SOME PROPERTIES ON COMMUTATIVE BCK-ALGEBRAS

Yuan-Hong Lin

Received February 20, 2001; revised May 1, 2001

Abstract

In paper[1], the author had shown that commuta- tive BCK-algebras with condition (S) under natural partial order are distributive lattices. In this paper, we shall extend above mentioned conclusion, and obtain seven important properties on commutative BCK-algebra $(X, *, \leq ; 0)$ if it is a lattice under natural partial order, and answer problem 1 in paper [1] if X is a finite set.etc.

The following Lemma 1,2 are well known:
Lemma 1 Let $(X, *, \leq ; 0)$ be a $B C K$-algebra, then for any $x, y, z \in X$ we have

$$
(x * y) * z=(x * z) * y ; x *(x *(x * y))=x * y
$$

And $x \leq y \rightarrow x * z \leq y * z, z * y \leq z * x$.

Lemma 2 Let $(X, *, \leq ; 0)$ be a $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then for any $x, y, z \in X$ we have

$$
(x * z) \vee(y * z) \leq(x \vee y) * z,(x \wedge y) * z \leq(x * z) \wedge(y * z)
$$

Theorem 1 Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra, $x, y, z \in X$, and $x \leq z, y \leq z$, then $x \vee y=z *((z * x) \wedge(z * y))$.

Proof. Since $(X, *, \leq ; 0)$ is a commutative BCK-algebra, then we have

$$
\begin{aligned}
& x=x *(x * z)=z *(z * x) \leq z *((z * x) \wedge(z * y)) \\
& y=y *(y * z)=z *(z * y) \leq z *((z * x) \wedge(z * y))
\end{aligned}
$$

Put $\quad z_{0}=z *((z * x) \wedge(z * y))$, then $x \leq z_{0}, y \leq z_{0}$. Therefore we have

$$
\begin{aligned}
z_{0} * x & =(z *((z * x) \wedge(z * y))) * x=(z * x) *((z * x) *((z * x) *(z * y))) \\
& =(z * x) *(z * y)=(z *(z * y)) * x=(y *(y * z)) * x=y * x
\end{aligned}
$$

Similarly, we have $z_{0} * y=x * y$.
Therefore,

$$
\begin{equation*}
\left(z_{0} * x\right) \wedge\left(z_{0} * y\right)=\left(z_{0} * x\right) *\left(\left(z_{0} * x\right) *\left(z_{0} * y\right)\right)=(y * x) *\left(\left(z_{0} *\left(z_{0} * y\right)\right) * x\right)=(y * x) *(y * x)=0 \tag{1}
\end{equation*}
$$

Let $x \leq u, y \leq u$, It follows from Lemma 1 that $z_{0} * u \leq z_{0} * x, z_{0} * u \leq z_{0} * y$, further $z_{0} * u \leq\left(z_{0} * x\right) \wedge\left(z_{0} * y\right)=0$, therefore $z_{0} \leq u$, so $z_{0}=x \vee y$.

In fact, by the process of the proof of Theorem 1, we have the following remark:

Remark Let $(X, *, \leq ; 0)$ be a commutative BCK-algebra.If $x \leq z_{1}, y \leq z_{1} ; x \leq z_{2}, y \leq$ z_{2},Then $z_{1} *\left(\left(z_{1} * x\right) \wedge\left(z_{1} * y\right)\right)=z_{2} *\left(\left(z_{2} * x\right) \wedge\left(z_{2} * y\right)\right)$.

Corollary 1. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra with condition (S), then (X, \leq) is a lattice under natural partial order $\leq^{[1]}$. (In fact, there $x \wedge y=x *(x * y), x \vee y=(x \circ y) *(((x \circ y) * x) \wedge((x \circ y) * y)))$

Corollary 2. Let $(X, *, \leq ; 0)$ be a bounded commutative $B C K$-algebra, then (X, \leq) is a lattice under natural partial order $\leq{ }^{[2]}$.
(In fact, there $x \wedge y=x *(x * y), x \vee y=1 *((1 * x) \wedge(1 * y)), 1$ is the greatest element of X)

Theorem 2. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then for any $x, y, z \in X$, we have

$$
(x \vee y) * z=(x * z) \vee(y * z),(x \wedge y) * z=(x * z) \wedge(y * z)
$$

Proof For any $x, y, z \in X$, from $x * z \leq x \leq x \vee y, y * z \leq y \leq y \vee z$ and Theorem 1, we have

$$
(x * z) \vee(y * z)=(x \vee y) *(((x \vee y) *(x * z)) \wedge((x \vee y) *(y * z)))
$$

