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ON THE EXTENSIONS OF FK-TERNARY ALGEBRAS
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ABSTRACT. In [3], we defined a U(e)-algebra which is a generalization of Freudenthal-
Kantor triple system defined by I. L. Kantor [8] and K. Yamaguti [13]. In this paper,
we call it an FK-ternary algebra. We define a representation of the FK-ternary al-
gebra. Moreover we define a cohomology space of order 3 of the FK-ternary algebra
associated with the representation, and give an interpretation of this space in relation
to extensions of the FK-ternary algebra.

Introduction

I. L. Kantor [8] constructed a graded Lie algebra from a ternary algebra satisfying two
conditions. This ternary algebra is called a generalized Jordan triple system of the second
order, which is a generalization of the Jordan triple system defined by K. Meyberg [9].
On the other hand, B. N. Allison [1] and W. Hein [6], [7] gave a notion of the J-ternary
algebras, which is based on the results of H. Freudenthal [5] about the geometry of the
exceptional Lie groups. K. Yamaguti [13] reformed the axioms of the J-ternary algebra, and
he defined a Freudenthal triple system. Moreover, unifying the Freudenthal triple system
and the generalized Jordan triple system of the second order, he defined a Freudenthal-
Kantor triple system. In [3], we introduced an algebraic system which is a generalization
of the Freudenthal-Kantor triple system, and called it a U(c)-algebra. But, in this paper,
we shall call it an FK-ternary algebra. The first purpose of this paper is to give the results
on FK-ternary algebras corresponding to the results on Freudenthal-Kantor triple systems
obtained by K. Yamaguti [14], [15]. In §2, we construct a graded Lie algebra of the second
order using endomorphisms of the FK-ternary algebra satisfying certain conditions. These
conditions were used in [14] in order to construct a graded Lie algebra of second order
from the Frudenthal-Kantor triple system. In §3, we define a representation of FK-ternary
algebra, and show that this representation induces that of the Lie triple system associated
with the FK-ternary algebra. The main purpose of this paper is to define the cohomology
space of order 3 of an FK-ternary algebra associated with the representation, and give an
interpretation of the cohomolgy space in relation to extensions of the FK-ternary algebras.
This carries out in §4.

Throughout this paper, it is assumed that any vector space is finite dimensional vector
space over a field of characteristic different from two.

§1. Preliminaries

Let U be a vector space over a field F of characteristic different from two and let
B:U xU xU — U be a trilinear mapping. Then the pair (U, B) (or U) is called a triple
system over F. We shall often write (abc) (or [abe]) in stead of B(a,b,c). For subspaces
Vi (1 =1,2,3) of U, we denote by (V1 V3V3) the subspace spanned by all elements of the form
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(apazagz) for a; € V;. A subspace I of U is called an ideal if (UUI) + (UIU)+ (IUU) C I
is valid. The whole space U and {0} are called the trivial ideals. U is said to be simple
if (UUU) # {0} and U has no non-trivial ideal. An endomorphism D of U is called a
derivation if D(abc) = (Dabc) 4 (aDbe) + (abDec), a,b,c € U. We denote by D(U) the
set of all derivations of U. @D(U) is a Lie algebra under the usual Lie product. For a,b € U,
let us define the endomorphisms L(a,b), M(a,b), R(a,b), K(a,b) on U by

L(a,b)x := (abx), M(a,b)zx := (axd), R(a,b)x := (zab), K(a,b)z := (azxd) — (bzxa).

A Lie triple system (or LTS simply) is a triple system U with a trilinear product [abc]
satisfying the following conditions for a,b,¢,d,e € U:
(LTS1) [aad] =0,
(LTS2) [abc] + [bea] 4 [cab] = 0,
(LTS3) [abcde]] = [[abc]de] + [c[abd]e] + [ed[abe]].

The condition (LTS3) shows that L(a,b) is a derivation of the LTS T', which is called
an inner derwation. We denote by Do(T') the set of all inner derivations of T. Dg(T') is an
ideal of ®(T'). Let D be a subalgebra of ®(T') including D¢(T). It is known that the direct

sum D @ T as a vector space becomes a Lie algebra with respect to the product
[D+a,E+b]:=L(a,b) +[D,E] 4+ Db — Ea,

where D.FE € ©, a,b € T. Especially, ®y & T is called a standard enveloping Lie algebra
of T. We defined the following triple system in [3] and called it a U(e)-algebra. But we
rename it in this paper.

Definition. A triple system (U, B) is called an FK-ternary algebra (or FKTA simply) if
there exists an automorphism ¢ of (U, B) satisfying the following identities:

(Ul) [L((], b)* L(Cv (])] = L(L(a* b)cv (J) - L(Cv L(b* 6(])(])7
(U2) K(K(a,b)c,d) = L(d,c)K(a,b) + K(a,b)L(c,ed),

where a,b,¢,d € U. An FKTA (U, B) with an automorphism ¢ satisfying the above condi-
tions is also denoted by (U, B, ¢) (or (U, ¢)).

The FKTA’s (U, +Id) are nothing but the Freudenthal-Kantor triple systems (or FKTS
simply) U(e), e = £1 (cf. [13]), particularly, the FKTA’s (U, 1d) are the generalized Jordan
triple systems of second order and the FKTA’s (U, —1Id) are the Freudenthal triple systems
(or FTS simply) (cf. [5]).

Let (U, B) be a GJTS of the second order. A non-singular linear transformation ¢ is
called a weak automorphism of (U, B) if there exists a non-singular linear transformation @

of U such that

¢B(a,b,c) = B(pa,pb,pc), pBl(a,b,c) = B(pa,pb,pc).

