ON THE EQUIVALENT CONDITION OF THE INVOLUTORY BCK-ALGEBRAS

Xiao Long Xin

Received May 29, 2001

Abstract

We give a equivalent condition of the involutory BCK-algebras and use this condition to provide a negative answer to the open problem posed by Aslam and Thaheem in [1].

1. Introduction

In 1991, M. Aslam and A. B. Thaheem [1] introduced the concepts of annihilators and involutory ideals in commutative BCK-algebras, and studied their properties. They proved that (i) a commutative BCK-algebra satisfying D.C.C. is an involutory BCK-algebra, (ii) an implicative BCK-algebra is an involutory BCK-algebra, (iii) a finite commutative BCKalgebra is an involutory BCK-algebra. But they did not give an equivalent condition of the involutory BCK-algebras. In [1], they posed an open problem: Whether or not all ideals are involutory ideals in every commutative BCK-algebra. In other words, they asked that whether or not every commutative BCK-algebra is involutory. In this paper, we give an equivalent condition of the involutory BCK-algebras and use this equivalent condition to provide a negative answer to Aslam and Thaheem's open problem.

2. Preliminaries

An algebra $(X ; *, 0)$ of type $(2,0)$ is said to be a $B C K$-algebra if it satisfies: for all $x, y, z \in X$,
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $0 * x=0$,
(V) $x * y=0$ and $y * x=0$ imply $x=y$.
for all $x, y \in X$ (see [15]). We can define a partial order " $\leq "$ on X by $x \leq y$ if and only if $x * y=0$.

A $B C K$-algbera X has the following properties:
(1) $x * 0=x$.
(2) $(x * y) * z=(x * z) * y$.
(3) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$.
(4) $(x * z) *(y * z) \leq x * y$.

[^0](5) $x *(x *(x * y))=x * y$.
(6) $0 *(x * y)=(0 * x) *(0 * y)$.
(7) $x * 0=0$ implies $x=0$.

If $x \wedge y=y \wedge x$ where $x \wedge y=y *(y * x)$ for all x, y in a BCK-algebra X, we say that X is a commutative $B C K$-algebra.

A non-empty subset I of a $B C K$-algebra X is called an ideal of X if $0 \in I$, and $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$. Let A be a subset of a BCK-algebra X. The set of all $x \in X$ satisfying

$$
\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0
$$

for some $a_{1}, a_{2}, \cdots, a_{n} \in A$ is the minimal ideal of X containing A, which is called the ideal of X generated by A, and is denoted by $\langle A\rangle$. If $A=\{a\}$ then we denote $\langle\{a\}\rangle$ by $\langle a\rangle$.

For the convenience of notation, we denote

$$
\left(\ldots\left(\left(x * y_{1}\right) * y_{2}\right) * \ldots\right) * y_{n}=x * \prod_{i=1}^{n} y_{i} .
$$

In case $y_{1}=y_{2}=\ldots=y_{n}=y$, we shall denote this by $x * y^{n}$. Obviously we have $\ldots \leq$ $x * y^{n} \leq x * y^{n-1} \leq \ldots \leq x * y \leq x$. By Hoo [2], X is said to satisfy Descending Chain Condition, denoted by (D.C.C.), if any sequence of type $\left\{x * a^{n}\right\}(x, a \in X)$ terminates in the sense that $x * a^{n+1}=x * a^{n}$ for some positive integer n. An implicative $B C K$-algebra satisfies D.C.C. and any finite commutative $B C K$-algebra dose, too [1].
Definition 2.1([1]). Let X be a commutative $B C K$-algebra and A a subset of X. We define the set

