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ON THE EXTENSIONS OF FK-TERNARY ALGEBRAS
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Abstract. In [3], we de�ned a U(")-algebra which is a generalization of Freudenthal-

Kantor triple system de�ned by I. L. Kantor [8] and K. Yamaguti [13]. In this paper,

we call it an FK-ternary algebra. We de�ne a representation of the FK-ternary al-

gebra. Moreover we de�ne a cohomology space of order 3 of the FK-ternary algebra

associated with the representation, and give an interpretation of this space in relation

to extensions of the FK-ternary algebra.

Introduction

I. L. Kantor [8] constructed a graded Lie algebra from a ternary algebra satisfying two

conditions. This ternary algebra is called a generalized Jordan triple system of the second

order, which is a generalization of the Jordan triple system de�ned by K. Meyberg [9].

On the other hand, B. N. Allison [1] and W. Hein [6], [7] gave a notion of the J-ternary

algebras, which is based on the results of H. Freudenthal [5] about the geometry of the

exceptional Lie groups. K. Yamaguti [13] reformed the axioms of the J-ternary algebra, and

he de�ned a Freudenthal triple system. Moreover, unifying the Freudenthal triple system

and the generalized Jordan triple system of the second order, he de�ned a Freudenthal-

Kantor triple system. In [3], we introduced an algebraic system which is a generalization

of the Freudenthal-Kantor triple system, and called it a U(")-algebra. But, in this paper,

we shall call it an FK-ternary algebra. The �rst purpose of this paper is to give the results

on FK-ternary algebras corresponding to the results on Freudenthal-Kantor triple systems

obtained by K. Yamaguti [14], [15]. In x2, we construct a graded Lie algebra of the second

order using endomorphisms of the FK-ternary algebra satisfying certain conditions. These

conditions were used in [14] in order to construct a graded Lie algebra of second order

from the Frudenthal-Kantor triple system. In x3, we de�ne a representation of FK-ternary

algebra, and show that this representation induces that of the Lie triple system associated

with the FK-ternary algebra. The main purpose of this paper is to de�ne the cohomology

space of order 3 of an FK-ternary algebra associated with the representation, and give an

interpretation of the cohomolgy space in relation to extensions of the FK-ternary algebras.

This carries out in x4.

Throughout this paper, it is assumed that any vector space is �nite dimensional vector

space over a �eld of characteristic di�erent from two.

x1. Preliminaries

Let U be a vector space over a �eld F of characteristic di�erent from two and let

B : U �U �U �! U be a trilinear mapping. Then the pair (U;B) (or U) is called a triple

system over F . We shall often write (abc) (or [abc]) in stead of B(a; b; c). For subspaces

Vi (i = 1; 2; 3) of U , we denote by (V1V2V3) the subspace spanned by all elements of the form
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(a1a2a3) for ai 2 Vi. A subspace I of U is called an ideal if (UUI) + (UIU) + (IUU) � I

is valid. The whole space U and f0g are called the trivial ideals. U is said to be simple

if (UUU) 6= f0g and U has no non-trivial ideal. An endomorphism D of U is called a

derivation if D(abc) = (Dab c) + (aDb c) + (a bDc); a; b; c 2 U . We denote by D(U) the

set of all derivations of U . D(U) is a Lie algebra under the usual Lie product. For a; b 2 U ,

let us de�ne the endomorphisms L(a; b); M(a; b); R(a; b); K(a; b) on U by

L(a; b)x := (abx); M(a; b)x := (axb); R(a; b)x := (xab); K(a; b)x := (axb) � (bxa):

A Lie triple system (or LTS simply) is a triple system U with a trilinear product [abc]

satisfying the following conditions for a; b; c; d; e 2 U :

(LTS1) [aab] = 0,

(LTS2) [abc] + [bca] + [cab] = 0,

(LTS3) [ab[cde]] = [[abc]de] + [c[abd]e] + [cd[abe]].

The condition (LTS3) shows that L(a; b) is a derivation of the LTS T , which is called

an inner derivation. We denote by D0(T ) the set of all inner derivations of T . D0(T ) is an

ideal of D(T ). Let D be a subalgebra of D(T ) including D0(T ). It is known that the direct

sum D� T as a vector space becomes a Lie algebra with respect to the product

[D + a;E + b] := L(a; b) + [D;E] +Db �Ea;

where D;E 2 D; a; b 2 T . Especially, D0 � T is called a standard enveloping Lie algebra

of T . We de�ned the following triple system in [3] and called it a U(")-algebra. But we

rename it in this paper.

De�nition. A triple system (U;B) is called an FK-ternary algebra (or FKTA simply) if

there exists an automorphism " of (U;B) satisfying the following identities:

(U1) [L(a; b); L(c; d)] = L(L(a; b)c; d) � L(c; L(b; "a)d),

(U2) K(K(a; b)c; d) = L(d; c)K(a; b) +K(a; b)L(c; "d),

where a; b; c; d 2 U . An FKTA (U;B) with an automorphism " satisfying the above condi-

tions is also denoted by (U;B; ") (or (U; ")).

The FKTA's (U;�Id) are nothing but the Freudenthal-Kantor triple systems (or FKTS

simply) U("); " = �1 (cf. [13]), particularly, the FKTA's (U; Id) are the generalized Jordan

triple systems of second order and the FKTA's (U;�Id) are the Freudenthal triple systems

(or FTS simply) (cf. [5]).

Let (U;B) be a GJTS of the second order. A non-singular linear transformation ' is

called a weak automorphism of (U;B) if there exists a non-singular linear transformation '

of U such that

'B(a; b; c) = B('a;'b; 'c); 'B(a; b; c) = B('a;'b; 'c):

It is clear that an automorphism of (U;B) is a weak automorphism of (U;B). We de�ne

the new triple product in U by B'(a; b; c) := B(a; 'b; c). Then (U;B') becomes an FKTA

(U;B'; ") for " = ('')�1 and is called a '-modi�cation of (U;B) (cf. [3]). A notion of the

'-modi�cations was de�ned by H. Asano [2] for involutive automorphisms ' of (U;B). In

this case, '-modi�cations are also GJTS's of the second order.
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Example. Let H be the set of all quaternion numbers and de�ne a triple product in H by

B(x; y; z) := xyz + zyx � yxz;

where x denotes the conjugate quaternion of x. Then it is easy to verify that the triple

system (H ; B) is a GJTS of the second order. Moreover, it is easily seen that the mapping

' : x 7! ax is an automorphism of (H ; B) for a �xed quaternion number a such that jaj = 1.