On the other hand, by Lemma 2 and formula (1), we have

$$
\begin{array}{r}
(((x \vee y) *(x * z)) \wedge((x \vee y) *(y * z))) * z \leq(((x \vee y) *(x * z)) * z) \wedge(((x \vee y) *(y * z)) * z) \\
\quad=(((x \vee y) * z) *(x * z)) \wedge(((x \vee y) * z) *(y * z)) \leq((x \vee y) * x) \wedge((x \vee y) * y)=0
\end{array}
$$

Therefore $((x \vee y) *(x * z)) \wedge((x \vee y) *(y * z)) \leq z$, moreover

$$
(x \vee y) * z \leq(x \vee y) *(((x \vee y) *(x * z)) \wedge((x \vee y) *(y * z)))=(x * z) \vee(y * z)
$$

By Lemma $2,(x * z) \vee(y * z) \leq(x \vee y) * z$, then $(x \vee y) * z=(x * z) \vee(y * z)$.
Secondly, for any $u \leq x * z$ and $u \leq y * z$, we have

$$
u *((x \wedge y) * z) \leq(x * z) *((x \wedge y) * z) ; u *((x \wedge y) * z) \leq(y * z) *((x \wedge y) * z)
$$

On the other hand,

$$
\begin{aligned}
(x * z) *((x \wedge y) * z) & =(x * z) *((x *(x * y)) * z) \\
& =(x * z) *((x * z) *(x * y))=(x * z) \wedge(x * y) \\
(y * z) *((x \wedge y) * z) & =(y * z) *((y *(y * x)) * z) \\
& =(y * z) *((y * z) *(y * x))=(y * z) \wedge(y * x)
\end{aligned}
$$

moreover, by the formula (1), we have

$$
\begin{aligned}
& u *((x \wedge y) * z) \leq((x * z) \wedge(x * y)) \wedge((y * z) \wedge(y * x))= \\
&((x * z)\wedge(y * z)) \wedge((x * y) \wedge(y * x))=((x * z) \wedge(y * z)) \wedge 0=0
\end{aligned}
$$

Therefore $u \leq(x \wedge y) * z$. Since $(x \wedge y) * z \leq x * z,(x \wedge y) * z \leq y * z$, then $(x \wedge y) * z=(x * z) \wedge(y * z)$.

Corollary Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then for any $x, y \in X$, we have

$$
x *(x \wedge y)=(x * y)=(x \vee y) * y
$$

By Lemma 1, we have the conclusion:

Theorem 3. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra, then for any $x, y, z \in X$, $x * y=x * z$ if and only if $x \wedge y=x \wedge z$.

Theorem 4. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then for any $x, y, z \in X, x * z=y * z$ if and only if $x \vee z=y \vee z$.

Proof Sufficiency. For any $x, y, z \in X$, if $x \vee z=y \vee z$, from Corollary of theorem 2, we have $x * z=(x \vee z) * z=(y \vee z) * z=y * z$.

Necessity. For any $x, y, z \in X$, if $x * z=y * z$, by Theorem 1 , we have

$$
\begin{aligned}
x \vee z & =(x \vee y \vee z) *(((x \vee y \vee z) * z) \wedge((x \vee y \vee z) * x)) \\
& =(x \vee y \vee z) *(((x \vee y \vee z) * z) *(((x \vee y \vee z) * z) *((x \vee y \vee z) * x))) \\
& =(x \vee y \vee z) *(((x \vee y \vee z) * z) *(((x \vee y \vee z) *((x \vee y \vee z) * x)) * z)) \\
& =(x \vee y \vee z) *(((x \vee y \vee z) * z) *((x *(x *(x \vee y \vee z))) * z)) \\
& =(x \vee y \vee z) *(((x \vee y \vee z) * z) *(x * z))
\end{aligned}
$$

Similarly, we have $y \vee z=(x \vee y \vee z) *(((x \vee y \vee z) * z) *(y * z))$. Therefore, we have $x \vee y=x \vee z$.

Corollary Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra with condition (S), then for any $x, y, z \in X, x * z=y * z$ if and only if $x \vee z=y \vee z$.

Theorem 5. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then for any $x, y, z \in X$ and $z \leq x, z \leq y$, we have

$$
x * y=(x * z) *(y * z)
$$

Proof Since $z \leq y$, then $x * y \leq x * z$, moreover, from Theorem 2 and its corollary, we have

$$
\begin{aligned}
x * y & =(x * z) *((x * z) *(x * y))=(x * z) *((x *(x * y)) * z) \\
& =(x * z) *((x \wedge y) * z)=(x * z) *((x * z) \wedge(y * z)) \\
& =(x * z) *(y * z)
\end{aligned}
$$

Thus, the proof is completed.
Let $(X, *, \leq ; 0)$ be a BCK-algebra, for any $a, b \in X$, the set $\{x \mid x * a \leq b, x \in X\}$ is denote by $A(a, b)$.