It is clear that an automorphism of (U, B) is a weak automorphism of (U, B). We define
the new triple product in U by By(a,b, ¢) := B(a, @b, c). Then (U, B,) becomes an FKTA
(U, By, ¢) for £ = (pp) ! and is called a p-modification of (U, B) (cf. [3]). A notion of the
w-modifications was defined by H. Asano [2] for involutive automorphisms ¢ of (U, B). In
this case, @-modifications are also GJTS’s of the second order.
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Example. Let H be the set of all quaternion numbers and define a triple product in H by
B(z,y,z) := ayz + zyz — yTz,

where T denotes the conjugate quaternion of x. Then it is easy to verify that the triple
system (H, B) is a GJTS of the second order. Moreover, it is easily seen that the mapping
¢ : &+ ax is an automorphism of (H, B) for a fixed quaternion number a such that |a| = 1.
Therefore (H, B,) becomes an FKTA for ¢ = ¢~2. Particulaly, if « = +1, (H,B,) is a
GJTS of the second order and if @ is a pure quaternion number, (H, B, ) is an FTS.

§2 Lie algebras constructed from FK-ternary algebras

K. Yamaguti constructed a graded Lie algebra of the second order from a Freudenthal-
Kantor triple system U using endomorphisms of U satisfying certain conditions [14]. In this
section, we also construct a graded Lie algebra of the second order from a given FK-ternary
algebra (U, ¢).

Let D, D* be linear endomorphisms of an FKTA (U, ¢), then the pair (D, D*) is said
to satisfy the condition (L) if
(Ll) [D7 L(av b)] = L(Da7 b) - L(Cl7 D*b)~
(L2) [D*,L(a,b)] = L(D*a,b) — L(a,eDs~"b)
for all a,b € U. (Ul) implies that a pair (L(a,b), L(b,ca)) satisfies the condition (L). If
the trace form ~ of (U, ¢) is non-degenerate, L(b,ca) is the adjoint operator of L(a, b) with
respect to the trace form ~ ([3] Lemma 2.4).

Let C be a linear endomorphism of U, then C is said to satisfy the condition (K) if
(K1) K(Ca,b)=L(b,a)C + CL(a,cb),

(K2) K(a,b)Ce = L(b,Cca) — L(a,Ceb)
for all a,b € U. By (U2) and [3] Lemma 2.1, we see that an endomorphism K («a,b) satisfies
the condition (K) (ef. [14]).

Lemma 2.1. Let (U,¢) be an FKTA. Let (D, D*) be a pair of linear endomrphisms of
U satisfying the condition (L) and C a linear endomorphism of U satisfying the condition
(K). Then the following relations hold:

(2.1) K(a,b)D* + DK(a,b) = K(Da,b) + K(a, Db),

(2.2) D*K(a,b) + K(a,b)eD="" = K(D*a,b) + K(a, D*b),
(2.3) CK(a,b)e = L(Ca,b) — L(Cb,a)

for all a,b € U.
Proof. Let c € U. By
K(a,b)D*c+ DK (a,b)c

we have

L1),

L(a,D*c)b— L(b,D*c)a + DL(a,c)b — DL(b, )

L(Da ¢)b+ L(a,c)Db — L(Db, c)a — L(b, c)Da
K(Da,b)c + K(a, Db)c.

Hence (2.1) holds. (2.2) and (2.3) follow from (L2) and (K1) respectively. O

For linear endomorphisms A, B and C of an FKTA (U, ¢), we define a triple product
< ABC > by
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< ABC >:= ABsC + CBeA.
Then the triple product < ABC > is also a linear endomorphism of (U, £).

Proposition 2.2. Let (D, D*), (E, E*) be pairs satisfying the condition (L) and 4, B and
C' linear endomorphisms satisfying the condition (K). Then the following statements are
valid:
(1) ([D, E],[E*, D*]) satisfies the condition (L),
(2) (BCe,CeB) satisfies the condition (L),
(3) DB + BD* satisfies the condition (K),
(4) < ABC > satisfies the condition (K).
Proof. Let a,b € U.
(1) Using Jacobi identity and (L1), we have
[[Dv E]* L<a: b)} = [Dv [E: I‘(av b)“ - [Ev [Dv L<a: b)“
— [D., L(Ea,b) — L(a, E*b)] — [E, L(Da,b) — L(a, D*})]
= L(DEa,b) + L(a, D*E*b) — L(EDa,b) — L(a, E*D*b)
= L([D, Ela,b) — L(a,[E*, D*]b).
Hence ([D, E],[E*, D*]) satisfies the condition (L1). Similarly it follows that this pair
satisfies the condition (L2).
(2) From (K1), (2.3) and (K2),we obtain
[BCe, L(a,b)] = BCL(ea,eb)e — L(a,b)BCe = BK(Cea,b)e — K(Bb,a)Ce
= L(BCea,b) — L(a,CeBb).
Hence (BCe, CeB) satisfies (L1). Similarly we can verify that this pair satisfies the condition
(L2).
(3) Using (K1), (L1), (L2) and (2.1), we obtain
K((DB + BD*)a,b) — L(b,a)(DB + BD*) — (DB + BD*)L(a,¢b)
— K(DBa,b) — K(Ba,b)D* — DK (Ba,b)
+B(L(D*a,eb)L(a,eb)D* — D*L(a,eb) + (DL(b,a) — L(b,a)D + L(b,D*a))B
— K(DBa,b) — K(Ba,b)D* — DK (Ba,b) + BL(a,=Db) + L(Db,a)B
— K(DBa,b) — K(Ba,b)D* — DK(Ba,b) + K(Ba, Db) = 0.
Hence DB 4 BD* satisfies (K1). Using (2.2) and (K2), we have
K(a,b)DBs = e 1 K(ca,eb)e D~ 1eBe
= e Y(K(D*ca,eb) + K(ca, D*eb) — D* K (ca, b)) Be
= K(¢ 'D*ca,b)Be + K(a,e ' D*cb)Be — e ' D*cK(a,b)Be
= L(b,BD*ca) — L(a, BD*cb)— L(¢~* D*ca, Beb) + L(c "' D*cb, Bea) — ¢~ D*e K (a, b) Be.