Therefore (H ; B') becomes an FKTA for " = '�2. Particulaly, if a = �1, (H ; B' ) is a

GJTS of the second order and if a is a pure quaternion number, (H ; B') is an FTS.

x2 Lie algebras constructed from FK-ternary algebras

K. Yamaguti constructed a graded Lie algebra of the second order from a Freudenthal-

Kantor triple system U using endomorphisms of U satisfying certain conditions [14]. In this

section, we also construct a graded Lie algebra of the second order from a given FK-ternary

algebra (U; ").

Let D; D� be linear endomorphisms of an FKTA (U; "), then the pair (D;D�) is said

to satisfy the condition (L) if

(L1) [D;L(a; b)] = L(Da; b) � L(a;D�b),

(L2) [D�; L(a; b)] = L(D�a; b) �L(a; "D"�1b)

for all a; b 2 U . (U1) implies that a pair (L(a; b); L(b; "a)) satis�es the condition (L). If

the trace form  of (U; ") is non-degenerate, L(b; "a) is the adjoint operator of L(a; b) with

respect to the trace form  ([3] Lemma 2.4).

Let C be a linear endomorphism of U , then C is said to satisfy the condition (K) if

(K1) K(Ca; b) = L(b; a)C + CL(a; "b),

(K2) K(a; b)C" = L(b;C"a) � L(a;C"b)

for all a; b 2 U . By (U2) and [3] Lemma 2.1, we see that an endomorphismK(a; b) satis�es

the condition (K) (cf. [14]).

Lemma 2.1. Let (U; ") be an FKTA. Let (D;D�) be a pair of linear endomrphisms of

U satisfying the condition (L) and C a linear endomorphism of U satisfying the condition

(K). Then the following relations hold:

(2.1) K(a; b)D� +DK(a; b) = K(Da; b) +K(a;Db),

(2.2) D�K(a; b) +K(a; b)"D"�1 = K(D�a; b) +K(a;D�b),

(2.3) CK(a; b)" = L(Ca; b) � L(Cb; a)

for all a; b 2 U .

Proof. Let c 2 U . By (L1), we have

K(a; b)D�c+DK(a; b)c = L(a;D�c)b� L(b;D�c)a+DL(a; c)b �DL(b; c)a

= L(Da; c)b + L(a; c)Db � L(Db; c)a � L(b; c)Da

= K(Da; b)c +K(a;Db)c.

Hence (2.1) holds. (2.2) and (2.3) follow from (L2) and (K1) respectively. 2

For linear endomorphisms A, B and C of an FKTA (U; "), we de�ne a triple product

< ABC > by
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< ABC >:= AB"C + CB"A.

Then the triple product < ABC > is also a linear endomorphism of (U; ").

Proposition 2.2. Let (D;D�), (E;E�) be pairs satisfying the condition (L) and A, B and

C linear endomorphisms satisfying the condition (K). Then the following statements are

valid:

(1) ([D;E]; [E�;D�]) satis�es the condition (L),

(2) (BC";C"B) satis�es the condition (L),

(3) DB +BD� satis�es the condition (K),

(4) < ABC > satis�es the condition (K).

Proof. Let a; b 2 U .

(1) Using Jacobi identity and (L1), we have

[[D;E]; L(a; b)] = [D; [E;L(a; b)]] � [E; [D;L(a; b)]]

= [D;L(Ea; b) � L(a;E�b)] � [E;L(Da; b) �L(a;D�b)]

= L(DEa; b) + L(a;D�E�b) � L(EDa; b) � L(a;E�D�b)

= L([D;E]a; b) � L(a; [E�;D�]b).

Hence ([D;E]; [E�;D�]) satis�es the condition (L1). Similarly it follows that this pair

satis�es the condition (L2).

(2) From (K1), (2.3) and (K2),we obtain

[BC";L(a; b)] = BCL("a; "b)" � L(a; b)BC" = BK(C"a; b)" �K(Bb; a)C"

= L(BC"a; b) �L(a;C"Bb).

Hence (BC";C"B) satis�es (L1). Similarly we can verify that this pair satis�es the condition

(L2).

(3) Using (K1), (L1), (L2) and (2.1), we obtain

K((DB +BD�)a; b) � L(b; a)(DB +BD�) � (DB +BD�)L(a; "b)

= K(DBa; b) �K(Ba; b)D� �DK(Ba; b)

+B(L(D�a; "b)L(a; "b)D� �D�L(a; "b) + (DL(b; a) � L(b; a)D + L(b;D�a))B

= K(DBa; b) �K(Ba; b)D� �DK(Ba; b) +BL(a; "Db) + L(Db; a)B

= K(DBa; b) �K(Ba; b)D� �DK(Ba; b) +K(Ba;Db) = 0.

Hence DB +BD� satis�es (K1). Using (2.2) and (K2), we have

K(a; b)DB" = "�1K("a; "b)"D"�1"B"

= "�1(K(D�"a; "b) +K("a;D�"b) �D�K("a; "b))"B"

= K("�1D�"a; b)B" +K(a; "�1D�"b)B" � "�1D�"K(a; b)B"

= L(b;BD�"a)�L(a;BD�"b)�L("�1D�"a;B"b)+L("�1D�"b;B"a)�"�1D�"K(a; b)B".

From this we get

K(a; b)DB" + L(a;BD�"b) � L(b;BD�"a)

= L("�1D�"b;B"a) � L("�1D�"a;B"b) � "�1D�"K(a; b)B" � � � (i).

