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ON THE CROSSING NUMBER OF THE SIMPLE CONNECTED GRAPHS

Osamu Nakamura

Received May 2, 2001; revised June 25, 2001

Abstract. In [3] we give an algorithm for getting all non-isomorphic embeddings of

the simple , connected, planar graphs. In this paper, we give an algorithm for getting

the crossing number of the simple, connected graphs by using this algorithm. And we

compute the number of the simple, connected graphs with order 10 or less that have

crossing number 1 and the numbers of the simple, connected graphs with order 9 or

less that have crossing number 2 and 3, respectively.

1 Introduction We can determine the crossing number �(K6) of the complete graph

K6 in the following manner. Since K6 is non-planar, �(K6) is positive. An algorithm for

planarity testing is given in [1] and another algorithm is given in [5]. SinceK6�(0; 1) , which

is the only non-isomorphic subgraph with size 14 ofK6 , is non-planar, �(K6) is greater than

1. SinceK6�f(0; 1); (0; 2)g andK6�f(0; 1); (2; 3)g , which are all non-isomorphic subgraphs

with size 13 of K6, are non-planar, �(K6) is greater than 2. K6 � f(0; 1); (0; 2); (1; 3)g is

planar and it has unique embedding like the next �gure. An algorithm for getting all

non-isomorphic embeddings of simple , connected, planar graphs is given in [3].
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Figure 1

By adding edges (0,1), (0,2) and (1,3) to Figure 1, we have a drawing of K6 like the

next �gure. Then we have �(K6) = 3.
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Figure 2

Since K6 � f(0; 1); (0; 2); (1; 3)g is 3-connected, it has only one non-isomorphic embed-

ding. Next, letG = (V;E), where V = f0; 1; 2; 3; 4; 5; 6; 7g andE = f(0; 1); (0; 2); (0; 3); (0; 6);

(0; 7); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (1; 7); (2; 3); (2; 4); (2; 5); (2; 6); (2; 7)g. G is non-planar

and G � (0; 3) is the planar, 2-connected graph and has the following two non-isomorphic

embeddings.
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Figure 3
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Figure 4

Since G� (0; 3) has an automorphism (0)(1)(2)(3; 4)(5)(6)(7), we can exchange 3 and 4

in Figure 4 and can draw (0,3) with one crossing. Then we have �(G) = 1.
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Figure 5

When the faces are adjoining with 2 or more sides, whether two edges cross or not

depends on our choosing of the sides.
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Figure 6

Furthermore, when the crossing number is calculated, the route of each edge must des-

ignate whether it passes what side of face in advance.
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Figure 7

We can show such a route of edge with the following list.

T; 47 �� F; 51 �� F; 92 �� T; 63

Here T shows that it is instructing the end vertex and F shows that it is instructing the

intermediate edge. We designate the end vertex with the starting side of the edge when we

revolve the face counterclockwise. This list shows that the route of the edge start at vertex

4 and pass the side (5,1) and (9,2) and end at vertex 6. These lists will be called E-pathes

(pathes with designated edges).

Let � be an imbedding of a simple, connected graph G and e be an edge which is not

contained in G. When we draw e in �, the length of e is the number of crossings of e and

the edges of G and we call the path with minimal length shortest path.

Although we were drawing the edges in the shortest path in the examples, until now,

we consider the following example.
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Figure 8

In Figure 8 the number of crossing is 9. However, we can draw it in the following manner.
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Figure 9

In Figure 9 the number of crossing is 6.!!Therefore, to consider only the shortest path is
insuÆcient to obtain the crossing number. The next theorem is one answer to this problem.

Theorem 1. Let � be an embedding of a simple, connected graph G and e1; e2; � � � ; en be

edges which are not contained in G. When each edge ei is taken in the shortest path in �, let

li be the length of the shortest path for ei and ki be the number of crossings with the pathes

of other edges. We assume that the shortest path for em for some m must be replaced more

longer path in order to get the crossing number. Then the length of the path for ei is less

than li + (k1 + k2 + � � �+ kn)=2.