Theorem 6. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, if for any $a, b \in X$, there exists a maximum element $c \in A(a, b)$, then X is a $B C K$-algebra with condition (S).

Proof For any $a, b \in X$, there exists a maximum element $c \in A(a, b)$, then for any $z \in A(a, b)$, we have $z * a \leq b, c * a \leq b$, moreover $(z * a) \vee(c * a) \leq b$. By Theorem 2 , we have $(z \vee c) * a \leq b$, therefore $z \vee c \in A(a, b)$. Since c is a maximum element of $A(a, b)$, so $z \vee c=c$, moreover $z \leq z \vee c=c$. Therefore c is a greatest element of $A(a, b)$, thus, X is a BCK-algebra with condition (S).

Corollary Let $(X, *, \leq ; 0)$ be a finite commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, then X is a $B C K$-algebra with condition (S).

Theorem 7. Let $(X, *, \leq ; 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order $\leq, a_{1}, a_{2}, a_{3}, \cdots, a_{s} \in X$, if $a_{1} * a_{2}=a_{2} * a_{3}=\cdots=a_{s-1} * a_{s}=a_{s} * a_{1}$, then $a_{1}=a_{2}=\cdots=a_{s}$.

Proof Take $b=a_{1} * a_{2}=a_{2} * a_{3}=\cdots=a_{s-1} * a_{s}=a_{s} * a_{1}, a=a_{1} \wedge a_{2} \wedge \cdots \wedge a_{s}$, then $a \leq a_{i}(1 \leq i \leq s)$. By Theorem 5, we have $\left(a_{1} * a\right) *\left(a_{2} * a\right)=\left(a_{2} * a\right) *\left(a_{3} * a\right)=\cdots=$ $\left(a_{s-1} * a\right) *\left(a_{s} * a\right)=\left(a_{s} * a\right) *\left(a_{1} * a\right)=b$, so $b \leq a_{i} * a(1 \leq i \leq s)$, moreover we have $b \leq\left(a_{1} * a\right) \wedge\left(a_{2} * a\right) \wedge \cdots \wedge\left(a_{s} * a\right)$. From Theorem 2, we have $b \leq\left(a_{1} \wedge a_{2} \wedge \cdots \wedge a_{s}\right) * a=$ $a * a=0$, so $b=0$, i.e. $a_{1} * a_{2}=a_{2} * a_{3}=\cdots=a_{s-1} * a_{s}=a_{s} * a_{1}=0$, moreover
$a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{s-1} \leq a_{s} \leq a_{1}$, therefore $a_{1}=a_{2}=a_{3}=\cdots=a_{s-1}=a_{s}$. Thus, the proof is completed.

Lemma $3 \operatorname{Let}(S, \wedge, \vee)$ be a distributive lattice, $a, b, c \in S$, if $a \wedge b=a \wedge c, a \vee b=a \vee c$, then $b=c^{[3]}$.

Theorem 8 Let $(X, *, \leq, 0)$ be a commutative $B C K$-algebra and (X, \leq) is a lattice under natural partial order \leq, for any distinct $a_{1}, a_{2}, a_{3} \in X$, if $a_{1} * a_{2}=a_{1} * a_{3}$, then $a_{2} * a_{1} \neq a_{3} * a_{1}$; if $a_{2} * a_{1}=a_{3} * a_{1}$, then $a_{1} * a_{2} \neq a_{1} * a_{3}$.

Proof If $a_{1} * a_{2}=a_{1} * a_{3}$ and $a_{2} * a_{1}=a_{3} * a_{1}$, by Theorem 3 and Theorem 4, we have $a_{1} \wedge a_{2}=a_{1} \wedge a_{3}$ and $a_{1} \vee a_{2}=a_{1} \vee a_{3}$. On the other hand, by the process of the remark 2 of theorem 4 in [1], we have (X, \leq) is a distributive lattice, therefore, from Lemma 3, we have $a_{2}=a_{3}$. It contradicts to the assumption a_{2}, a_{3} are distinct, thus, if $a_{1} * a_{2}=a_{1} * a_{3}$, then $a_{2} * a_{1} \neq a_{3} * a_{1}$; if $a_{2} * a_{1}=a_{3} * a_{1}$, then $a_{1} * a_{2} \neq a_{1} * a_{3}$.

References

[1] Yuan-Hong Lin, Some Results on BCK-algebras, Math. Japon., 37(1992), 529-534
[2] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26
[3] N. Jacobson, Basic Algebra I, 1974

Department of Basic Courses, Jimei University, Xiamen 361021 ,CHinA E-mail: jmLYH 2000 @ $21 \mathrm{CN} . \mathrm{COM}$