Using (K2), (L2) and (2.1), we have
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K(a; b)BD�" = K(a; b)B""�1D�" = (L(b;B"a) �L(a;B"b))"�1D�"

= "�1(L("b; "B"a)D� �L("a; "B"b)D� )"

= "�1(D�L("b; "B"a) �L(D�"b; "B"a) + L("b; "DB"a)

�D�L("a; "B"b) +L(D�"a; "B"b) �L("a; !DB"b))"

= "�1D�"K(a; b)B"�L("�1D�"b;B"a)+L(b;DB"a)+L("�1D�"a;B"b)�L(a;DB"b).

From this we obtain

K(a; b)BD�"+ L(a;DB"b) � L(b;DB"a)

= L("�1D�"a;B"b) � L("�1D�"b;B"a) + "�1D�"K(a; b)B" � � � (ii).

Adding (i) and (ii), it follows that K(a; b)(DB+BD�)"�L(a; (DB+BD�)"b)+L(b; (DB+

BD�)"a) = 0, therefore (K2) is satis�ed.

(4) follows from (2) and (3) immediately. 2

Let (U; ") be an FKTA, and let us consider a vector space direct sum T = U � U . An

element a� b of T is also denoted as

�
a

b

�
in column vector form. In this case, endomor-

phisms of T are denoted in the form of 2� 2 matrices. Let D be a vector space spanned by

endomorphisms of T of the form

�
D B

C" �D�

�
, where (D;D�) is a pair of linear endomor-

phisms of U satisfying the condition (L) and B, C are linear endomorphisms of U satisfying

the condition (K). Let D0 be a subspace of D which is spanned by endomorphisms of the

form �
L(a; b) K(c; d)

K(e; f)" �L(b; "a)

�
;

where a; b; c; d; e; f 2 U .

Proposition 2.3. D becomes a Lie algebra with repect to the commutator product [ ; ],

and the subspace D0 is an ideal of D.

Proof. From Proposition 2.2, it follows that D is closed with respect to the commutator

product [ , ]. Using Lemma 2.1, Proposition 2.2 and the conditions (L), (K), it is easy to

show that [D0;D] � D0. 2

Put L = D � T and de�ne an anti-commutative product [ ; ] in L as follows:

For P;Q 2 D; X; Y 2 T ,

[P;Q] := PQ�QP ,

(2.4) [P;X] := �[X;P ] := PX,

[X;Y ] :=

�
L(a; y) � L(b; x) K(a; b)

K(x; y)" L(x; "b) � L(y; "a)

�
,

where X = a � x; Y = b � y. Then, we can verify that the Jacobi identity holds by using

Lemma 2.1, Proposition 2.2 and the conditions (L), (K), therefore we have

Theorem 2.4. The vector space L becomes a Lie algebra with respect to the product

de�ned by (2.4).

Now let Li (i = 0;�1;�2) be subspaces of L as follows:
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L
�2 = the subspace spanned by all operatos

�
0 B

0 0

�
2 D,

L
�1 = U � f0g,

L0 = the subspace spanned by all operatos

�
D 0

0 �D�

�
2 D,

L1 = f0g � U ,

L2 = the subspace spanned by all operators

�
0 0

C" 0

�
2 D.

Then it is easily shown that

L = L
�2 � L

�1 � L0 � L1 � L2; [Li; Lj ] � Li+j ;

that is, L is a graded Lie algebra (or GLA simply) of the second order.

The subspace T = L
�1 �L1 of L becomes an LTS with respect to the trilinear product

de�ned by

(2.5)

��
a

x

��
b

y

��
c

z

��
:=

���
a

x

�
;

�
b

y

��
;

�
c

z

��

=

�
L(a; y) � L(b; x) K(a; b)

K(x; y)" L(x; "b) � L(y; "a)

��
c

z

�
,

where a; b; c; x; y; z 2 U (cf. [3]). T is called the LTS associated with an FKTA (U; "). The

standard enveloping Lie algebra L0 = D(T )�T of T is an ideal of L, where D(T ) is the Lie

algebra of inner derivations of T which coincides with D0. L0 is called the GLA associated

with (U; ").

x3. Representations of FK-ternary algebras

K. Yamaguti de�ned a representation of Freudenthal-Kantor triple system and con-

structed a representation of the Lie triple system associated with the Freudenthal-Kantor

triple system [15]. In this section, we consider representations of FK-ternary algebras. We

�rst recall the de�nition of a representation of Lie triple system.

A representation of a Lie triple system T into a vector space V is a pair (�; �) of bilinear

mappings of T into End(V ) satisfying the following identities:

(3.1) �(X;Y ) = �(Y;X)� �(X;Y ),

(3.2) [�(X;Y ); �(Z;W )] = �([XY Z];W ) + �(Z; [XYW ]),

(3.3) �(X; [Y ZW ]) = �(Z;W )�(X;Y )� �(Y;W )�(X;Z) + �(Y;Z)�(X;W )

for all X;Y;Z;W 2 T . For details of de�nitions and properties of representations of LTS's

we refer to [11], [12]. The pair (L;R) of the left and right multiplications L(X;Y ), R(X;Y )

is a representation of T into itself, which is called a regular representation.

De�nition. Let V be a vector space and E a non-singular linear endomorphism of V . A

representation of an FKTA (U; ") into (V;E) is a triple (�; �; �) of bilinear mappings of U

into End(V ) satisfying the following identities:

(3.4) E�(a; b) = �("a; "b)E; E�(a; b) = �("a; "b)E; E�(a; b) = �("a; "b)E,

(3.5) [�(a; b); �(c; d)] = �((abc); d) � �(c; (b "a d)),

(3.6) [�(a; b); �(c; d)] = ��((b "a c); d) + �(c; (abd)),

(3.7) �(a; b)�(c; d) + �(c; d)�(b; "a) = �((abc); d) + �(c; (abd)),
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(3.8) �(a; (bcd)) = �(b; c)�(a; d) + �(c; d)�(a; b) � �(b; d)�("a; c),

(3.9) �(a; (bcd)) = �(b; c)�(a; d) + �(c; d)�(a; b) � �(b; d)�(a; c)E,

(3.10) �(a; b)�(c; d)E + �(d;K(a; b)c) + �(c;K(a; b)d) = 0,

(3.11) �(a; b)�("c; d) � �(d; c)�(a; b) + �(c;K(a; b)d) = 0,

(3.12) �(a; b)�("c; d) � �(d; c)�(a; b) + �(K(a; b)d; c) = 0,

(3.13) �(a; b)�(c; d) � �(b; c)�(a; d) � �((c "b a); d) = 0,

where �(a; b) := �(a; b) � �(b; a); �(a; b) := �(a; b) � �(b; a); a; b; c; d 2 U .

