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Abstract. We consider a single machine batching problem for identical jobs. Con-

stant processing times and batch setup times are assumed together with number of

batches and batch size limitations. We present a polynomially bounded algorithm that

produces good near optimal solutions with respect to minimizing the sum of completion

times.

1 Introduction This paper describes a single machine batch scheduling problem for

identical jobs. A batch is de�ned as a set of jobs of the same type to be produced in a single

setup. A constant setup time is required between consecutive batches. For a given batch,

the number of jobs which are contained in the batch is called its batch size. Since processed

items become available in batches, ow times are de�ned to be the same for all items in the

same batch. The number of batches and batch size are assumed to be constraints. We present

a polynomially bounded algorithm that determines near optimal number of batches and its

batch sizes in which it produces good near optimal solutions with respect to minimizing the

sum of completion times.

Over the past two decades, extensive research has been done on the batching problem

[1, 2, 3, 4, 7, 8, 9, 10] but very little work has been done with number of batches and batch

size limitations together. Examples include limited number of pallets and how many items

a pallet can accommodate. Depending on the industry type, the number of pallets (or

number of batches in this paper) can be fuzzy depending on pallet return or arrival from

the end of operations. In this paper, we consider a �xed number of batches and batch size

limitations.

This paper is organized as follows. In Section 2, we discuss some well-known work done

on batching problems. In Section 3, we formulate the single machine batching problem and

propose a polynomially bounded algorithm. In Section 4, we summarize the salient feature

of this paper and discuss the directions for further research.

2 Preliminaries Previous works on a batching problem include Santos and Magazine [8],

Dobson et al. [4], Naddef and Santos [7], Baker [1], Sung and Joo [10] and others [2, 3, 9].

We will review some of these works [4, 7, 10] done on a single machine batching problem.

Dobson et al. [4] proposed single product type baching problem on a single machine as

follows:-

min

MX
i=1

iX
k=1

(sqi + tqkqi)
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s.t.

MX
i=1

qi = d;

qi � 0; i = 1; : : : ;M:

They obtained optimal number of batches as follows:

n =

$r
1

4
+ (

2dt

s
)�

1

2

%
and

Optimal batch size; q
�

i
=

�
d

n
+ s

t
(n+1

2
) � i

s

t
for i = 1; : : : ; n;

0 for i = n+ 1; : : : ;M:

where

d - number of jobs,

s - setup time between batches,

t - job processing time,

Naddef and Santos [7] have also proposed a similar formulation for the single machine

batching problem whose aim is to minimize the sum of completion times. They proposed

a greedy algorithm called as one-pass batching algorithm. In fact, they considered the

number of batches and batch size factors individually despite in real context these factors

to be considered together. The optimum batching algorithm is modi�ed to solve the problem

of batching d jobs in exactly k batches (d � k). In the case of batch sizes upper bound �,

an additional job can be added to a batch only if it contains less than � jobs. For more

details, the reader is referred to [7].

Recently, Sung and Joo [10] considered the batch size restrictions for a single machine

batching to minimize weighted mean ow time. The batch sizes are integers and restricted

between lower and upper bounds. The lower bound is considered to incorporate the practical

situation where each production operations requires a minimum amount of work load for

keeping safety stock in the next work station. On the other hand, the upper bound is

considered to incorporate any physical capacity restriction for production work on jobs.

A feasibility condition and the optimal sequencing property is derived based on dynamic

programming algorithm.

To our knowledge, so far, no research has been yet reported with constraints on number

of batches and batch sizes simultaneously.

3 Problem formulation We use the following notations:

p - job processing time,

s - setup time between consecutive batches,

d - number of jobs,

bj - jth batch size, j = 1; 2; : : : ; R,

R - maximum allowable number of batches,

Q - maximum allowable batch size.
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In our model, �rst, bj is assumed to be a continuous variable despite of real fact that the

parts are discrete, i.e. we treat the total number of parts d as homogeneous and divisible in

any proportions, with R an upper bound on the total number of batches. Later, we use the

continuous bj 's optimal solution and propose an approximation algorithm to obtain discrete

solutions.