$$
A^{*}=\{x \in X \mid x \wedge a=0, \forall a \in A\}
$$

as the annihilator of A.
We write $A^{* *}$ in place of $\left(A^{*}\right)^{*}$. Note that A^{*} is nonempty since $0 \in A^{*}$. Obviously we have $X^{*}=\{0\}$ and $\{0\}^{*}=X$. If A is an ideal it is easy to see that $A \cap A^{*}=\{0\}$. We observe that if $x \in A^{*}$ then $x \wedge a=0$ for all $a \in A$. It follows that $a *(a * x)=0$ and hence $a \leq a * x \leq a$, which implies that $a=a * x$. Thus $x \in A^{*}$ if and only if $a=a * x$ for all $a \in A$. Moreover if X is commutative, then $x \in A^{*}$ if and only if $x=x * a$ for all $a \in A$.
Lemma 2.2([1]). If A is a subset of a commutative $B C K$-algebra X, A^{*} is an ideal of X.
Definition 2.3([1]). An ideal A of a commutative $B C K$-algebra X is said to be involutory if $A=A^{* *}$. Moreover a commutative $B C K$-algebra X is said to be involutory if every ideal of X is involutory.

Clearly $\{0\}$ and X are involutory ideals.

Lemma 2.4([1]).

(i) Let X be a commutative BCK-algebra satisfying D.C.C. Then every ideal of X is involutory, that is, X is an involutory $B C K$-algebra.
(ii) Any implicative BCK-algebra is an involutory BCK-algebra.
(iii) Any finite commutative BCK-algebra is an involutory BCK-algebra.

Lemma 2.5([1]). Let X be a commutative BCK-algebra and A, B be subsets of X. Then $A^{*}=A^{* *}$ and $A \subseteq B$ implies $B^{*} \subseteq A^{*}$.

Lemma 2.6([1]). In an involutory $B C K$-algebra X, we have $(A \cap B)^{*}=\left\langle A^{*} \cup B^{*}\right\rangle$ for any ideals A and B of X.

Lemma 2.7([1]). Let X be an involutory BCK-algebra. Then for any subset A of X, $\langle A\rangle=A^{* *}$.

3. An equivalent condition of the involutory $B C K$-algebras

In this sction, we shall give an equivalent condition of the involutory $B C K$-algebras. For this we need following propositions.

Proposition 3.1. Let X be an involutory $B C K$-algebra. Then $X=\left\langle A \cup A^{*}\right\rangle$ for any ideal A of X.
Proof. Note that $A \cap A^{*}=\{0\}$. By Lemma 2.6 and note that X is involutory, we have

$$
\left\langle A \cup A^{*}\right\rangle=\left\langle A^{* *} \cup A^{*}\right\rangle=\left(A^{*} \cap A\right)^{*}=(0)^{*}=X
$$

Proposition 3.2. Let X be an involutory BCK-algebra. Then $X=\left\langle r \cup r^{*}\right\rangle$ for any $r \in X$, where r^{*} means $\{r\}^{*}$.
Proof. By Lemma 2.7, $r^{* *}=\langle r\rangle$. It follows from Lemma 2.5 that $\langle r\rangle^{*}=r^{* * *}=r^{*}$. By Proposition 3.1, we have

$$
X=\left\langle\langle r\rangle \cup\langle r\rangle^{*}\right\rangle=\left\langle\langle r\rangle \cup r^{*}\right\rangle
$$

Therefore for any $x \in X$, there exist $a_{1}, a_{2}, \ldots, a_{n} \in\langle r\rangle$ and $b_{1}, b_{2}, \ldots, b_{m} \in r^{*}$ such that