Using the condition (U1), (U2) and [3] Lemma 2.1, we see that the triple (L;M;R) is

a representation of (U; ") into itself, which is called a regular representation. From (3.5),

(3.6), (3.7), (3.8), (3.11) and (3.12), it follows that

(3.14) [�(a; b); �(c; d)] = �(c; (abd)) � �((b "a c); d),

(3.15) �(K(a; b)c; d) = �(d; c)�(a; b) + �(a; b)�(c; "d),

(3.16) �(a;K(b; c)d) + �(d; b)�(a; c) = �(d; c)�(a; b) � �(b; c)�("a; d),

(3.17) �(a; b)�("d; c) + �(a; d)�("b; c) � �(b; d)�("a; c) = 0.

Remark. If (U; ") is a Freudenthal-Kantor triple system, we can consider that E = �Id.

Consequently, we need not consider the pair (V;E).

Let (�; �; �) be a representation of an FKTA (U; ") into (V;E). Then let us consider

a direct product V � U . An element (x; a) of V � U is also denoted as

�
x

a

�
in column

vector form. De�ne a triple product f ; ; g in V � U by

(3:18)

��
x

a

��
y

b

��
z

c

��
:=

�
�(b; c)x + �(a; c)y + �(a; b)z

(abc)

�
:

It is easily seen that the endomorphism E � " : (x; a) 7! (Ex; "a) is an automorphism of

the triple system V �U .

Proposition 3.1. (V � U; f ; ; g; E � ") is an FK-ternary algebra.

Proof. For Xi 2 V �U (i = 1; 2; 3; 4; 5), put

(x; a) = ([L(X1;X2); L(X3;X4)]� L(L(X1;X2)X3;X4) + L(X3; L(X2; (E � ")X1)X4))X5:

By the bilinearity, in order to prove the condition (U1) it is suÆcient to verify that x = a = 0

in the following cases:

Case (1) X1 = (x1; 0); X2 = (x2; 0); Xi = (xi; ai) (i = 3; 4; 5),

Case (2) X1 = (x1; 0); X2 = (0; a2); Xi = (xi; ai) (i = 3; 4; 5),

Case (3) X1 = (0; a1); X2 = (x2; 0); Xi = (xi; ai) (i = 3; 4; 5),

Case (4) X1 = (0; a1); X2 = (0; a2); Xi = (xi; ai) (i = 3; 4; 5).

Case (1) is clear.

Case (2) a = 0.

x = [�(a2; (a3a4a5)) � �(a4; a5)�(a2; a3) + �(a3; a5)�(a2; a4)E � �(a3; a4)�(a2; a5)]x1
= 0 from (3.9).
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Case (3) a = 0.

x = [�(a1; (a3a4a5)) � �(a4; a5)�(a1; a3) + �(a3; a5)�("a1; a4)� �(a3; a4)�(a1; a5)]x2
= 0 from (3.8).

Case (4) a = (a1a2(a3a4a5)) � ((a1a2a3)a4a5) + (a3(a2 "a1a4)a5)� (a3a4(a1a2a5))

= 0 from (U1).

x = [�(a1; a2)�(a3; a4)� �((a1a2a3); a4) + �(a3; (a2 "a1 a4)) � �(a3; a4)�(a1; a2)]x5
+[�(a1; a2)�(a3; a5)� �((a1a2a3); a5) + �(a3; a5)�(a2; "a1) � �(a3; (a1a2a5))]x4
+[�(a1; a2)�(a4; a5) � �(a4; a5)�(a1; a2) + �((a2 "a1 a4); a5) � �(a4; (a1a2a5))]x3
= 0 from (3.5), (3.7) and (3.6).

Hence the condition (U1) is proved. Next in order to prove the condition (U2) we put

(y; b) = [K(K(X1;X2)X3;X4)� L(X4;X3)K(X1;X2)�K(X1;X2)L(X3; (E � ")X4)]X5

for Xi 2 V � U (i = 1; 2; 3; 4; 5). By the bilinearity and the anti-commutativity of

K(X1;X2), it is suÆcient to verify that y = b = 0 in the above three cases (1), (2) and (4):

Case (1) is clear.

Case (2) b = 0

y = [�(a5; a4)�(a3; a2)� �(a4; a3)�(a5; a2)� �((a3 "a4 a5); a2)]x1 = 0 from (3.13).

Case (4) From the condition (U2) of (U; "),

b = [K(K(a1; a2)a3; a4) � L(a4; a3)K(a1a2) �K(a1; a2)L(a3; "a4)]a5 = 0.

y = [�(a5; a4)�(a1; a2)� �(a4;K(a1; a2)a5)� �(a1; a2)�("a4; a5)]x3
�[�(a5;K(a1; a2)a3) + �(a3;K(a1; a2)a5) + k(a1; a2)�(a3; a5)E]x4
+[�(K(a1; a2)a3; a4)� �(a4; a3)�(a1; a2) � �(a1; a2)L(a3; "a4)]x5
= 0 from (3.11), (3.10) and (3.15).

Hence the condition (U2) is proved. 2

Let (U; ") be an FKTA and T the LTS associated with (U; "). Let V be a vector space

with a non-singular endomorphism E and (�; �; �) a representation of (U; ") into (V;E).