We describe a solution to the d-job batch by a vector Bd=(b1; : : : ; bR) where bj is the

size of the jth batch (i.e. bj 6= 0; j = 1; : : : ; R). We can describe a batching problem by

the following example as shown in Fig.1. We take an identical part with �ve items to be

processed. Each item requires two minutes to process and the setup time between batches

is one minute. If we produce the �ve items into two batches, i.e. do three items in the �rst

and two items in the second batch, the total sum of completion times for the batch is:

12 minutes1 3 5 7 8 10

S J J J S J J

0

(3 items)(7 minutes) + (2 items)(12 minutes) = 45 items minutes.

Figure 1: Batching problem

The problem formulation of minimizing the sum of completion time on a single machine

batch scheduling problem is as follows.

Let say, the initial batch with b1 jobs is completed at (s+b1p), second batch at (2s+(b1+b2)p).

Similarly, each of the bj jobs of the jth batch is completed at (js +
P

j

l=1
blp). The �nal

formulation to describe the value of our objective function is given as:

(3.1) Z(Bd) =

RX
j=1

bj

 
js+

"
jX
l=1

bl

#
p

!

3.1 Continuous solution Rewriting equation (3.1) in a slightly di�erent form, we ob-

tain the following problem Z :

Problem Z:

(3.2) min Z = s

RX
j=1

jbj +
1

2
p

RX
j=1

b
2

j
+

1

2
p

0
@ RX

j=1

bj

1
A
2

;

(3.3) s.t.

RX
j=1

bj � d = 0; (�);
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(3.4) bj �Q � 0; j = 1; : : : ; R; (uj);

(3.5) �bj � 0; j = 1; : : : ; R; (vj);

The Kuhn-Tucker conditions for (3.2) - (3.5) are :-

@z

@bj
+ �

@

@bj

�P
R

j=1
bj � d

�
+ uj

@

@bj
(bj �Q) + vj

@

@bj
(�bj) = 0; j = 1; : : : ; R;

(3.6) sj + pbj + pd+ �+ uj � vj = 0; j = 1; : : : ; R;

(3.7) uj(bj �Q) = 0; j = 1; : : : ; R;

(3.8) vjbj = 0; j = 1; : : : ; R;

(3.9) uj; vj � 0; j = 1; : : : ; R;

(3.10)

RX
j=1

bj � d = 0;

(3.11) bj �Q � 0; j = 1; : : : ; R;

(3.12) �bj � 0; j = 1; : : : ; R;

where �, uj and vj are the Lagrange multipliers associated with the three types of con-

straints. By the similar technique to [5, 6], solution of Kuhn-Tucker condition becomes as

follows.

(3.13) bj(�) = max

�
min(

�pd� �� sj

p
;Q); 0

�
(uj = 0; vj = 0)

(3.14) uj(�) = max f�sj � pQ� pd� �; 0g (vj = 0; bj = Q)

(3.15) vj(�) = max fsj + pd+ �; 0g (uj = 0; bj = 0)

(3.16) bj(�) =

8<
:

Q if � � �pd� sj � pQ;

�pd���sj

p
if � pd� sj � pQ < � � �pd� sj;

0 if � > �pd� sj:
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(3.17)

RX
j=1

bj(�) = d;

Now let g(�) =
P

R

j=1
bj(�). Then g(�) is a piece-wise linear and monotone non-increasing

function of �. Thus b can be found as b = b(�) from b(�) satisfying g(�) = d. Denoting

breakpoints �pd� sj � pQ and �pd� sj with rj and qj , respectively and arranging them

in the non-decreasing order, we let

(3.18) y1 < y2 < � � � < ym

where m is the number of di�erent rj and qj . Now, we are ready to propose Algorithm 1

for solving Problem Z.

Algorithm 1

Step 1: Set l  1; r  m; q  b
(l+r)

2
c and � yq . Go to Step 2.

Step 2: Compute g(�)  
P

j
maxfmin(�pd���sj

p
; Q); 0g. If g(�) < d, set r  q and

go to Step 3; if g(�) = d, then go to Step 5; if g(�) > d, set l q and go to
Step 3.

Step 3: If r � l = 1, then go to Step 4; if r � l 6= 1, set q  b
(l+r)

2
c and �  yq and

return to Step 2.

Step 4: Find � such that g(�) = d, set b b(�) and terminate.

Step 5: Set � yq and b b(�), and terminate.