From this we get

K(a,b)DBe + L(a, BD*cb) — L(b, BD*ca)
= L(¢ 'D*cb, Bea) — L(¢ ' D*ca, Beb) — ¢ ' D*cK(a,b)Be - (i).

Using (K2), (L2) and (2.1),

we have
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K(a,b)BD*s = K(a,b)Bee ' D*c = (L(b, Bea) — L(a, Beb))e ! D*e

=&Y (L(eb,cBea)D* — L(ca,eBsb)D*)e

= e ' (D*L(eb,eBea) — L(D*cb,eBza) + L(Cb, sDBaa)

—D*L(ca,eBeb) + L(D*ca,cBeb) — L(ca,wDBeb))e

= ¢ 1D*cK(a,b)Be — L(s™1 D*eb, Bea) + L(b, DBaa) + L(s7! D*ca, Beb) — L(a, DBeb).
From this we obtain
K(a,b)BD* + L(a, DB<b) — L(b, DBza)

= L(¢ 'D*ca, Beb) — L(¢ ' D*ecb, Bea) + ¢ ' D*cK(a,b)Be -+ (ii).
Adding (i) and (ii), it follows that K(a,b)(DB+ BD*)e— L(a, (DB + BD*)eb)+ L(b, (DB +
BD*)za) = 0, therefore (K2) is satisfied.

(4) follows from (2) and (3) immediately. O

Let (U,¢) be an FKTA, and let us consider a vector space direct sum T'=U & U. An
element a b of T is also denoted as ( Z
phisms of T" are denoted in the form of 2 x 2 matrices. Let © be a vector space spanned by
D B
Ce —-D*
phisms of U satisfying the condition (L) and B, C are linear endomorphisms of U satisfying
the condition (K). Let D be a subspace of ® which is spanned by endomorphisms of the

form
< L{a,b) K(c,d) )
K(e,f)e —L(bea) ]’

) in column vector form. In this case, endomor-

endomorphisms of T' of the form , where (D, D*) is a pair of linear endomor-

where a,b,c,d,e, f € U.

Proposition 2.3. © becomes a Lie algebra with repect to the commutator product [, ],
and the subspace ®g is an ideal of .

Proof. From Proposition 2.2, it follows that @ is closed with respect to the commutator
product [, ]. Using Lemma 2.1, Proposition 2.2 and the conditions (L), (K), it is easy to
show that [Dg,D] C Dy. O

Put £ = @ T and define an anti-commutative product [ , ] in £ as follows:
For P,Qe®, XY €T,

[PwQ] ::PQfQP:
(2.4) [P, X] :=—[X,P]:= PX,
-1 Lla,y) — L(b,x) K(a,b)
[X.Y]:= ( I]&J'(I,y): L(z,eb) — L(y,za) )’

where X = a @z, Y =b& y. Then, we can verify that the Jacobi identity holds by using
Lemma 2.1, Proposition 2.2 and the conditions (L), (K), therefore we have

Theorem 2.4. The vector space £ becomes a Lie algebra with respect to the product
defined by (2.4).

Now let L; (i = 0,41, £2) be subspaces of £ as follows:
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L_5 = the subspace spanned by all operatos < 0 B > €D,

0 0
= U {0},
D 0
Ly = the subspace spanned by all operatos 0o _p* |E€ D,
Ll = {0} S2) Uv
Ly = the subspace spanned by all operators ( C(')a 8 ) cD.

Then it is easily shown that
L=L 2@ L 1@ Lo®Li® Ly, [Li,L;] C Ligj,

that is, £ is a graded Lie algebra (or GLA simply) of the second order.
The subspace T = L_y & Ly of £ becomes an LTS with respect to the trilinear product
defined by

ean [(2) G ()] =1C)-GL ()

(Bt e Tl ) (5)

where a,b,¢,2,y,z € U (cf. [3]). T is called the LTS associated with an FKTA (U,¢). The
standard enveloping Lie algebra £o = D(T) & T of T is an ideal of £, where ©(T') is the Lie
algebra of inner derivations of 7' which coincides with ®g. £g is called the GLA associated
with (U, ).

§3. Representations of FK-ternary algebras

K. Yamaguti defined a representation of Freudenthal-Kantor triple system and con-
structed a representation of the Lie triple system associated with the Freudenthal-Kantor
triple system [15]. In this section, we consider representations of FK-ternary algebras. We
first recall the definition of a representation of Lie triple system.

A representation of a Lie triple system T into a vector space V' is a pair (A, p) of bilinear
mappings of T into End(V) satisfying the following identities:

(3.1) MX,Y) =p(Y,X)—p(X.Y),
(3:2) [MX,Y),p(Z,W)] = p([XY Z], W) + p(Z,[XYV]),
(3:3) p(X.[VZW)) = p(Z,W)p(X,Y) = p(Y. W)p(X, Z) + A(Y. Z)p(X, W)

for all XY, Z, W € T. For details of definitions and properties of representations of LTS’s
we refer to [11], [12]. The pair (L, R) of the left and right multiplications L(X,Y"), R(X,Y")

is a representation of T into itself, which is called a regular representation.