De�ne bilinear mappings �� and �� of T into V � V by

(3.19) ��(

�
a

x

�
;

�
b

y

�
)

�
u

v

�
:=

�
�(y; a) + �(x; b) ��(a; b)

��(x; y)E �("b; x) + �("a; y)

��
u

v

�
,

(3.20) ��(

�
a

x

�
;

�
b

y

�
) := ��(

�
b

y

�
;

�
a

x

�
)� ��(

�
a

x

�
;

�
b

y

�
)

=

�
�(a; y) � �(b; x) �(a; b)

�(x; y)E �(x; "b) � �(y; "a)

�
,

where a; b; x; y 2 U; u; v 2 V . The following result is a generalization of [15] Theorem 4.1

to the case U is an FKTA.

Proposition 3.2. Let (V;E) be a pair of a vector space and its non-singular endomorphism.

Let (�; �; �) be a representation of an FKTA (U; ") into (V;E) satisfying

(3.21) �(c; d)�(a; b)E � �(K(a; b)"d; c) � �(K(a; b)"c; d) = 0,

(3.22) �(a; b)�(d; c) � �(d; b)�(a; c) � �(K(d; a)"b; c) = 0,

(3.23) �(d; c)�(a; b) � �(d; b)�(a; c) + �(d;K(b; c)a) = 0
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for all a; b; c; d 2 U . Then the pair (��; ��) de�ned by (3.19) and (3.20) is a representation

of the LTS T associated with (U; ") into a vector space V � V .

Proof. For X;Y;Z;W 2 T; u� v 2 V � V , put

p� q = ([��(X;Y ); ��(Z;W )]� ��([XY Z];W )� ��(Z; [XYW ]))(u� v):

Since ��(X;Y ) and [XY Z] are anti-commutative on arguments X;Y , in order to prove the

condition (3.2) it suÆces to verify that p = q = 0 in the following cases:

Case (1) X = a� 0; Y = b� 0; Z = c� z; W = d� w,

Case (2) X = a� 0; Y = 0� y; Z = c� z; W = d� w,

Case (3) X = 0� x; Y = 0� y; Z = c� z; W = d� w.

Case (1) p = (��(a; b)�(z;w)E � �(w;K(a; b)z) � �(z;K(a; b)w))u

+(�(a; b)�("d; z) � �(z; d)�(a; b) + �(K(a; b)z; d) + �(a; b)�("c;w) � �(w; c)�(a; b)

+�(c;K(a; b)w))y = 0 from (3.10), (3.12) and (3.11).

q = (�(z;w)E�(a; b) � �("K(a; b)z;w) � �("K(a; b)w; z))v = 0 from (3.4) and (3.21).

Case (2) p = ([�(a; y); �(w; c)] � �(w; (ayc)) + �((y "aw); c) + [�(a; y); �(z; d)]

+�((y "a z); d) � �(z; (ayd)))u

+(��(a; y)�(c; d) � �(c; d)�(y; "a) + �((ayc); d) + �(c; (ayd)))v

= 0 from (3.14), (3.6) and (3.7).

q = (�(y; "a)�(z;w)E + �(z;w)E�(a; y) � �((y "a z); w)E � �(z; (y "aw))E)u

+(�[�(y; "a); �("d; z)] + �("d; (y "a z)) � �("(ayd); z) � [�(y; "a); �("c;w)]

��("(ayc); w) + �("c; (y "aw)))v = 0 from (3.4), (3.7), (3.14) and (3.6).

Case (3) p = (�(c; d)�(x; y)E � �(K(x; y)"c; d) � �(K(x; y)"d; c))u = 0 from (3.21).

q = (�(x; y)E�(w; c) � �("c;w)�(x; y)E + �(K(x; y)"c;w)E + �(x; y)E�(z; d)

��("d; z)�(x; y)E + �(z;K(x; y)"d)E)u

+(��(x; y)E�(c; d) � �("d;K(x; y)"c) � �("c;K(x; y)"d))v

= 0 from (3.12), (3.11), (3.4) and (3.10).

Hence the condition (3.2) is proved. Next we put

r�s = (��(X; [Y ZW ])���(Z;W )��(X;Y )+��(Y;W )��(X;Z)���(Y;Z)��(X;W ))(u�v):

In order to prove the condition (3.3) it is suÆcient to verify that r = s = 0 in the following

three cases:

Case (1) X = a� x; Y = b� 0; Z = c� 0; W = d� w,

Case (2) X = a� x; Y = b� 0; Z = 0� z; W = d� w,

Case (3) X = a� x; Y = 0� y; Z = 0� z; W = d� w.

Case (1) r = (�(x;K(b; c)w) � �(w; c)�(x; b) + �(w; b)�(x; c) + �(b; c)�(x;w)E)u

+(��(a;K(b; c)w) + �(w; c)�(a; b) � �(w; b)�(a; c) � �(b; c)�("a;w) � �(c; d)�("b; x)

+�(b; d)�("c; x) + �(b; c)�("d; x))v = 0 from (3.23), (3.10), (3.16) and (3.17).

s = (�("K(b; c)w; x) � �("c;w)�("b; x) + �("b;w)�("c; x))v = 0 from (3.22).

Case (2) r = (��((z "bw); a) + �(w; b)�(z; a) � �(b; z)�(w; a) + �(x; (bzd))

��(b; z)�(x; d) � �(z; d)�(x; b) � �(b; d)�(x; z)E)u

+(��(a; (bzd)) + �(z; d)�(a; b) � �(b; d)�("a; z) � �(b; z)�(a; d))v

= 0 from (3.13), (3.9) and (3.8).

s = (�(x; (z "bw))E + �(z;w)E�(x; b) + �("b;w)�(x; z)E � �(z; "b)�(x;w)E)u

+(�("(bdz); x) ��("d; z)�("b; x) + �(z; "b)�("d; x) � �("a; (z "bw))� �(z;w)E�(a; b)
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+�("b;w)�("a; z) + �(z; "b)�("a;w))v = 0 from (3.4), (3.8), (3.13) and (3.9).