$$
\left(x * \prod_{i=1}^{n} a_{i}\right) * \prod_{j=1}^{m} b_{j}=0
$$

In other word, $\left(x * \prod_{j=1}^{m} b_{j}\right) * \prod_{i=1}^{n} a_{i}=0$. Note that $a_{i} \in\langle r\rangle$ and $\langle r\rangle$ is an ideal of X, we have $x * \prod_{j=1}^{m} b_{j} \in\langle r\rangle$. This shows that there exists $l \in N$ such that $x * \prod_{j=1}^{m} b_{j} * r^{l}=0$ and so $x \in\left\langle r \cup r^{*}\right\rangle$. Thus $X=\left\langle\langle r\rangle \cup r^{*}\right\rangle \subseteq\left\langle r \cup r^{*}\right\rangle$ and so $X=\left\langle\langle r\rangle \cup r^{*}\right\rangle=\left\langle r \cup r^{*}\right\rangle$, ending proof.
Theorem 3.3. If X is an involutory BCK-algebra, then X satisfies D.C.C.
Proof. Let X be an involutory $B C K$-algebra. Then every ideal of X is an involutory ideal. If X dosen't satisfies D.C.C., then there exist $x, r \in X$ such that $0<\ldots<x * r^{n}<x * r^{n-1}<$ $\ldots<x * r<x$ where $x * r^{n} \neq x * r^{n-1}$ for any $n \in N$. Now we claim that $x * r^{n} \notin r^{*}$ for any $n \in N$. Indeed, if $x * r^{n} \in r^{*}$, then $x * r^{n} * r=x * r^{n}$, or $x * r^{n+1}=x * r^{n}$, a contradiction. In other hand, $x \in X=\left\langle r \cup r^{*}\right\rangle$ by Proposition 3.2 and so there exists $m \in N$ and $a_{1}, a_{2}, \ldots, a_{n} \in r^{*}$ such that $\left(x * r^{m}\right) * \prod_{i=1}^{n} a_{i}=0$. By Lemma 2.2, r^{*} is an ideal of X. Thus $\left(x * r^{m}\right) * \prod_{i=1}^{n} a_{i}=0$ implies $x * r^{m} \in r^{*}$, this contradicts to the above claim. Therefore X must satisfy D.C.C.

Combining the Lemma 2.4 and Theorem 3.3 we get the following equivalent condition of an involutory $B C K$-algebra.
Theorem 3.4. Let X be a commutative BCK-algebra. Then X is involutory if and only if X satisfies D.C.C.

4. Apllication of the equivalent condition

In this section, we use the above equivalent condition to show that there exists a commutative $B C K$-algebra which is not involutory. Thus we give a negative answer to the open problem in [1].

Suppose $N=\{0,1,2, \ldots\}, A=\left\{a_{n} \mid n \in N\right\}$ and $X=N \cup A$. Define the operation * as follows:

$$
\begin{gathered}
n * m= \begin{cases}0 & \text { if } n<m \\
n-m & \text { if } n \geq m\end{cases} \\
a_{n} * a_{m}= \begin{cases}0 & \text { if } m<n \\
m-n & \text { if } m \geq n\end{cases} \\
n * a_{m}=0, a_{m} * n=a_{m+n}
\end{gathered}
$$

where $m, n \in N$ and $a_{n}, a_{m} \in A$. Then we have the following facts.
Proposition 4.1 ([5, $\S 6.1, E x a m p l e]) .(X, *, 0)$ is a $B C K$-algebra.
Proposition 4.2. $(X, *, 0)$ is a commutative $B C K$-algebra.
Proof. We consider the following three cases.
(i) $x=a_{n}, y=a_{m}$.

$$
\left.\begin{array}{l}
x *(x * y)=a_{n} *\left(a_{n} * a_{m}\right) \\
= \begin{cases}a_{n} & \text { if } m<n, \\
a_{n} *(m-n) & \text { if } m \geq n,\end{cases} \\
= \begin{cases}a_{n} & \text { if } m<n, \\
a_{n+(m-n)} & \text { if } m \geq n,\end{cases} \\
= \begin{cases}a_{n} & \text { if } m<n, \\
a_{m} & \text { if } m \geq n,\end{cases} \\
y *(y * x)=a_{m} *\left(a_{m} * a_{n}\right)
\end{array}\right\} \begin{aligned}
& = \begin{cases}a_{m} *(n-m) & \text { if } m<n, \\
a_{m} * 0 & \text { if } m \geq n, \\
a_{m+(n-m)} & \text { if } m<n,\end{cases} \\
& = \begin{cases}a_{m} & \text { if } m<n, \\
a_{m} & \text { if } m \geq n,\end{cases}
\end{aligned}
$$