Definition. Let V be a vector space and E a non-singular linear endomorphism of V. A
representation of an FKTA (U, ¢) into (V, E) is a triple (A, p, p) of bilinear mappings of U
into End(V) satisfying the following identities:

(3.4) EX(a,b) = Mea,eb)E, Eu(a,b) = p(za,eb)E, Ep(a,b) = p(ca,cb)E,
(35) [Na.b) Ae,d)] = A((abe), d) — Ae, (bead).

(36)  [Ma.B),ples d)] = —pl(bzac),d) + ple, (abd),

(37) Aa,blple,d) + (e N(b,ca) = u((abe), ) + (e, (abd).
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(38) e, (bed) = Mb, p(a, ) + ple, d)p(a,B) — (b, dyp(ea ),
(3.9) pla (bed)) = Mbs hpla, )+ ples diplarb) — (b, dyu(a ),
(3.10) w(a,b)u(ec,d)E + ¢(d, K(a,b)c) + p(ec, K (a, b)d) =0,

(3.11) k(a,b)p(ce,d) — ¢(d, c)r(a,b) + pu(c, K(a,b)d) =

(3.12) k(a,b)p(ec,d) — p(d, c)r(a,b) + u(IK(a,b)d, c) =

(3.13) @(a,b)p(c,d) — A(b,c)d(a,d) — ¢((ceba),d) = 07

where k(a,b) := u(a,b) — p(b,a), ¢(a,d) = pla,b) — \(b,a), a,b,c,d € U.

Using the condition (Ul), (U2) and [3] Lemma 2.1, we see that the triple (L, M, R) is

a representation of (U, ¢) into itself, which is called a regular representation. From (3.5),

(3.6), (3.7), (3.8), (3.11) and (3.12), it follows that

(3.14) [Ma,b),o( )] = (¢, (abd)) — d((beac), d),

(3.15) r(K(a, b)c d Ad, c)k (a b) + r(a,b)A(c,ed),

(3.16) pla, K(b,c) ) o(d,b)u = o(d, c)u(a,b) — k(b,c)p(ea,d),
(3.17) k(a,b)g(ed,c) + pla,d)g (ab c) — (b, d)¢(za,c) = 0.

Remark. If (U, e) is a Freudenthal-Kantor triple system, we can consider that £ = +Id.
Consequently, we need not consider the pair (V, E).

Let (A, u,p) be a representation of an FKTA (U,¢) into (V, E). Then let us consider
a direct product V x U. An element (z,a) of V x U is also denoted as z ) in column

vector form. Define a triple product { , ,} in V x U by

(3.18) {( z ) ( Z ) ( i )} — ( p(bvc)eruEZ})z;erA(a,b)z )

It is easily seen that the endomorphism E x ¢ : (z,a) — (Ex,ca) is an automorphism of
the triple system V x U.

Proposition 3.1. (V xU,{, ,},E x ¢) is an FK-ternary algebra.
Proof. For X; ¢ V x U (1 =1,2,3,4,5), put
(;L“, a) = ([L(Xl,XQ), L(X37X4)} — I.(L(Xl,XQ)‘Yg,X_i) —I— L(Xg, L(XQ, (E X €)X1 )X4))X5

By the bilinearity, in order to prove the condition (U1) it is sufficient to verify that z = a = 0
in the following cases:

Case (1) Xy = (21,0), X5 =(22,0), X; = (zi,0;) (1 =3,4,5),
Case (2) X7 =(21,0), Xz =1(0,a2), X;=(2;,0;) (1 =3,4,3),
Case (3) X1 =(0,a1), X2 =(22,0), X;=(2;,0;) (1 =3,4,3),
Case (4) X1 =1(0,a1), X2 =(0,a2), Xi=(zi,a;) (i =3,4,5).

Case (1) is clear.

Case (2) a=0.

[P(am a3a4a5)) — pla, a,5)p(a2, az) + p(as, a5)/1,(a2.,a4)E - /\(ag,a4)p(a2,a5)]3:1
0

from (3.9).
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Case (3) a=0.

[Mf(ﬁh ; (0(1%@4)05)) = plas, as)p(ar, as) + plas, as)p(ear, as) — Mas, aa)p(ar, a5 )]s

=0
Case (4) a = (ayaz(asasas)) — ((arazaz)asas) + (asz(az caras)as) — (asas(aazas))
=0 from (U1).
= [Mar, a2)M(as, ae) — M(a1azas), as) + Mas, (az €ag aq)) — Masz, ag)A(ag, az)]xs
+[Aar, az)plas, as) — p((arazas), as) + p(as, as)M\(az, ea1) — plas, (a1azas))]zs

+[Aa1, az)p(as, as) — plas, as)Nay, az) + p((az ay as), as) — play, (a1 azas))]x
=0 from (3.3), (3.7) and (3.6).

Hence the condition (U1) is proved. Next in order to prove the condition (U2) we put
(y7b) = [I&7<I&7(X1,X2>X37X4> — L<X4,X3)]X7<X1,X2) — I((Xl,Xf_))L(Xg, (E X E)X4)}X5

for X; € VxU (i = 1,2,3,4,5). By the bilinearity and the anti-commutativity of
K(Xy,X3), it is sufficient to verify that y = b = 0 in the above three cases (1), (2) and (4):

Case (1) is clear.

y = [¢plas, as)d(as,az) — Mag, az)d(as, az) — ¢((as cay as),az)]r1 = 0 from (3.13).
Case (4) From the condition (U2) of (U, e),
b= [IX (f& (a1 ,ag)ag (14) L(a,4, ag)IX’(Ch 0,2) — I&’(Gq R 0,2)L(G,3,6a4)]a5 = 0.
y = [#las, as)rlar, az) — plag, K(ar, az)as) — k(ar, az)p(eay, as)los
—[p(as, K (a1, az)az) + plas, K(ay,az2)as) + k(ay, az)p(az, as) Elry
+[r(K (ar,a2)as,as) — Mag, a3 )k(ar,as) — &(ar,az2)L(as, caq)]zs
=0 from (3.11), (3.10) and (3.15).