Proof. Let mi be the length of the path for ei and gi be the number of crossings with the

path of other edges in the drawing which give the crossing number. By the assumption, we

have
nX

i=1

mi + (

nX

i=1

gi)=2 <

nX

i=1

li + (

nX

i=1

ki)=2

Then we have
nX

i=1

(mi � li) + (

nX

i=1

gi)=2 < (

nX

i=1

ki)=2

Since mi is greater than or equal to li for each i and (
P

n

i=1
gi)=2 is non-negative, we have

mi < li + (

nX

i=1

ki)=2 for each i

By these studies we can give an algorithm that give the crossing number of the simple,

connected graph.
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2 Algorithm

Algorithm 1.

input An embedding � of a connected, planar graph G with �(G + e) � n, a set of edges e,

and an integer n

output If the minimum number of crossings is n, when the edges e are added to the em-

bedding �, then return n else return n+ 1.

1. Let e =fe1; e2; � � � ; emg

2. Let ek = (uk, vk) for each k

3. Choose one path of the shortest distance from a face including uk to a face including

vk in the embedding � for each ek

4. To the combination of the pathes that are chosen in Step 3

(a) Choose one E-path for each path that is chosen in Step 3

(b) To the combination of the E-pathes that are chosen in Step (a),

let nu be the total number of the crossings and extra be the number of the crossings

among the E-pathes.

5. if nu = n then return n

6. if extra > 1 then

Get all path with the length of the shortest distance + extra - 1 or less from a face

including uk to a face including vk in the embedding � for each ek

else

Get all path of the shortest distance from a face including uk to a face including vk

in the embedding � for each ek

7. Get all combinations of the pathes, that are given in Step 6, whose total distance is

less than or equal to n+m.

8. For each combination, repeat the following:

(a) Let �0 = 0

(b) for i=1 to m

�0 = �0 + length of the i-th path - 1

(c) Get all E-pathes for each path that is contained in the combination

(d) Get all combination of the E-pathes

(e) �1 = large number

(f) For each combination given in Step (d), repeat the following:

i. cnt = the number of crossings among E-pathes

ii. if cnt < �1 then �1 = cnt

(g) if �0 + �1 = n then return n

9. return n+1

10. end
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Algorithm 2.

input A connected, planar graph G with �(G + e) � n, a set of edges e, and an integer n

output If �(G+e)=n then return n else return n+ 1

remark If G is 3-connected then G has a unique non-isomorphic embedding.

1. Get all non-isomorphic embedding of G

2. if G is not 3-connected then

(a) Get the automorphism group of G

(b) For each embedding �, repeat the following:

i. For each automorphism � of G, repeat the following:

A. Exchange the vertices in the embedding � by �

B. By using algorithm 1, get number c of crossings when e is added to the

embedding �

C. if c = n then return n

(c) return n+1

3. if G is 3-connected then

(a) For each embedding �, repeat the following:

i. By using algorithm 1, get number of crossings c when e is added to the

embedding �

ii. if c = n then return n

(b) return n+1

4. end

We need three following function.

Function CrossGminusEs(G, n)

Check the crossing number of G by removing at most n edges from G

input A connected graph G and an integer n

output If �(G) � n then return �(G) else return n+ 1

1. If n=0 then

if G is planar then return 0 else return 1

2. Let cnt = CrossGminusEs(G, n-1)

3. If cnt � n� 1 then return cnt

4. For each edge e of G, repeat the following:

(a) Let NewG be G-e

(b) If NewG is not connected or is not new subgraph of G then

choose next edge e of G and goto Step (a)

(c) Let cnt = CrossGminusEs(NewG, n-1)

(d) if cnt = 0 then

i. Check �(NewG + e) by using algorithm 2

ii. if �(NewG + e) = n then return n
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iii. Choose next edge e of G and goto Step (a)

(e) if cnt = n then

choose next edge e of G and goto Step (a)

(f) Let cnt = subCrossGminusEs(NewG, feg, n)

(g) if cnt = n then return n

5. return n+1

Function subCrossGminusEs(G, E, n)

input A connected non-planar graph G , a set of edges E and an integer n

output If �(G +E) = n then return n else return n+ 1

1. Let len be the number of edges in E

2. For each edge e of G, repeat the following:

(a) Let NewG be G-e

(b) If NewG is not connected or is not new subgraph of G then

choose next edge e of G and goto Step (a)