Upon obtaining the near optimal values of bj , the batches are sequenced according to the

increasing index of j(j = 1; : : : ; R).

Theorem 1. Algorithm 1 �nds near optimal solutions of b in at most O(nlogn) compu-

tation times.

Proof : (Validity:) bj 's change their functional forms at y1; : : : ; ym and Algorithm 1

checks all possible intervals for optimal condition g(�) = d by fully utilizing monotonicity of

g(�). Therefore, termination conditions in Step 4 and Step 5 assure validity of Algorithm 1.

(Complexity:)

(i) Calculating y1; : : : ; ym takes O(nlogn) computational time since total number of rj
and qj is O(n) and sorting O(n) elements takes at most O(nlogn) computational time.

(ii) Step 1 takes at most O(n) computational time.

(iii) Iteration number of Step 2 and Step 3 is at most O(nlogn)computational time.

(iv) Step 4 takes O(n) computational time since solving a linear equation g(�) = d with

respect to � takes O(n) computational time and setting b  b(�) takes same order

computational time.

(v) Step 5 takes O(n) computational time.

(i)-(v) together prove complexity of Algorithm 1.



200 K. MUTHUSAMY, H. ISHII, T. MASUDA AND S. MOHRI

3.2 Approximation algorithm for discrete solutions Let us de�ne the followings:

(3.19) b
0

j
= bbjc; j = 1; : : : ; R;

We group the batches as follows:

Group A = fb0
j
jb0
j
= Q; j = 1; : : : ; qg;

Group B = fb0
j
jb0
j
< Q; j = q + 1; : : : ; q + rg;

where

q = number of batches in Group A,

r = number of batches in Group B,

Then,

(3.20) L =

RX
j=q+1

(bj � b
0

j)

The following simple Algorithm 2 will describe the procedures to obtain discrete solu-

tions:

Algorithm 2

Add exactly one job per batch in Group B starting from it's �rst batch such that the new

batch size, b�
j
� Q; j = q + 1; : : : ; q + r. Once L number of jobs been added, terminate.

Let say, ZOPT be the continuous solution, Z 0 be the solution obtained by the equation

(3.19) and Z
� be the discrete solution. Algorithm 2 will produce discrete solutions, which

are bounded by �Z as follows:-

(3.21) �Z = Z
� � Z

OPT

�Z = s

qX
j=1

jbj
0 +

1

2
p

qX
j=1

bj
02 +

1

2
p

0
@ qX

j=1

bj
0

1
A
2

+ s

q+LX
j=q+1

j(bj
0 + 1) +

1

2
p

q+LX
j=q+1

(bj
0 + 1)2 +

1

2
p

0
@ q+LX
j=q+1

bj
0 + 1

1
A
2

+ s

RX
j=q+L+1

jbj
0 +

1

2
p

RX
j=q+L+1

bj
02 +

1

2
p

0
@ RX
j=q+L+1

bj
0

1
A
2

�

2
64s RX

j=1

jbj +
1

2
p

RX
j=1

b
2

j
+

1

2
p

0
@ RX
j=1

bj

1
A
2
3
75
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�Z = s

q+LX
j=q+1

j(bj
0 � bj) +

1

2
p

q+LX
j=q+1

(bj
02 � b

2

j
) +

1

2
p

2
64
0
@ q+LX
j=q+1

bj
0

1
A
2

�

0
@ q+LX
j=q+1

bj

1
A
2
3
75

+ s

q+LX
j=q+1

j + p(1 + L)

q+LX
j=q+1

bj
0 +

1

2
pL(1 + L) + s

RX
j=q+L+1

j(bj
0

� bj)

+
1

2
p

RX
j=q+L+1

(bj
02 � b

2

j
) +

1

2
p

2
64
0
@ RX
j=q+L+1

bj
0

1
A
2

�

0
@ RX
j=q+L+1

bj

1
A
2
3
75

Let consider the worst-case where the di�erence between b
0

j
and bj are approximately closer

to one. Then,

�Z = 2s

q+LX
j=q+1

j + 2s

RX
j=q+L+1

j +
1

2
pL(1 + L) +

1

2
p

q+LX
j=q+1

(bj
0

+ bj)