Case (3) r = (�(K(y; z)"d; a) � �(z; d)�(y; a) + �(y; d)�(z; a))u = 0 from (3.22).

s = (��(x;K(y; z)"d)E + �(z;w)E�(y; a) � �(y;w)E�(z; a) � �(y; z)E�(w; a)

+�("d; z)�(x; y)E + �("d; y)�(x; z)E � �(y; z)E�(x; d))u

+(r("a;K(y; z)"d) � �("d; z)�("a; y) + �("d; y)�("a; z) + �(y; z)E�(a; d))v

= 0 from (3.4), (3.17), (3.16), (3.10) and (3.23).

Hence the condition (3.3) is proved. 2

From [3] Lemma 2.1, we see that the regular representation (L;M;R) of (U; ") satis�es

the conditions of Propositionm 3.2.

x4. Extensions of FK-ternary algebras

In this section, we de�ne the cohomology space of order 3 of an FK-ternary algebra

(U; ") associated with a representation (�; �; �), and give an interpretation of it in relation

to extensions of (U; ") following the method of [4].

Let (U; ") be an FKTA and (V;E) a pair of a vector space and a non-singular endomor-

phism of V . Let (�; �; �) be a representation of (U; ") into (V;E). We denote by C1(U; V )

the vector space spanned by linear mappings f of U into V such that

(4:1) f("a) = Ef(a)

for all a 2 U , and denote by C3(U; V ) the vector space spanned by trilinear mappings of

U � U � U into V satisfying

(4:2) f("a1; "a2; "a3) = Ef(a1; a2; a3)

and

f(K(a1; a2)a3; a5; a4)� f(a4; a5;K(a1; a2)a3)� f(a4; a3;K(a1; a2)a5)

(4.3) �f(a1; (a3 "a4 a5); a2) + f(a2; (a3 "a4 a5); a1) � �(a1; a2)f(a3; "a4; a5)

+�(a5; a4)(f(a1; a3; a2)� f(a2; a3; a1))� �(a4; a3)(f(a1 ; a5; a2)� f(a2; a5; a1)) = 0,

where ai 2 U (i = 1; 2; 3; 4; 5). Moreover we denote the vector space spanned by 5-linear

mappings f of U � U � U � U � U into V by C5(U; V ).

For f 2 C1(U; V ), we de�ne a trilinear mapping Æ1f : U � U � U �! V as follows:

(4:4) Æ1f(a1; a2; a3) := ��(a2; a3)f(a1) � �(a1; a3)f(a2)� �(a1; a2)f(a3) + f((a1a2a3));

where ai 2 U (i = 1; 2; 3). We shall show that Æ1f 2 C3(U; V ). It is easy to check that Æ1f

satis�es the condition (4.2). For ai 2 U (i = 1; 2; 3; 4; 5),

Æ1f(K(a1; a2)a3; a5; a4) � Æ1f(a4; a5;K(a1; a2)a3)) � Æ1f(a4; a3;K(a1; a2)a5)

�Æ1f(a1; (a3 "a4 a5); a2) + Æ1f(a2; (a3 "a4 a5); a1)� �(a1; a2)Æ
1f(a3; "a4; a5)

+�(a5; a4)(Æ
1f(a1; a3; a2) � Æ1f(a2; a3; a1)) � �(a4; a3)(Æ

1f(a1; a5; a2) � Æ1f(a2; a5; a1))

= (��(K(a1; a2)a3; a4) + �(a4; a3)�(a1; a2) + �(a1; a2)�(a3; "a4))f(a5)

+(�(a5;K(a1; a2)a3) + �(a3;K(a1; a2)a5) + �(a1; a2)�(a3; a5)E)f(a4)

+(�(a4;K(a1; a2)a5) � �(a5; a4)�(a1; a2) + �(a1; a2)�("a4; a5))f(a3)
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+(�(a5; a4)�(a3; a1)� �(a4; a3)�(a5; a1)� �((a3 "a4 a5); a1))f(a2)

+(�((a3 "a4 a5); a2) + �(a4; a3)�(a5; a2)� �(a5; a4)�(a3; a2))f(a1)

+f(K(K(a1; a2)a3; a4)a5) � f(L(a4; a3)K(a1; a2)a5) � f(K(a1; a2)L(a3; "a4)a5)

= 0 from (3.15), (3.4), (3.10), (3.11), (3.13), and (U2). Hence Æ1f 2 C3(U; V ).

Next we de�ne a linear mapping Æ3 of C3(U; V ) into C5(U; V ) by the following formula:

(4.5) Æ3f(a1; a2; a3; a4; a5)

:= ��(a4; a5)f(a1; a2; a3) + �(a3; a5)f(a2; "a1; a4) + �(a1; a2)f(a3; a4; a5)

��(a3; a4)f(a1; a2; a5) � f((a1a2a3); a4; a5) + f(a3; (a2 "a1 a4); a5)

�f(a3; a4; (a1a2a5)) + f(a1; a2; (a3a4a5)),

where f 2 C3(U; V ); ai 2 U (i = 1; 2; 3; 4; 5).

Proposition 4.1. Æ3Æ1f = 0 for any f 2 C1(U; V ).

Proof. For ai 2 U (i = 1; 2; 3; 4; 5);

Æ3Æ1f(a1; a2; a3; a4; a5)

= (�(a4; a5)�(a2; a3) � �(a3; a5)�(a2; a4)E + �(a3; a4)�(a2; a5)� �(a2; (a3 a4 a5)))f(a1)

+(�(a4; a5)�(a1; a3)� �(a3; a5)�("a1; a4) + �(a3; a4)�(a1; a5)� �(a1; (a3a4a5)))f(a2)

+(�[�(a1; a2); �(a4; a5)]� �((a2 "a1 a4); a5) + �(a4; (a1a2a5)))f(a3)

+(��(a3; a5)�(a2; "a1) � �(a1; a2)�(a3; a5) + �((a1a2a3); a5) + �(a3; (a1a2a5)))f(a4)

+(�[�(a1; a2); �(a3; a4)] + �((a1a2a3); a4)� �(a3; (a2 "a1 a4)))f(a5)

+f((a1a2(a3a4a5)) � (a3a4(a1a2a5))� ((a1a2a3)a4a5) + (a3(a2 "a1 a4)a5))

= 0 from (3.4), (3.9), (3.8), (3.6), (3.7), (3.5) and (U1). 2

A mapping f 2 C3(U; V ) is called a cocycle of order 3 if Æ3f = 0. We denote by Z3(U; V )

a subspace spanned by cocycles of order 3, and put B3(U; V ) = Æ1C1(U; V ). The element

of B3(U; V ) is called a coboundary of order 3. From the above proposition, B3(U; V ) is a

subspace of Z3(U; V ). We denote the factor space Z3(U; V )=B3(U; V ) by H3(U; V ), and

call it a cohomology space of order 3 of (U; ").

