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HILBERT-SCHMIDT INTERPOLATION FOR
VECTORS IN TRIDIAGONAL ALGEBRA
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ABSTRACT. Given vectors z and y in a Hilbert space, an interpolating operator is a bounded
operator 1" such that Tt = y. An interpolating operator for n vectors satisfies the equation
Tz; = y;, for ¢ = 1,2,--- ,n. In this article, we investigate Hilbert-Schmidt interpolation
problems for vectors x and y in tridiagonal algebras.

1. INTRODUCTION

Let A be a subalgebra the algebra B(#) of all operators acting on a Hilbert space H
and let z and y be vectors on H. An interpolation question for A asks for which x and
y is there a bounded operator A € A such that Az = y. A variation, the ‘m-vector
interpolation problem’, asks for an operator A such that Ax; = y; for fixed finite collections
{z1,29, - ,zn} and {y1,y2, - ,yn}. The n-vector interpolation problem was considered
for a C*-algebra U by Kadison[9]. In case U is a nest algebra, the (one-vector) interpolation
problem was solved by Lance[10]: his result was extended by Hopenwasser[5] to the case
that U is a CSL-algebra. Munch[11] obtained conditions for interpolation in case A is
required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser|[6]
once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators
in a CSL-algebra. Hopenwasser’s paper also contains a sufficient condition for interpolation
n-vectors, although necessity was not proved in that paper.

Roughly speaking, when an operator maps one thing to another, we think of the operator
as the interpolating operator and the equation representing the mapping as the interpolation
equation.

In this article, we investigate Hilbert-Schmidt interpolation problem for vectors in tridi-
agonal algebras.

First, we establish some notations and conventions. A commutative subspace lattice L,
or CSL L is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert
space H. We assume that the projections 0 and I lie in £. We usually identify projections

and their ranges, so that it makes sense to speak of an operator as leaving a projection
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invariant. If £ is CSL, AlgC is called a CSL-algebra. The algebra Algl is the set of all
bounded operators on H that leave invariant all the projections in £. Let = and y be two
vectors in a Hilbert space . Then < x,y > means the inner product of the vectors = and
y. Let M be a subset of a Hilbert space . Then M means the closure of M and M the
orthogonal complement of M. Let N be the set of all natural numbers and let C be the set

of all complex numbers.

2. REsuLTS

Let H be a separable complex Hilbert space with a fixed orthonormal basis {e;,es,- --}.
Let @1, %2, - ,x, be vectors in H. Then [z1, 22, -+ ,z,] means the closed subspace gener-
ated by the vectors z1,zs, -+, z,. Let £ be the subspace lattice generated by the subspaces
[eak—1], [€2k—1, €2k, €2k41] (K = 1,2,---). Then the algebra Algl is called a tridiagonal al-
gebra which was introduced by F. Gilfeather and D. Larson[3]. These algebras have been
found to be useful counterexample to a number of plausible conjectures. Recently, such
algebras have been found to be of use in physics, in electrical engineering and in general
system theory.

Let A be the algebra consisting of all bounded operators acting on # of the form

with respect to the orthonormal basis {e1, ez, -}, where all non-starred entries are zero.
It is easy to see that AlgL=A. Let D={A : A is a diagonal operator acting on #}. Then D
is a masa of AglL and D=(Algl)N (AlgL)*, where (Algl)* = {A*: A €Algl}.

Let B(H) be the set of all bounded operators acting on H.

In this paper, we use the convention % = 0, when necessary.

The following theorem is well-known.

Theorem 1 [4]. Let A be a diagonal operator in B(H) with diagonal {a,}. Then
A is a Hilbert-Schmidt operator if and only if Y., |an|* < oc.

Theorem 2. Let x = (x;) and y = (y;) be two vectors in H such that x; # 0 for all
1 =1,2,---. Then the following statements are equivalent.

(1) There exists an operator A in AlgL such that Az =y, A is Hilbert-Schmidt and every
E in L reduces A.

l oo
E
(2) sup M :leN,a, € Cand E, € E} < 00 and Z|yn|2|a:n|72< 0.
1 2 k=1 x B n=1
1
E
Proof. (2) = (1). If sup {M :le€N,ap, € Cand E;, € ﬁ} < 00,
1> k=1 anErl]

then, without loss of generality, we may assume that



HILBERT-SCHMIDT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA 191

1

E

sup{M:lGN,akG(CandEkGE}zl. So
1 2 k=1 ax B

15 anEryll < IS4, axBEraf, | € Ny € C and E, € L---(x). Let M =

l
{ZakEkm :l €N, ap € Cand Ej € C}. Then M is a linear manifold. Define A :
k=1

M — H by A(Zl,c:1 apErx) = 22:1 aEry. Then A is well-defined. For, if 22:1 apErx

= 23-:1 BjE;z, then Zlk:l apErr + Ez-zl(—ﬂj)Ejm = 0. So ||22:1ak Eix
+35-1(=B)Ejall = 0 and hence ||y axEry + X5_,(—B;)Ejy = 0 by (+). Thus
Zlk:l arEry = 22:1 B;Ejy and hence A is well-defined. Extend A to M by continuity and
define Al7+ = 0. Clearly, Az =y and [|A]| < 1. Since EA(Eic:l apErpx) :Elk:l arEELy,
AE(ZI,CZ1 apBpr) = A(Eizl arEEx) = Elk:l arEEyy, EAg = E0 =0 and AEg =0
(< Ey, Elk:l arErr > =< g, 22:1 apEEyx >=0) for g in Wl, every E in L reduces A.
Since every E in £ reduces A, A is diagonal. Let A = (a;;). Since A = (a;;) is diagonal and
Az =y, ajz; =y; foralli =1,2,---. Since y_ 7| |yn|?|n|~2 < o0, A is Hilbert-Schmidt.