(c) Let cnt = CrossGminusEs(NewG, n-len-1)

(d) If cnt = 0 then

i. If NewG is not maximum planar subgraph of G+E then

choose next edge e of G and goto Step (a)

ii. Check �(NewG +E [ feg) by using algorithm 2

iii. if �(NewG +E [ feg) = n then return n

(e) If 0 < cnt � n� len� 1 then

i. cnt = subCrossGminusEs(NewG, E [ feg, n)

ii. If cnt = n then return n

3. return n+1

4. end

Function crosslessP(G, n)

input A connected graph G with �(G) � n and an integer n

output If �(G) = n then return n else return n+ 1

1. If n = 0 then

if G is planar then return 0 else return 1

2. return CrossGminusEs(G, n)

3. end

Algorithm 3. Calculating the crossing number of the connected graph

input A connected graph G

output Crossing number �(G)

1. Let i = 0
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2. if crosslessP(i) = i then return i

3. Let i = i+1

4. goto Step 2

5. end

Theorem 2. The algorithm 3 calculates the crossing number of the simple, connected graph.

Proof. Let G be the simple, connected graph and let H be a maximal planar subgraph of

G. Adding the edges of G, which are not contained in H, to H increases at least one per one

edge of the crossing number It is suÆcient to check �(G) = n that we remove n or less edges

from G. Therefore, if �(G) = n ,n � 1, then there is the edges e1; e2; � � � ; em, m � n such

that G� fe1; e2; � � � ; emg is a maximum planar subgraph of G and the number of crossings

is n when we draw the edges e1; e2; � � � ; em in some embedding of G � fe1; e2; � � � ; emg. In

this case, we have

�(G) > �(G� e1) > �(G � fe1; e2g) > � � � > �(G� fe1; e2; � � � ; emg) = 0

and

�(G) � k � �(G � fe1; e2; � � � ; ekg) for each k

It is suÆcient to calculate the minimum number of crossings, when we draw the edges

e1; e2; � � � ; em in some embedding of G� fe1; e2; � � � ; emg, that we pay attention to that ex-

pressed in the introduction. Obviously Algorithm 1 and 2 have realized these considerations.

Next we consider the function CrossGminusEs(G, n). If �(G) = 0 then G is planar and

CrossGminusEs(G,0) return 0. We assume �(G) = n. We consider CrossGminusEs(G,n).

By induction hypothesis, we have CrossGminusEs(G,n� 1)= n in Step 2. In Step 4 Cross-

GminusEs(G, n) searches all edge e1 such that �(G� e1) � �(G)� 1. If �(G� e1) = 0 then

G� e1 is a maximal planar subgraph of G. We check the number of the crossings by using

algorithm 2 in Step 4.(d). If e1 is the desired edge then we get CrossGminusEs(G, n)= n. If

�(G � e1) > 0 then we call subCrossGminusEs(G, fe1g, n) in Step 4.(f). Next we consider

the function subCrossGminusEs(G, E, n). In Step 2 subCrossGminusEs(G, fe1g, n) searches

all edge e2 such that �(G�fe1; e2g) � �(G)� 2. If �(G�fe1; e2g) = 0 then G�fe1; e2g is

a maximal planar subgraph of G. We check the number of the crossings by using algorithm

2 in Step 2.(d). If e1; e2 is the desired edges then we get subCrossGminusEs(G, fe1g, n)= n

and CrossGminusEs(G, n)= n. If �(G � fe1; e2g) > 0 then we call subCrossGminusEs(G,

fe1; e2g, n) in Step 2.(e). Repeating this process subCrossGminusEs(G, E, n) �nds edges

e1; e2; � � � ; em such that

�(G) � k � �(G � fe1; e2; � � � ; ekg) for each k

and G�fe1; e2; � � � ; emg is a maximal planar subgraph of G. Since �(G�fe1; e2; � � � ; emg) =

0, we check the number of crossings by using algorithm 2 in Step 2.(d). If e1; e2; � � � ; em is

the desired edge sequence then we get subCrossGminusEs(G, fe1; e2; � � � ; em�1g, n)= n and

CrossGminusEs(G, n)= n. Since we consider all edge sequences e1; e2; � � � ; em such that

�(G) � k � �(G � fe1; e2; � � � ; ekg) for each k

and G�fe1; e2; � � � ; emg is a maximal planar subgraph of G, we �nally �nd the desired edge

sequence. Therefore, our function CrossGminusEs(G, n) return n if �(G) = n. If �(G) > n

then clearly CrossGminusEs(G, n) return n+ 1. We are repeating this step in small order.