Let (U;BU ; ") and (V;BV ; �) be FKTA's. A linear mapping ' of U into V is called a

homomorphism if

'(BU (a; b; c)) = BV ('(a); '(b); '(c)); ' Æ " = � Æ ';

where a; b; c 2 U . Moreover, if ' is bijective, ' is called an isomorphism.

Proposition 4.2. Let (U; "), (V; �) be FKTA's and ' a homomorphism of U onto V .

(1) If I is an ("-invariant) ideal of (U; "), then '(I) is a (�-invariant) ideal of (V; �).

(2) Ker' is an "-invariant ideal of (U; ").

(3) (U=Ker'; ") �= (V; �), where " is an automorphism of U=Ker' induced from ".

Proof. (1), (2) are clear.

(3) We denote by ( ; ; ), < ; ; > the triple products of U , V respectively, and put N = Ker ".

Then (U=N; ") becomes an FKTA with triple product (abc) := (abc), where a = a+N (a 2

U) ([10] Lemma 3.1). The canonical mapping ' : U=N �! V , '(a) = '(a) is bijective.
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Moreover we have

'(abc) = '((abc)) = '((abc)) =< '(a)'(b)'(c) >=< '(a)'(b)'(c) >,

'("(a)) = '("a) = '("a) = �'(a) = �'(a)

for all a; b; c 2 U . Therefore ' is an isomorphism of (U=N; ") onto (V; �). 2

De�nition. Let (V; �), (W; � ) and (U; ") be FKTA's over the same base �eld. (W; � ) is

called an extension of (U; ") by (V; �) if there exists a short exact sequence of FKTA's:

f0g �! (V; �)
�
�! (W; � )

�
�! (U; ") �! f0g:

Two extensions (W; � ) and (W 0; � 0) of (U; ") by (V; �) are said to be equivalent if there exists

an isomorphism ' of (W; � ) onto (W 0; � 0) such that the following diagram is commutative:

f0g �! (V; �)
�
�! (W; � )

�
�! (U; ") �! f0g

# Id # ' # Id

f0g �! (V; �)
�0
�! (W 0; � 0)

�0
�! (U; ") �! f0g

:

An ideal I of an FKTA (U; ") is said to be abelian if (IIU) = (IUI) = (UII) = 0.

We consider an extension (W; � ) of (U; ") by (V; �) such that �(V ) is an abelian ideal in

(W; � ). Such an extension is called an abelian extension. Let f ; ; g and ( ; ; ) be the triple

products of W and U respectively, and denote the bilinear mappings L; M; R and K of

U by LU ; MU ; RU and KU respectively. Since �(V ) is the abelian ideal of (W; � ), we can

de�ne bilinear mappings �; � and � of U into End(V ) by the following formulas:

�(a; b)x := ��1(fs t �(x)g) = ��1LW (s; t)�(x),

(4.6) �(a; b)x := ��1(fs �(x) tg) = ��1MW (s; t)�(x),

�(a; b)x := ��1(f�(x) s tg) = ��1RW (s; t)�(x),

where a; b 2 U; x 2 V and s; t 2 W such that �(s) = a; �(t) = b. Then (�; �; �) becomes

a representation of (U; ") into (V; � ) since (LW ;MW ; RW ) is the representation of (W; � )

into itself. Let (W 0; � 0) be another abelian extension of (U; ") by (V; �) which is equivalent

to (W; � ). Then we shall show that the representation (�0; �0; �0) de�ned by (4.6) coincides

with (�; �; �). Let ' be an isomorphism of (W; � ) onto (W 0; � 0). For a; b 2 U , choose

s; t 2 W such that �(s) = a; �(t) = b. Then, since �0('(s)) = a; �0('(t)) = b, �0(a; b)x =

�0�1(LW 0 ('(s); '(t))�0(x)) = �0�1('LW (s; t)�(x)) = ��1(LW (s; t)�(x)) = �(a; b)x. Similarly

we have that �0 = �; �0 = �. For the simplicity, we identify V with its image �(V ) by

the injection � hereafter. Let l be a linear mapping of U into W such that � Æ l = Id and

� Æ l = l Æ ". Such a mapping l is called a section. (W; � ) is called a modularly split extension

if there exists a section l. Put

(4:7) f(a; b; c) = fl(a) l(b) l(c)g � l((abc))

for a; b; c 2 U , then f is a trilinear mapping of U � U � U into V . We shall verify that

f 2 C3(U; V ). Obviously, f satis�es the condition (4.2). From (4.7), we have

(4.8) l((abc)) = LW (l(a); l(b))l(c) � f(a; b; c),

(4.9) l(KU (a; b)c) = KW (l(a); l(b))l(c) � f(a; c; b) + f(b; c; a)

for all a; b; c 2 U . Using these identities and the condition l Æ " = � Æ l, we obtain

(4.10) fl(KU (a1; a2)a3) l(a5) l(a4)g
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= f(KW (l(a1); l(a2))l(a3)) l(a5) l(a4)g � �(a5; a4)(f(a1 ; a3; a2) � f(a2; a3; a1)),

(4.11) fl(a4) l(a5) l(KU (a1; a2)a3)g

= fl(a5) l(a4) (KW (l(a1); l(a2))l(a3))g � �(a4; a5)(f(a1 ; a3; a2) � f(a2; a3; a1)),

(4.12) fl(a1) l((a3a4a5)) l(a2)g=fl(a1) (LW (l(a3); l(a4))l(a5)) l(a2)g��(a1; a2)f(a3; a4; a5),

where ai 2 U (i = 1; 2; 3; 4; 5). From these identities and the conditions l Æ " = � Æ l and