Hence the condition (U2) is proved. O

Let (U,¢) be an FKTA and T the LTS associated with (U,e). Let V' be a vector space
with a non-singular endomorphism E and (A, u,p) a representation of (U, e) into (V, E).
Define bilinear mappings p* and \* of T into V & V by

(3.19) p*<(§§)7(§)>(Z):—(é@_i)(;ﬁ)%b) (eb:v)grp? )><u>
(3.20) A*((Z’),(Z))r—p*(<z>7<z>)_p < ) (Z)

_ ( Ma,y) — A(b, ) #(a,b) )
rk(z,y)E Az, eb) — My, ea) )’

where a,b,2,y € U, u,v € V. The following result is a generalization of [15] Theorem 4.1
to the case U is an FKTA.

Proposition 3.2. Let (V, E) be a pair of a vector space and its non-singular endomorphism.
Let (A, pt, p) be a representation of an FKTA (U, ¢) into (V, E) satisfying

(3.21) ple,d)k(a,b)E — ¢(K(a,db)ed, ¢) — p(K(a,b)ec,d) =0,
(3'22) p(a, b)ﬁé((], (:) - /O(d: b)(p(av C) - (b(A’(d (]')5[77 (:) =0,
(3.23) ¢(d,c)p(a,b) — ¢(d,b)p(a,c) + ¢(d, K(b,c)a) =0
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for all a,b,¢,d € U. Then the pair (A\*, p*) defined by (3.19) and (3.20) is a representation
of the LTS T associated with (U, ¢) into a vector space V @ V.

Proof. For X, YV, Z,W €T, ucdv eV aV, put
P& q=(N(X,Y),0"(Z,W)] = p* (XY Z), W) — p"(Z,[XY W]))(u & v).

Since A*(X,Y) and [XY Z] are anti-commutative on arguments X, Y, in order to prove the

condition (3.2) it suffices to verify that p = ¢ = 0 in the following cases:
Case (1) X =a®0, Y=050, Z=cPhz, W=ddw,
Case (2) X:a@O Y=004y, Z=cPHz, W=dDw,
Case (3) X =0 Y=0qy, Z=cPHz, W=ddw.

Case (1) p=(—r(a,d)u(z, 117)E d(w, K(a,b)z) — p(z, K(a,b)w))u

+(x ( b)p(ed, z) —plz,d)r(a,b) + u(K(a,b)z,d) + r(a,b)p(ec, w) — ¢p(w, c)r(a,b)
+u(e, Ix( ,b)w))y = 0 from (3.10), (3.12) and (3.11).
q=(p(z,w)Ek(a,b) — p(¢K(a,b)z,w) — ¢(cK(a,b)w, z))v = 0 from (3.4) and (3.21).
Case (2) = (). 6000 o (03] +61(y )] + Do)t
+o((yeaz),d) — plz, (ayd)))u
(= Aa,yule ) — (e, d)My.2a) + p((aye).d) + pule, (ayd)) v
—Ofrom( 14), (3.6) and (3.7).
¢ = (My,ea)u(z, w)E + p(z,w)EMa,y) — p((y caz),w)E = u(z,(y caw))E)u
(=M, ca), dled, 2)] + 6(=d, (y =a=)) — b(=(ayd), =) — [y, za), p(zc, w)]
—ple(aye), w) + p(ee, (yeaw)))v = 0 from (3.4), (3.7), (3.14) and (3.6).
Case (3) p= (ule,d)r(z,y)E — p(K(z,y)ec,d) — ¢(K(z,y)ed, ¢))u = 0 from (3.21).
¢ = (n(z,y)Ed(w, ¢) — plec.w)a(z,y)E + (K (z,y)ee, w)E + r(x,y)Ep(z, d)
—¢pled, 2)k(z, ) E + p(z, K(x,y)ed)E)u
+(—=k(z,y)Eul(e,d) — d(ed, K(x,y)ec) — plee, K(z,y)ed))v
=0 from (3.12), (3.11), (3.4) and (3.10).

Hence the condition (3.2) is proved. Next we put
rs = (o" (X, [¥ ZW)) = p" (2, W) (X, V) 4 (¥, W) (X, Z) = A" (¥, Z)p" (X, W) (u ).

In order to prove the condition (3.3) it is sufficient to verify that r = s = 0 in the following
three cases:

Case (1) X =a®z, Y =080, Z=c60, W=ddw,
Case (2) X =a®z, Y=080, Z=00z W=dw,
(3) X=a®z, Y=00y, Z=0F2z, W=dow.
B, e)ple,b) + (0, D)pla, ) -+ (b, Yy, w) B
(0 Kb ew) + é(w )y, 8) — B, BYp(ar) — (b, c)p(ea, w) — (e, d)(eb, )
) + k(b,c)p(ed, x))v = 0 from (3.23), (3.10), (3.16) and (3.17).
s = (¢(eK(b,c)w,z) — p(c c, )qb(sbw) + p(eb,w)g(ec, z))v = 0 from (3.22).
Case (2) r= (_QJ)((Z 5bw>7a) + ¢<wvb)¢(27 (l) - /\(b,z)cb(w a) + p(ma <b2d>)
_/\(b7 Z)p(maj) - p(Za d)p(:c, b) - #’(ba d)ﬂ(‘f Z)E)U‘

1 .
s = (p(z,(zebw))E + p(z,w)Ep(z,b) 4+ p(eb,w)pu(z, 2)E — Az, eb)p(x, w)E)u
+(p(e(bdz),x) — d(ed, z)p(eb, x) + A(z,eb)p(ed, v) — p(ea, (zebw)) — p(z,w)Ep(a,b)
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,2) + A(z,eb)p(ea,w))v = 0 from (3.4),

(c (
Cose 8) 1= (IK(, o) — o Doln) 4, <z,a>
DE + (e, 0VEG(1: @) = il 0) bl
E 4 dled a(r B — wly. Epla, ).

