal by [12] or [14]. Let $T\left(\frac{1}{2}\right)=V\left|T\left(\frac{1}{2}\right)\right|$ be the polar decomposition of $T\left(\frac{1}{2}\right)$ and $S=$ $\left|T\left(\frac{1}{2}\right)\right|^{\frac{1}{2}} V\left|T\left(\frac{1}{2}\right)\right|^{\frac{1}{2}}$. Then S is hyponormal by [14]. Since S is isoloid by [11], $T\left(\frac{1}{2}\right)$ and T are isoloid by Theorem 2.7.

Theorem 2.9. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$ and let $T(0)=U^{*} U U|T|, T(1)=|T| U$. Then, for $0 \leq t \leq 1$,

$$
\begin{equation*}
\pi_{00}(T)=\pi_{00}(T(t)) \tag{2.10}
\end{equation*}
$$

Proof. We can prove that

$$
\pi_{00}(T) \backslash\{0\}=\pi_{00}(T(t)) \backslash\{0\}
$$

for $0 \leq t \leq 1$ by similar arguments of the proof of Proposition 2.1. Hence we have to prove that $0 \in \pi_{00}(T)$ if and only if $0 \in \pi_{00}(T(t))$.
(Case $0<t<1) \quad$ Let $0 \in \pi_{00}(T)=\pi_{00}(U|T|)$. Then $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker}|T|<\infty$. Since $\sigma(T)=\sigma(T(t))$ and $\sigma_{p}(T)=\sigma_{p}(T(t))$ by Proposition 1.1, we have that 0 is an isolated point of $\sigma(T(t))$ which is an eigen value of T. Assume $0 \notin \pi_{00}(T(t))$ and let $\mathcal{M}=\operatorname{ker}(T(t))$. Then $\operatorname{dim} \mathcal{M}=\infty$. Let $x \in \mathcal{M}$. Then we can write $x=x_{1} \oplus x_{2} \in \operatorname{ker}|T| \oplus(\operatorname{ker}|T|)^{\perp}$. Since

$$
x_{1} \in \operatorname{ker}|T|=\operatorname{ker}|T|^{1-t} \subset \mathcal{M}
$$

we have that $x_{2}=x-x_{1} \in \mathcal{M}$. This implies that

$$
\mathcal{M}=(\mathcal{M} \cap \operatorname{ker}|T|) \oplus\left(\mathcal{M} \cap(\operatorname{ker}|T|)^{\perp}\right)
$$

Since $\operatorname{dim}(\mathcal{M} \cap \operatorname{ker}|T|) \leq \operatorname{dim} \operatorname{ker}|T|<\infty$, we have that $\operatorname{dim} \mathcal{M} \cap(\operatorname{ker}|T|)^{\perp}=\infty$. Hence there exist orthogonal unit vectors $x_{n} \in(\operatorname{ker}|T|)^{\perp}$ such that $T(t) x_{n}=|T|^{t} U|T|^{1-t} x_{n}=0$.

We prove that $U|T|^{1-t} x_{1}, \cdots, U|T|^{1-t} x_{n}$ are linearly independent. Let

$$
c_{1} U|T|^{1-t} x_{1}+\cdots+c_{n} U|T|^{1-t} x_{n}=U|T|^{1-t}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)=0
$$

Then

$$
|T|^{1-t}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)=U^{*} U|T|^{1-t}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)=0
$$

Hence $c_{1} x_{1}+\cdots+c_{n} x_{n} \in \operatorname{ker}|T|^{1-t}=\operatorname{ker}|T|$. Hence $c_{1} x_{1}+\cdots+c_{n} x_{n}=0$ and $c_{1}=\cdots=$ $c_{n}=0$.

Since

$$
T U|T|^{1-t} x_{j}=U|T|^{1-t}|T|^{t} U|T|^{1-t} x_{j}=0,
$$

we have that $U|T|^{1-t} x_{j} \in \operatorname{ker} T$. Hence $\operatorname{dim} \operatorname{ker} T=\infty$. This is a contradiction.
Conversely, let $0 \in \pi_{00}(T(t))$. Then 0 is an isolated point of $\sigma(T)$ which is an eigen value of T by Proposition 1.1. Since $\operatorname{ker} T=\operatorname{ker}|T|=\operatorname{ker}|T|^{1-t} \subset \operatorname{ker} T(t)$, we have that $\operatorname{dim} \operatorname{ker} T \leq \operatorname{dim} \operatorname{ker} T(t)<\infty$. Hence $0 \in \pi_{00}(T)$.
(Case $t=1$) Let $0 \in \pi_{00}(T)=\pi_{00}(U|T|)$. Then $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker}|T|<\infty$ and 0 is an isolated point of $\sigma(T(t))$ which is an eigen value of T by Theorem 2.4. Assume $0 \notin \pi_{00}(T(1))=\pi_{00}(|T| U)$ and let $\mathcal{M}=\operatorname{ker}|T| U$. Then $\operatorname{dim} \mathcal{M}=\infty$. Let $x \in \mathcal{M}$. Then we can write $x=x_{1} \oplus x_{2} \in \operatorname{ker}|T| \oplus(\operatorname{ker}|T|)^{\perp}$. Since

$$
x_{1} \in \operatorname{ker}|T|=\operatorname{ker} U \subset \operatorname{ker}|T| U=\mathcal{M},
$$

we have that $x_{2}=x-x_{1} \in \mathcal{M}$. This implies that

$$
\mathcal{M}=(\mathcal{M} \cap \operatorname{ker}|T|) \oplus\left(\mathcal{M} \cap(\operatorname{ker}|T|)^{\perp}\right) .
$$