+
1

2
p

2
64
0
@ q+LX
j=q+1

bj

0

1
A
2

�

0
@ q+LX
j=q+1

bj

1
A
2
3
75 + p(1 + L)

q+LX
j=q+1

bj

0

+
1

2
p

RX
j=q+L+1

(bj
0

+ bj) +
1

2
p

2
64
0
@ RX
j=q+L+1

bj

0

1
A
2

�

0
@ RX
j=q+L+1

bj

1
A
2
3
75

�Z =
1

2
s

�
R
2 + L

2 + 2QL+R+ L� q
2 � q

�
+

1

2
pL (1 + L)(3.22)

+
1

2
p

RX
j=q+1

bj

0

+
1

2
p

RX
j=q+1

bj +
1

2
p

2
64
0
@ q+LX
j=q+1

bj

0

1
A
2

�

0
@ q+LX
j=q+1

bj

1
A
2
3
75

+ p(1 + L)

q+LX
j=q+1

bj

0

+
1

2
p

2
64
0
@ RX
j=q+L+1

bj

0

1
A
2

�

0
@ RX
j=q+L+1

bj

1
A
2
3
75

From (3.20),

(3.23)

RX
q+1

b
0

j
= d�L� qQ

Substitute (3.23) and (3.3) into (3.22), we get the following:



202 K. MUTHUSAMY, H. ISHII, T. MASUDA AND S. MOHRI

�Z =
1

2
s

�
R
2 + L

2 + 2QL +R +L� q
2 � q

�
+

1

2
pL (1 + L)(3.24)

+ p(d � L� qQ) +
1

2
pL+

1

2
p

2
4q+LX
q+1

b
0

j

0
@q+L)X

q+1

b
0

j
+

1

2
+
L

2

1
A
3
5

+
1

2
p

0
@ RX
q+L+1

b
0

j

1
A� 1

2
p

0
@(d� qQ)

2
� 2

q+LX
q+1

bj

RX
q+L+1

bj

1
A

From (3.16), we obtain the followings:

(3.25) Qq +

q+rX
j=q+1

�
�pd� �� sj

p

�
= d

Solving the above equation, we get,

(3.26) � =
q

r
(pQ � rs) �

1

r
(r + 1)(pd +

1

2
rs) � �pd� sj � pQ

Assuming q = j, then,

(3.27) j � r

�
s

2pQ
(r + 1) � 1

�
+

d

Q

and

(3.28) q =

�
r

�
s

2pQ
(r + 1)� 1

�
+

d

Q

�

From (3.16),

�pd� sj � pQ < � < �pd� sj

1

s
(��� pd)�

pQ

s
< j <

1

s
(�� � pd)

Then, the value of r is given by the following equation:

(3.29) r =

�
bpQ
s
c � 1

bpQ
s
c

The maximum number of batches in group B is given as follows:

(3.30) r =

�
pQ

s

�
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Substitute (3.30) into (3.28), we obtain the �nal form of q as follows:

(3.31) q =

��
b
pQ

s
c

��
s

2pQ

�
b
pQ

s
c+ 1

�
� 1

�
+

d

Q

�

From (3.30), the maximum of L is given by:

(3.32) L �

�
pQ

s

�
� 1

From (3.20), we obtain the followings:

RX
j=1

bj �

RX
j=1

b
0

j
= L

d�

RX
j=1

b
0

j
= L

RX
j=1

b
0

j
= d� L

qX
j=1

b
0

j
+

q+LX
j=q+1

b
0

j
+

RX
j=q+L+1

b
0

j
= d� L

(3.33)

q+LX
j=q+1

b
0

j
= d� L� qQ�

RX
j=q+L+1

b
0

j

By the similar way, we obtain the following from (3.3):

(3.34)

q+LX
j=q+1

bj = d� qQ �

RX
j=q+L+1

bj

There are two cases for (3.33) and (3.34) as follows:

Case I:

(3.35)

q+LX
j=q+1

b
0

j
>

RX
j=q+L+1

b
0

j

(3.36)

q+LX
j=q+1

bj >

RX
j=q+L+1

bj
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(3.37)

RX
j=q+L+1

b
0

j
= 0

(3.38)

RX
j=q+L+1

b
0

j
� 1

(3.39)

RX
j=q+L+1

bj � 0

When we consider conditions (3.37) and (3.39), the worst-case upper bound is given as

follows:

�ZUB �
1

2
s

�
R
2 +L

2 + 2qL+R +L� q
2 � q

�
+

1

2
pL (1 +L)

+ p(d� L� qQ) +
1

2
pL+

1

2
p (d� L� qQ)

�
(d� L� qQ) +

1

2
+
L

2

�
(3.40)

�
1

2
p (d� qQ)

2

where, L �
j
pQ

s

k
� 1 and

q =
j�
bpQ
s
c
�h

s

2pQ

�
bpQ
s
c+ 1

�
� 1
i
+ d

Q

k
When we consider conditions (3.38) and (3.39), the worst-case upper bound is given as

follows:

�ZUB �
1

2
s

�
R
2 + L

2 + 2qL+R + L� q
2 � q

�
+

1

2
pL (1 + L)

+ p(d� L� qQ) +
1

2
pL+

1

2
p (d� L� qQ � 1)

�
(d� L� qQ � 1) +

1

2
+
L

2

�
(3.41)

+
1

2
p�

1

2
p (d� qQ)

2

Case II:

(3.42)

q+LX
j=q+1

b
0

j
�

RX
j=q+L+1

b
0

j

(3.43)

q+LX
j=q+1

bj �

RX
j=q+L+1

bj

Using (3.33) and (3.34), the worst-case upper bound is obtained as follows:
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�ZUB �
1

2
s

�
R
2 +L

2 + 2qL+R +L� q
2 � q

�
+

1

2
pL (1 +L)

+ p(d� L� qQ) +
1

2
pL+

1

8
p (d�L� qQ) (d� qQ + 1)(3.44)

+
1

8
p (d� L� qQ)

2
�

1

4
p (d� qQ)

2

where, L �
j
pQ

s

k
� 1 and

q =
j�
bpQ
s
c
�h

s

2pQ

�
bpQ
s
c+ 1

�
� 1
i
+ d

Q

k

3.3 Examples To illustrate the new heuristic, we use four examples as shown in Ap-

pendix I. Discrete solutions are obtained in Example 1 by using Algorithm 1. The results

on Examples two, three and four indicate that the sum of completion times di�erence

between the discrete and continuous solutions are at very minimal level. The worst-case

upper bound obtained are quite loose compared to the actual di�erence. This was due

to the assumptions made especially in (3.22) where the di�erence between b
0

j
and bj are

approximately closer to one. In overall, our algorithm may provide good discrete solutions.

4 Conclusion This paper has introduced single machine batch scheduling problem that

consider the number of batches and batch size limitations. We proposed a polynomially

bounded algorithm that determines near optimal number of batches and its batch sizes in

which it produces good near optimal solutions with respect to minimizing the sum of com-

pletion times. The investigation was motivated by these two factors which are very common

in many real situations, manufacturing facilities in particular. We also proposed continu-

ous and discrete solutions to the original problem. The proposed worst-case upper bound

is quite loose and that can obviously be improved. We have studied the single machine

and identical products problems but in real context it may be typically multi-machine and

multi-product problem with many complicating factors, eg. number of batches constraint

that can be fuzzy. Further research will address these issues.
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Appendix I

Example 1 Example 2 Example 3 Example 4

d 10 15 20 30

p 1 2 2 3

s 2 3 4 5

Q 3 5 5 8

R 4 5 5 6

b1 3 5 5 8

b2 3 4.75 5 7.73

b3 3 3.25 5 6.07

b4 1 1.75 3.5 4.4

b5 n 0.25 1.5 2.73

b6 n n n 1.07

Z
OPT 108 383.75 695.5 2030.09

b
0

1
n 5 5 8

b
0

2
n 4 5 7

b
0

3
n 3 5 6

b
0

4
n 1 3 4

b
0

5
n 0 1 2

b
0

6
n n n 1

b
�

1
n 5 5 8

b
�

2
n 5 5 8

b
�

3
n 4 5 7

b
�

4
n 1 4 4

b
�

5
n 0 1 2

b
�

6
n n n 1

Z
� n 385 696 2032

�Z n 1.25 0.5 1.91

r 1 3 2 4

L 0 2 1 3

q 3 1 3 1

�ZUB n 41.5 51 40

n - not applicable

Table 1: Examples