3.8), (3.13) and (3.9).
Ju = 0 from (3.22).
) — Ky, z) Ed(w, a)

¢>( d,z)p (f—‘a y) + ¢(ed, y)plea, z) + k(y, z) Eula, d))v
17), (3.16), (3.10) and (3.23).

Hence the condition (3.3) is proved. O

From [3] Lemma 2.1, we see that the regular representation (L, M, R) of (U, ¢) satisfies
the conditions of Propositionm 3.2.

§4. Extensions of FK-ternary algebras

In this section, we define the cohomology space of order 3 of an FK-ternary algebra
(U, e) associated with a representation (A, u, p), and give an interpretation of it in relation
to extensions of (U, e) following the method of [4].

Let (U,e) be an FKTA and (V, E) a pair of a vector space and a non-singular endomor-
phism of V Let (A, p1, p) be a representation of (U, ¢) into (V, E). We denote by CY(U, V)
the vector space spanned by linear mappings f of U into V' such that

(4.1) flea) = Ef(a)

for all @ € U, and denote by C*(U,V') the vector space spanned by trilinear mappings of
U x U x U into V satisfying

(42) f(5a1 ,Edg, €a3) = Ef(aq , a2, (13)

and

f(K(ar,az2)az, a5, as) — flas,as, K(ai,az)az) — f(as, a3, K(ai,az)as)
(4.3)  —flai, (a3 caq as), az) + flaz,(as cay as), ar) — k(ar, az) f(as, cas, as)
+d(as, as)(f(ar, a3, az) — flaz, a3, a1)) — Mag, a3)(f(a1, a5, az) — f(az, as,a1)) =0,

where a; € U (1 = 1,2,3,4,5). Moreover we denote the vector space spanned by 5-linear
mappings f of U x U x U x U x U into V by C*(U, V).
For f € C'(U,V), we define a trilinear mapping §' f : U x U x U — V as follows:

(4.4) 51f'(a1,a27a3) = —plaz,a3)flar) — plar, a3) flaz) — Max, az) flas) + f((a1azas)),

where a; € U (i = 1,2, 3). We shall show that §' f € C*(U, V). It is easy to check that §'f
satisfies the condition (4.2). For a; € U (1 = 1,2, 3,4,5),

SLf(K(ay,az)as, as,as) — 6 flay, as, K(a1,az)az)) — 6 f(aq, as, K(ay,az)as)

—8" fay, (a3 eaq as),az) + 8" flaz, (az cas as),ar) — w(ay,a2)8" flas,cas, as)
-|-¢'>(a5,a4)(51f(a1,a3,a2) - 51f(a2.,a37a1)) - A(a4a a,3)(51 flay,as, az) - 51f(a2,a5, al))

= (—k(K(a1,az2)as,as) + Mag,a3)k(a1, az) + £(ay, a2)Mas, caq)) fas)

+(@(as, K(ax,az)az) + plas, K(ar, az)as) + k(ar, az)p(as, a5 ) E) f(as)

+(plag, K(ar,az)as) — ¢las, ag)r(ar, az) + w(ar, az)p(caa, as)) faz)
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+((as. as)d(as, ar) — Mag, as)d(as, a1) — ((as €aq as),a1)) f(az)
+(((as €as as), az) + Maa, as)P(as, az) — ¢las, as)P(as, a2)) f(ar)
+f(K(K(a1,as)as,as)as) — f(L(ag,as)K(ay,a9)as) — f(K(ay,az)L(az,caq)as)
=0 from (3.15), (3.4), (3.10), (3.11), (3.13), and (U2). Hence §' f € C*(U,V).
Next we define a linear mapping §* of C*(U, V') into C°(U, V') by the following formula:
(4.5) 83 f(ar,as,a3,a4,as)
= —plas,as)far,az,as) + plas, as) flaz,car, aqs) + May, az) f(as, as,as)
_A(a'?n a4)f(a1,a27 615) f((a1a2a3) ay, a5) + f(a37 (Gz gaq Cl4) )
—flaz, a4, (a1aza5)) + f(a1,aq, (agaqsas)),
where f € C*(U,V), a; €U (i =1,2,3,4,5).

Proposition 4.1. §*§'f =0 for any f € C'(U, V).
Proof. Fora; € U (i =1,2,3,4,5),
8381 f(ar,az, a3, a4, as)
= (plaa, as)plaz, as) — plas, as)ulaz, as) B+ Nas, as)p(az, as) — p(az, (a3 as a5))) f(o
+(plas, as)plar, as) — p(as, as)p(cay, as) + Mas, as)p(ar, as) — play, (azasas))) f(az )
[May, az), plas, as)] — p((az eay as), as) + plas, (a1azas))) f(as)

++

(—

(—plas,as)Mag,ea1) — May, az)plas, as) + p((arazaz), as) + p(as, (a1azas))) fas)
+(—[Mar, a2), Mas, as)] + M(arazas), as) — Mas, (a2 ea1 aq))) f(as)

f((a1 aQ(a3a4a5)) - (a3a4(a,1a2a5)) - ((alazag)a,4a5) + (a3(a2 gay a4)a5))

— 0 from (3.4), (3.9), (3.8), (3.6), (3.7), (3.5) and (U1). O

A mapping f € C3(U, V) is called a cocycle of order 3 if §° f = 0. We denote by Z*(U, V)
a subspace spanned by cocycles of order 3, and put B*(U,V) = §1C1(U, V). The element
of B¥(U,V) is called a coboundary of order 3. From the above proposition, B3(U, V) is a
subspace of Z3(U, V). We denote the factor space Z*(U,V)/B*(U,V) by H*(U,V), and
call it a cohomology space of order 3 of (U, ¢).