Since $\operatorname{dim} \mathcal{M} \cap \operatorname{ker}|T| \leq \operatorname{dim} \operatorname{ker}|T|<\infty$, we have that $\operatorname{dim} \mathcal{M} \cap(\operatorname{ker}|T|)^{\perp}=\infty$. Hence there exist orthogonal unit vectors $x_{n} \in(\operatorname{ker}|T|)^{\perp}$ such that $|T| U x_{n}=0$. Since $U x_{1}, \cdots, U x_{n}$ are linearly independent and $T U x_{j}=U|T| U x_{j}=0$, we have that $\operatorname{dim} \operatorname{ker} T=\infty$. This is a contradiction.

Conversely, let $0 \in \pi_{00}(T(t))$. Then 0 is an isolated point of $\sigma(T)$ which is an eigen value of T by Theorem 2.4. Since $\operatorname{ker} T=\operatorname{ker}|T|=\operatorname{ker} U \subset \operatorname{ker}|T| U$, we have that $\operatorname{dim} \operatorname{ker} T \leq \operatorname{dim} \operatorname{ker}|T| U<\infty$. Hence $0 \in \pi_{00}(T)$.

We can prove the case $t=0$ similarly. This completes the proof.

Theorem 2.10. Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. Let $T(t)=$ $|T|^{t} U|T|^{1-t}$ for $0<t<1$ and let $T(0)=U^{*} U U|T|, T(1)=|T| U$. Then Weyl's theorem holds for T if and only if Weyl's theorem holds for $T(t)$ where $0 \leq t \leq 1$.

Proof. Let Weyl's theorem hold for T. Then

$$
\begin{aligned}
\sigma_{w}(T) & =\sigma(T) \backslash \pi_{00}(T) \\
& =\sigma(T(t)) \backslash \pi_{00}(T(t))
\end{aligned}
$$

by Theorem 2.9, Proposition 1.1 and Theorem 2.4. Since $\sigma_{w}(T)=\sigma_{w}(T(t))$ by Theorem 2.3, we have that

$$
\sigma_{w}(T(t))=\sigma(T(t)) \backslash \pi_{00}(T(t)) .
$$

Hence Weyl's theorem holds for $T(t)$. The proof of the converse is similar.

Acknowledgements. The authors would like to express their sincere thanks to Professor Il Bong Jung for his kind advice and teaching us a nice preprint " Operators and their Aluthge transforms" by Il Bong Jung, Eungil Ko, and Carl Pearcy.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory $13(1990)$, 307-315.
[2] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc., 126(1998), 1055-1061.
[3] M. Chō, M. Itoh and S. Ōshiro, Weyl's Theorem holds for p-hyponormal operators, Glasgow Math. J., 39 (1997), 217-220.
[4] M. Chō, I. H. Jeon, I. B. Jung, J. I. Lee and K. Tanahashi, Joint spectra of n-tuples of generalized Aluthge transformations, Rev. Roum. Pures Appl. to appear.
[5] M. Chō and K. Tanahashi, Spectral properties of log-hyponormal operators, Scientiae Mathematicae, 2(1999), 223-230.
[6] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
[7] P. Halmos, A Hilbert space problem book (second edition), Springer-Verlag, New York, 1982.
[8] T. Huruya, A note on p-hyponormal operators, Proc. Amer. Math. Sci., 125(1997), 3617-3624.
[9] I. B. Jung, E. Ko and C. Pearcy, Operators and their Aluthge transforms, preprint.
[10] W. Rudin, Functional Analysis second edition, McGRAW-HILL, Princeton, 1991.
[11] J. G. Stampfli, Hyponormal operators, Pacific J. Math., 12(1962), 1453-1456.
[12] K. Tanahashi, On log-hyponormal operators, Integral Equations and Operator Thoery, 34(1999), 364372.
[13] D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Boston, 1983.
[14] T. Yoshino, The p-hyponormality of the Aluthge transform. Interdisciplinary Information Sciences, 3 (1997), 91-93.

Muneo $\mathrm{Chō}$
Department of Mathematics, Kanagawa University,
Yokohama 221-8686, Japan
E-mail address: chiyom01@cc.kanagawa-u.ac.jp
Kôtarô Tanahashi
Department of Mathematics, Tohoku College of Pharmacy, Komatsushima, Aoba-ku, Sendai $981-8558$, Japan
E-mail address: tanahasi@tohoku-pharm.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A10, 47B20, 47B30.
 Key words and phrases, essential spectrum, Weyl spectrum, Aluthge transform.
 *This research was supported by Grant-in-Aid Research, No. 12640187.