(U2), we get

f(KU (a1; a2)a3; a5; a4)� f(a4; a5;KU (a1; a2)a3) � f(a4; a3;KU (a1; a2)a5)

�f(a1; (a3 "a4 a5); a2) + f(a2; (a3 "a4 a5); a1)

= fl(KU (a1; a2)a3) l(a5) l(a4)g�fl(a4) l(a5) l(KU (a1; a2)a3)g�fl(a4) l(a3) l(KU (a1; a2)a5)g

�fl(a1) l((a3 "a4 a5)) l(a2)g+ fl(a2) l((a3 "a4 a5)) l(a1)g

= f(KW (l(a1); l(a2))l(a3)) l(a5) l(a4)g � �(a5; a4)(f(a1 ; a3; a2)� f(a2; a3; a1))

�fl(a4) l(a5) (KW (l(a1); l(a2))l(a3))g + �(a4; a5)(f(a1; a3; a2) � f(a2; a3; a1))

�fl(a4) l(a3) (KW (l(a1); l(a2))l(a5))g � �(a4; a3)(f(a1; a5; a2) � f(a2; a5; a1))

�fl(a1) (LW (l(a3); � l(a4))l(a5)) l(a2)g+ �(a1; a2)f(a3; "a4; a5)

+fl(a2) (LW (l(a3); � l(a4))l(a5)) l(a1)g � �(a2; a1)f(a3; "a4; a5)

= ��(a5; a4)(f(a1 ; a3; a2) � f(a2; a3; a1)) + �(a4; a3)(f(a1; a5; a2)� f(a2; a5; a1))

+�(a1; a2)f(a3; "a4; a5)

Hence f satis�es the condition (4.3).

Now we identify V �U and W as vector spaces by (x; a) 7! x+ l(a). An element (x; a)

of V � U is also denoted as

�
x

a

�
in column vector form. In the FKTA (W; � ), it holds

that

fx + l(a) y + l(b) z + l(c)g

= fx l(b) l(c)g + fl(a) y l(c)g+ fl(a) l(b) zg + f(a; b; c) + l((abc))

for all x; y; z 2 V; a; b; c 2 U . From this we can de�ne a triple product of V � U by

(4:13)

��
x

a

��
y

b

��
z

c

��
:=

�
�(b; c)x + �(a; c)y + �(a; b)z + f(a; b; c)

(abc)

�
:

Using the conditions � Æ � = " Æ �; l Æ " = � Æ l, we see that � � " : (x; a) 7! (�x; "a) is an

automorphism of V � U corresponding to the automorphism � of W . For Xi = (xi; ai) 2

V �U (i = 1; 2; 3; 4; 5), put

(x; a) = ([L(X1;X2); L(X3;X4)]�L(L(X1;X2)X3;X4)+L(X3; L(X2; (��")X1)X4))X5,

where L(X;Y ) is the left multiplication of V �U . Using (3.5), (3.6), (3.7), (3.8), (3.9) and

(U2) (see the proof of Proposition 3.1), we have a = 0 and

x = ��(a4; a5)f(a1; a2; a3) + �(a3; a5)f(a2; "a1; a4) + �(a1; a2)f(a3; a4; a5)

��(a3; a4)f(a1; a2; a5)� f((a1a2a3); a4; a5) + f(a3; (a2 "a1 a4); a5)

�f(a3; a4; (a1a2a5)) + f(a1; a2; (a3a4a5))

= Æ3f(a1; a2; a3; a4; a5).

This means that f is a cocycle of order 3, that is, f 2 Z3(U; V ). Assume that there exists
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another section l0. Put g(a) = l0(a) � l(a), then g(a) 2 V and g("a) = �g(a), therefore

g 2 C1(U; V ). Since V is abelian,

f 0(a; b; c) = fl0(a) l0(b) l0(c)g � l0((abc))

= fl(a) l(b) l(c)g + fl(a) l(b) g(c)g + fl(a) g(b) l(c)g + fg(a) l(b) l(c)g

�l((abc)) � g((abc))

= f(a; b; c) + �(a; b)g(c) + �(a; c)g(b) + �(b; c)g(a) � g((abc))

= f(a; b; c) � Æ1g(a; b; c)

for all a; b; c 2 U . Therefore the cohomology class of f does not depend on the choice of

the section l, hence the modularly split extention of (U; ") by abelian (V; �) which has the

section l determines uniquely an element of H3(U; V ). Two equivalent extensions de�ne the

same element of H3(U; V ).

Conversely, let (V; �) be an abelian FKTA, and (�; �; �) a representation of an FKTA

(U; ") into (V; �). Let f be a cocycle of order 3. We de�ne a triple product on a vector

space W = V � U by (4.13). Then � = � � " is an automorphism of the triple system W ,

and (W; � ) becomes an FKTA. Next, we de�ne the short exact sequence

f0g �! (V; �)
�
�! (W; � )

�
�! (U; ") �! f0g:

by �(x) = (x; 0) and �(x; a) = a (x 2 V; a 2 U). It is clear that � and � are homomolphisms.

Therefore (W; � ) is an extension of (U; ") by (V; �). Moreover it is easy to see that V is

abelian ideal in (W; � ). We de�ne a linear mapping l of U into W by l(a) = (0; a). Then

we have

fl(a) l(b) l(c)g � l((abc)) = (f(a; b; c); 0); l("a) = � l(a)

for a; b; c 2 U . This means that f is a cocycle de�ned by this extension. Therefore to each

element of Z3(U; V ) corresponds an extension of (U; ") by abelian (V; �).

Summarizing the above results, we have

Theorem 4.3. To each equivalent class of modularly split extensions (W; � ) of an FKTA

(U; ") by abelian (V; �) corresponds an element ofH3(U; V ). Let (�; �; �) be a representation

of an FKTA (U; ") into a vector space V with a non-singular endomorphism E of V , then

there exists an extension of (W; � ) of (U; ") by (V;E) such that (V;E) is abelian in (W; � ).
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