Let (U, By,¢) and (V, By,0) be FKTA’s. A linear mapping ¢ of U into V is called a

homomorphism if

#(Bu(a,b.)) = By(p(a), o(b). ¢(0)), poc=oayp,

where a,b, ¢ € U. Moreover, if ¢ is bijective, ¢ is called an isomorphism.

Proposition 4.2. Let (U,e), (V,0) be FKTA’s and ¢ a homomorphism of U onto V.

(1) If I is an (e-invariant) ideal of (U, ¢), then ¢(I) is a (o-invariant) ideal of (Vo).

(2) Keryp is an e-invariant ideal of (U, ¢).

(3) (U/Kere,z) = (V,0), where £ is an automorphism of U/Ker ¢ induced from e.

Proof. (1), (2) are clear.

(3) Wedenote by (,, ), <, , > the triple products of U, V respectively, and put N' = Kere.
Then (U/N, %) becomes an FKTA with triple product (ab¢) := (abc), where @ = a+ N (a €
U) ([10] Lemma 3.1). The canonical mapping @ : U/N — V, @(a) = ¢(a) is bijective.
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Moreover we have

(@) = B({abe)) = p((abe)) =< ola) p(b) () >=< B(@)FE) F(E) >
PE(@) = 7(za) = (ea) = op(a) = (@)
for all a,b,c € U. Therefore  is an isomorphism of (U/N,%) onto (V,o). O

Definition. Let (V,0), (W,7) and (U,e) be FKTA’s over the same base field. (W, 7) is
called an exztension of (U,e) by (V, o) if there exists a short exact sequence of FKTA’s:

{0} — (Vio) 5 W) 5 (Ue) — {0}

Two extensions (W, 7) and (W', 7') of (U, ¢) by (V, o) are said to be equivalent if there exists
an isomorphism ¢ of (W, 1) onto (W', 7') such that the following diagram is commutative:

0y — (Vo) 5% wr) 5 (Ue — {0}
11d Lo 1 1d

! !
0} — (Vo) = (W.7) 5 (T — {0}

An ideal I of an FKTA (U,¢) is said to be abelian if (IIU) = (IUI) = (UII) = 0.
We consider an extension (W, 7) of (U,¢) by (V, o) such that (V) is an abelian ideal in
(W, 7). Such an extension is called an abelian extension. Let {, | } and (, , ) be the triple
products of W and U respectively, and denote the bilinear mappings L, M, R and K of
U by Ly, My, Ry and Ky respectively. Since (V) is the abelian ideal of (W, 1), we can
define bilinear mappings A, p and p of U into End(V') by the following formulas:

Ma,b)a = 71 ({ste(x)}) = ¢ hw(s, t)(x),
(4.6) pla,b)r = 17" ({su(z)t}) = 7" Mw(s,t)(z),

pla,b)a == ({u(z) st}) = 'Ry (s, t)(x),
where a,b € U, 2z € V and s,t € W such that n(s) = a, 7(t) = b. Then (X, y, p) becomes
a representation of (U, ¢) into (V,7) since (Lw, Mw, Rw) is the representation of (W, )
into itself. Let (W', 7') be another abelian extension of (U, &) by (V, o) which is equivalent
to (W, 7). Then we shall show that the representation (X', u', p’) defined by (4.6) coincides
with (A, p). Let ¢ be an isomorphism of (W, 1) onto (W',7'). For a,b € U, choose
s,t € W such that w(s) = a, n(¢) = b. Then, since 7'(p(s)) = a, 7'(¢(t)) = b, N(a,b)z =
U Lwi (o(s), (1) () = " HeLw(s, t)(x)) = . HLw (s, t)(z)) = Ma,b)x. Similarly
we have that u' = p, p' = p. For the simplicity, we identify V' with its image (V) by
the injection ¢ hereafter. Let [ be a linear mapping of U into W such that 7 o[ = Id and

rol =loe. Such a mapping is called a section. (W, 7) is called a modularly split extension
if there exists a section [. Put

(4.7) fla,b,¢) = {U(a) (D) U(c)} — U((abe))

for a,b,¢ € U, then f is a trilinear mapping of U x U x U into V. We shall verify that
f € C*U, V). Obviously, f satisfies the condition (4.2). From (4.7), we have

(48) 1((abe)) = Luv(1(a), IB)I(e) — lab, ),
(4.9) I(Ky(a,b)c) = Kw(l(a),l(b)l(c) — f(a,e,b) + f(b,c,a)

for all a,b,¢ € U. Using these identities and the condition [ o0& = 7 0, we obtain

(4.10) {l(Ku(ai,az)as)l(as)l(as)}
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(Kw(l(a1),l(az))l(as)) las) l(as)} — plas, as)(f(ay, as, az) — flaz, as, a1)),
las) [(Kv(ax, az)a%)}

(as)1(as) l(ar),1(a2))l(as))} = Maa, a5)(f(a1, a3, a2) — flaz, a3, a1)),
(

), Laz
(asaqas) p={l(a1) (Lw (l(a3),l(as))l(a5)) l(az) }—p(ar, az) f (a3, as, as),