(1) = (2). Since Az = y and every E in L reduces A, AExz = Ey for every E in L. Then
A(Zlk:1 apErx) = 22:1 apEry for every | € N, every ap € C and every Ey, € L. Thus

l

_ OékE'k
I Bl < AN T, awBuall. T | L, apBual] # 0, then 12t @eFeyll
ol 1D k=1 arErzll

!
E
sup {M :le€N,ar €Cand E, € /3} < 00. Since every E in £ reduces A,

1
12 k1 ar B
A is diagonal. Let A = (a;;). Since Az = y, y; = a;x; and hence a; = y;z;~! for all
i=1,2,---. Since A is a Hilbert-Schmidt operator, > -, |yn|?|z,|™? < o0.

Theorem 3. Let x, = () and yp, = (ypi) be vectors in H such that x4 # 0 for some
fixred ¢ and all i = 1,2,---. Then the following statements are equivalent.
(1) There ezists an operator A in AlgC such that Az, =y, (p=1,---,n), every E in L
reduces A and A is Hilbert-Schmidt.
m l
i _ i FE
2) sup{ 12 k21 2o p=1 % p Bk p sl .

. :

I 2221 Ep:l ep B p |
oo —

and Y oo |ygil|zeil 72 < .

mp€N,I<n,Ey,€L and oz;w,E(C} < 00

Proof. If we assume that (1) holds, then AEz, = Ey, since Az, = y, and every FE in
m l m l
L reduces A. So A(Y_p2y 22,1k pErptp) :l Dkt 2opmt Wk p Bk pYp, My € fvv I <
m. m
n, By, € L and ay, € C. Thus [|> .2 Ep:l e p B pypll <A D202, szl Qk,p
mp l
= —1 Ok, Ek7 Yy
“2:1_1 Ef_l pErpypll < ||A||. Hence
(D Ep:l ep B p |

mp€ N,I<n,E,€ L and ag,p E(C} < o0o. Since every

m 1
Eppzpll. T30 D01 @k pEr pypl| # 0, then

p

l
{ I Erkn:p1 Ep:l o p Bk pYp|
sup :

mp l '
(D Ep:l ep B p |
E in L reduces A, A is diagonal. Let A = (a;;). Since Axp, = Yp, Ypi = GiiTpi (P =1,2,---,n

and i = 1,2,---). Since x4 # 0, ai; = ygizqyi (i = 1,2,---). Since A is a Hilbert-Schmidt
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operator, > o |yqil*|zqi|7? < oo. Conversely, if we suppose that (2) holds, then without
loss of generality, we may assume that

mp l

= —1 Ok, Ek7 Yy
| Efn_l Elp_l rEiptyl :mpEN,l <n,E,eL and ay,, €Cp =1. Then
[pYy Zp:l Wk, p B p T |
!

mp mp |
I Z Zak,pEk,pyp“ < Zzak,pEk,prL mp € N,1 <n,Ejp € L and agy € C--- (%)
k=1 p=1 k=1 p=1
mp
Let M = Z Zak,pEkmwp :my EN,I<n,apy, € Cand By, € L
k=1 p=1
Then M is a linear manifold. Define 4 : M — H by A%, ;:1 e p Bl pTp) =

o 22:1 @k pEkpyp- Then A is well-defined by (x). Extend A to M by continuity.
Define Alzr = 0. Az, =y, (p = 1,2,---,n) and [[4]] < 1. By an argument similar
to that of proof of Theorem 2, every E in L reduces A. So A is a diagonal operator.
Let A = (a;;). Since y, = Azp, Ypi = aszp; (p = 1,2,---,nandi = 1,2,---). Since
Yoo |Ygil?mgil 2 < oo, A is Hilbert-Schmidt.

If we modify the proof of Theorem 3, then we can get the following theorem.

Theorem 4. Let x, = (xp:) and y, = (yp:) be vectors in H(p = 1,2,---) such that x4 # 0
for all i and for some fized q. Then the following statements are equivalent.
(1) There ezists an operator A in AlgL such that Azy, =y, (p=1,---), every E in L
reduces A and A is Hillbert—Schmidt.
i —1 Ok p By
(2) sup [Py Zp_l Byl )

7 :

I EZ"L:IH Ep:l ep B p |
o0 —

and Y oo |ygil|zgil 72 < .

Mmp, L E N,Epp € L and oy € Cp < 00
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