Then we can obtain the crossing number.
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3 Some Computations We can obtain the next theorems with a personal computer by

using above algorithm. Our program is written by C++ and has about 10000 lines.

Theorem 3. We obtain the result like the next table about the numbers of the simple,

connected graphs with crossing number one and those of the simple, 2-connected graphs with

crossing number one and those of the simple, 3-connected graphs with crossing number one.

the numbers of the simple, connected graphs with crossing number one

order 5 6 7 8 9 10

size = 9 1

10 1 1 2

11 4 8 10

12 3 29 57 41

13 2 42 239 351 182

14 43 533 1842 2047

15 19 809 5740 13277

16 6 750 12188 53556

17 445 17464 149466

18 140 17056 293764

19 25 10931 411340

20 4520 408708

21 1071 287365

22 131 139682

23 45132

24 8690

25 812

the numbers of the simple, 2-connected graphs with crossing number one

order 5 6 7 8 9 10

size = 9 1

10 1 1 1

11 3 5 3

12 3 18 23 7

13 2 32 116 84 16

14 38 325 612 281

15 19 597 2581 2825

16 6 648 7031 16567

17 422 12316 63015

18 140 13992 159319

19 25 9965 272730

20 4382 316449

21 1071 249059

22 131 130671

23 44164

24 8690

25 812

the numbers of the simple, 3-connected graphs with crossing number one
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order 5 6 7 8 9 10

size = 9 1

10 1 1

11 2 1

12 2 5 2

13 2 12 12

14 18 52 10

15 12 146 112 7

16 6 225 614 138

17 206 1841 1495

18 95 3279 8129

19 25 3447 25477

20 2178 48728

21 747 59288

22 131 46017

23 22363

24 6180

25 812

Theorem 4. We obtain the result like the next table about the numbers of the simple,

connected graphs with crossing number two and those of the simple, 2-connected graphs with

crossing number two and those of the simple, 3-connected graphs with crossing number two.

the numbers of the simple, connected graphs with crossing number two

order 6 7 8 9

size = 12 1

13 2 4

14 1 5 20 23

15 14 78 184

16 11 249 1052

17 5 386 4307

18 348 10357

19 143 15053

20 29 12727

21 6216

22 1603

23 195

the numbers of the simple, 2-connected graphs with crossing number two
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order 6 7 8 9

size = 12 1

13 2 2

14 1 5 14 8

15 12 60 93

16 11 195 633

17 5 338 2885

18 330 7879

19 143 12787

20 29 11779

21 6061

22 1603

23 195

the numbers of the simple, 3-connected graphs with crossing number two

order 6 7 8 9

size = 12 1

13 2 1

14 1 5 7 1

15 9 32 18

16 9 104 154

17 5 197 828

18 218 2733

19 112 5413

20 29 6114

21 3875

22 1268

23 195

Theorem 5. We obtain the result like the next table about the numbers of the simple,

connected graphs with crossing number three and those of the simple, 2-connected graphs

with crossing number three and those of the simple, 3-connected graphs with crossing number

three.

the numbers of the simple, connected graphs with crossing number three

order 6 7 8 9

size = 15 1 2 2

16 4 15 11

17 5 65 162

18 4 145 1089

19 193 4108

20 104 9008

21 22 10293

22 5966

23 1604

24 184

the numbers of the simple, 2-connected graphs with crossing number three
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order 6 7 8 9

size = 15 1 2 2

16 3 11 7

17 5 51 100

18 4 127 776

19 181 3281

20 104 7855

21 22 9638

22 5851

23 1604

24 184

the numbers of the simple, 3-connected graphs with crossing number three

order 6 7 8 9

size = 15 1 2 2

16 2 7 4

17 4 32 45

18 4 88 361

19 135 1694

20 87 4526

21 22 6258

22 4331

23 1375

24 184
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