(4.11) {l(a

Kw

={
1)
{1
1)1 l(a

(K
(4.12) {i(a )i(az)

where a; € U (1 = 1,2,3,4,5). From these identities and the conditions [ o0& = 7 0] and
(U2), we get

f(IX’U (a,l ,as )0,37 as, a4) — f(a4, as, KU(al ,as )ag) — f(a47 as, KU(al y a,z)a5)

—flar,(as eaq as),az) + f(az, (as eaq as), ar)

= {Z(I(U(al N az)ag) l(a5) 1(04)}— {[(a4) l(CL5) Z(I{U(al s ag)ag)}—{l(a4) l(ag) l(I(U(CLl S CLQ)G5)}

Z(az)}+{l( 2)((as eaq as))l(ar)}

’(03) as)l(as)} — plas, as)(flar,as,a2) — flaz,as,a1))
). 1 N+ Mag, as)(far, a3, a2) — f(az, as,a1))

N} = Mag, a3)(flar,as,a2) — f(az, as,a1))

az)} + p(ar, az) f(

) 1(

(a2

Z ay), l{az)l(as
J(as))I(
J(as)) U

as

l(as as,eay, as)

l(aq))l(as)
2) (Lw (( Tl(as))l(as)) l(ar)} — plaz, a1) flas, cas, as)
= —¢(a5,a4)(f(a1,a3,a2) f(a2 as, ay )+/\(a47a3)(f(a'lva'5aa2)_f(a27a57a1))
+r(ar, ag) f(az,eas, as)

Hence f satisfies the condition (4.3).
Now we identify V x U and W as vector spaces by (z,a) — = 4+ {(a). An element (2, a)

of V x U is also denoted as ( Z ) in column vector form. In the FKTA (W, 7), it holds
that
{e+1(a) y+10b) z+1(c)}

=A{z1(b)l(e)} + {l{a)y l(e)} + {l(a) I(b) 2} + f(a, b, ¢) +I((abe))

for all x,y,z € V, a,b,¢c € U. From this we can define a triple product of V x U by

(4.13) {( ! ) ( v > ( : )} _ ( P(b,C)fI:+/«lf(a,c)y(;;)c/\>(a,b)z+f(a,b,c) >

Using the conditions mor =comw, loec =10l, we see that ¢ x ¢ : (z,a) — (ox,ca) is an
automorphism of V' x U corresponding to the automorphism 7 of W. For X; = (x;,a;) €

VxU(i=1,2,3,45), put
(CC,CL) = ([L(leXQ),L(Xg,X4)]—L(L(Xl,XQ)X37X4)+L(X37L(X2./ (UX&)Xl)X4))X5,

where L(X,Y) is the left multiplication of V' x U. Using (3.5), (3.6), (3.7), (3.8), (3.9) and
(U2) (see the proof of Proposition 3.1), we have a = 0 and
x = —plas, as)f(ar,az,a3) + plas,as)f(az,car, as) + Maz, az) f(az, aq, as)
—Mag,aq)flay,as,a5) — f((a1aza3), a4, a5) + f(as, (az cay ag),a5)
—flas,as, (a1azas5)) + f(a1, a2, (asasas))
= &8 f(ar,az, a3, a4,as).

This means that f is a cocycle of order 3, that is, f € Z*(U, V). Assume that there exists



180 YOSHIAKI TANIGUCHI

another section I'. Put g(a) = I'(a) — l(a), then g(a) € V and g(ca) = 7g(a), therefore
g € CYU,V). Since V is abelian,
F(abye) = {I(a) F(B) ')} — ((abe)
= {l(a) (D) I(c)} + {I(a) 1(D) g(e)} + {l(a) g(b) I(c)} + {g(a) 1(D) I(c)}
—I((abe)) — g((abc))
= fla;b,¢) + Ma, b)g(c) + p(a, c)g(b) + p(b, ¢)g(a) — g((abe))
fla,b,¢) — & g(a,b,c)

for all a,b,¢c € U. Therefore the cohomology class of f does not depend on the choice of
the section I, hence the modularly split extention of (U, &) by abelian (V, o) which has the
section [ determines uniquely an element of H*(U, V). Two equivalent extensions define the
same element of H*(U, V).

Conversely, let (V, o) be an abelian FKTA, and (A, i, p) a representation of an FKTA
(U,e) into (V,0). Let f be a cocycle of order 3. We define a triple product on a vector
space W =V x U by (4.13). Then 7 = ¢ X ¢ is an automorphism of the triple system W,
and (W, 1) becomes an FKTA. Next, we define the short exact sequence

0}y — (Vio) % (W) = (Ue) — {0}
by ¢(z) = (2,0) and 7(z,a) = a (x € V, a € U). It is clear that ¢ and 7 are homomolphisms.
Therefore (W, 7) is an extension of (U,e) by (V,0). Moreover it is easy to see that V is
abelian ideal in (W, 7). We define a linear mapping [ of U into W by I(a) = (0,a). Then
we have

[ I®) )} — 1((abe)) = (F(ab,),0), I(ea) = i(a)
for a,b,c € U. This means that f is a cocycle defined by this extension. Therefore to each
element of Z3(U, V) corresponds an extension of (U, ) by abelian (V, o).

Summarizing the above results, we have

Theorem 4.3. To each equivalent class of modularly split extensions (W, 7) of an FKTA
(U, ¢) by abelian (V, o) corresponds an element of H*(U, V). Let (A, i1, p) be a representation
of an FKTA (U, ¢) into a vector space V with a non-singular endomorphism E of V, then
there exists an extension of (W, 7) of (U,¢) by (V, E) such that (V, E) is abelian in (W, 7).
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