Thus $x *(x * y)=y *(y * x)$ in case (i).
(ii) $x=n, y=m$.

$$
\begin{aligned}
& x *(x * y)=n *(n * m) \\
& = \begin{cases}n & \text { if } n<m \\
n *(n-m) & \text { if } n \geq m\end{cases} \\
& = \begin{cases}n & \text { if } n<m \\
n-(n-m) & \text { if } n \geq m\end{cases} \\
& = \begin{cases}n & \text { if } n<m, \\
m & \text { if } n \geq m\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& y *(y * x)=m *(m * n) \\
& = \begin{cases}m *(m-n) & \text { if } n<m, \\
m * 0 & \text { if } n \geq m,\end{cases} \\
& = \begin{cases}m-(m-n) & \text { if } n<m, \\
m & \text { if } n \geq m,\end{cases} \\
& = \begin{cases}n & \text { if } n<m, \\
m & \text { if } n \geq m,\end{cases}
\end{aligned}
$$

Hence $x *(x * y)=y *(y * x)$.
(iii) $x=a_{n}, y=m$.

$$
\begin{aligned}
& x *(x * y)=a_{n} *\left(a_{n} * m\right) \\
& =a_{n} * a_{n+m} \\
& =(n+m)-n=m \\
& y *(y * x)=m *\left(m * a_{n}\right) \\
& =m * 0=m
\end{aligned}
$$

It follows that $x *(x * y)=y *(y * x)$ in case (iii).
Combining the above arguments we get that X is a commutative $B C K$-algebra.
Proposition 4.3. X doesn't satisfy D.C.C.
Proof. Consider a_{0} and 1 in X. We have $a_{0} * 1=a_{0+1}=a_{1}$ and $a_{0} * 1^{2}=\left(a_{0} * 1\right) * 1=$ $a_{1} * 1=a_{1+1}=a_{2}$. In general, we assume $a_{0} * 1^{n-1}=a_{n-1}$. Then $a_{0} * 1^{n}=\left(a_{o} * 1^{n-1}\right) * 1=$ $a_{n-1} * 1=a_{n-1+1}=a_{n}$. By the induction we get $a_{0} * 1^{n}=a_{n}$ for all $n \in N$. Therefore the sequence of type $\left\{a_{0} * 1^{n}\right\}$ doesn't terminate since $a_{0} * 1^{n+1} \neq a_{0} * 1^{n}$ for any $n \in N$. Hence X doesn't satisfy D.C.C.

By the Theorem 3.4 and Proposition 4.3 we have the following.
Proposition 4.4. X is not an involutory BCK-algebra, that is, there exists at least one ideal of X such that it is not an involutory ideal of X.

References

[1] M. Aslam and A. B. Thaheem, On certain ideals in BCK-algebras, Math. Japon. 36(5) (1991), 895906.
[2] C. S. Hoo, Bounded commutative BCK-algebras satisfying D. C. C., Math. Japon. 32(2) (1987), 217-225.
[3] K. Iséki and S. Tanaka, The ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366.
[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1) (1978), 1-26.
[5] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994.

Xiao Long Xin
Department of Mathematics
Northwest University
Xian 710069, P. R. China
e-mail: xlxin@nwu.edu.cn

[^0]: 1991 Mathematics Subject Classification. 06F35, 06D15.
 Key words and phrases. Involutory BCK-algebra, Commutative BCK-algebra, Involutory ideal, Annihilator.

 The author wishes to acknowledge the financial support by the natural Science foundation of Shaangxi Province, No. 2000 SL06 and by the foundation of Ministry of Education for people return to China from abroad, No.[2000]367

