SOME RESULTS ON ALMOST BIIDEALS

Yuan-Hong Lin

Received February 20, 2001; revised May 1, 2001

Abstract

In this paper, we give some relations between biideals and almost biideals, and prove some properties on some special semigroups.

Definition $1^{[1]}$ A nonempty subset T of a semigroup S is a subsemigroup of S if is closed under the operation of S; i.e. if $a, b \in T$, then $a b \in T$.

Definition $2^{[1] \cdot[2]}$ A nonempty subset T of a semigroup S is a two- sided ideal(or simply a biideal or an ideal) if $x, y \in S, t \in T$ imply $x t, t y \in T$.

Definition $3^{[3]}$ A nonempty subset T of a semigroup S is a almost biideal if for any $s \in S$, there exists $x, y \in T$ such that $x s y \in T$.
It is clear that biideal are almost biideal.

Example 1. t Let S be a cyclic group generated by a of order $4, e$ is the identity of $S,\{e, a\}$ is a almost biideal of S, but $\{e, a\}$ is not a subsemigroup of $S,\left\{e, a^{2}\right\}$ is a subsemigroup of S, but $\left\{e, a^{2}\right\}$ is not a almost biideal of S.

Definition $4^{[1]}$ An element a of a semigroup S is regular if $a=$ axa for some $x \in S$. A semigroup S is regular if every element of S is regular. A nonempty subset I of a semigroup S is a regular set of S if every element of I is regular.

Definition $5^{[2]}$ An element a of a semigroup S is quasi regular if $a^{m}=a^{m} x a^{m}$ for some positive integer m and some $x \in S$. A semigroup S is quasi regular if every element of S is quasi regular. A nonempty subset I of a semigroup S is a quasi regular set of S if every element of I is quasi regular.

Definition $6^{[1]}$ An element A of a semigroup S is idempotent if $a^{2}=a$. The set of all idempotent elements of semigroup S is denote by E.

Theorem 1 Let S be a quasi regular semigroup and $E=\{e\}$, then we have

1) for any $y \in S$, there exists some positive integer m and some $x \in S$ satisfy

$$
x y^{m}=y^{m} x=e, y^{m} e=e y^{m}=y^{m}, y e=e y ;
$$

2) $S e=e S$ is a group.
[^0]Proof. By the definition 5 , for any $y \in S$, there exists some positive integer m and some $x \in S$ satisfies $y^{m}=y^{m} x y^{m}$, further we have $\left(y^{m} x\right)^{2}=y^{m} x,\left(x y^{m}\right)^{2}=x y^{m}$. On the other hand, as $E=\{e\}$, so we have $x y^{m}=y^{m} x=e$, moreover $e y^{m}=y^{m} e=y^{m} ; e y=x y^{m} y=$ $x y y^{m}=x y y^{m} e=x y y^{m} y^{m} x=x y^{2 m+1} x, y e=y y^{m} x=y^{m} y x=e y^{m} y x=x y^{m} y^{m} y x=$ $x y^{2 m+1} x$, therefore $e y=y e$, and $S e=e S$.

For any $u \in S e$, there exists $s \in S$, satisfy $u=s e$. Therefore $e u=e s e=s e e=s e^{2}=$ $s e=u, u e=s e e=s e^{2}=s e=u$, then e is the identity of $S e$. On the other hand, there exists some positive integer n and some $t \in S$ satisfies $t s^{n}=s^{n} t=e, s^{n} e=e s^{n}=s^{n}$, se $=e s$. Let $v=s^{n-1} t e$. Thus $u v=s e s^{n-1} t e=e s s^{n-1} t e=e s^{n} t e=e e e=e^{2} e=e e=e^{2}=e$. Similarly, we have $v u=e$.So $S e=e S$ is a group.

Corollary 1. S is a quasi regular semigroup and $E=\{e\}$ (Where e is the identity of S) if and only if S is a group.

Lemma 1. Let B be both a almost biideal and a subsemigroup of a semigroup S, then for any $x, y \in S$, we have $x B y$ is a almost biideal of a semigroup S.

Proof For any $x, y \in S, s \in S$, we have $y s x \in S$. Since B is a almost biideal of a semigroup S, there exists $u, v \in B$ such that uysxv $\in B$. On the other hand, B is a subsemigroup of S, so
$x(u y s x v) y=(x u y) s(x v y) \in x B y$. Therefore $x B y$ is a almost biideal of a semigroup S. Thus, the proof is completed.

Remark 1. Generally, for a semigroup S, there uncertain exists a almost biideal M of S such that for any almost biideal B of S, have $x, y \in S$ satisfies $B=x M y$.

Example 2 Let S be a cyclic group group generated by a of order $4, e$ is the identity of S, there not exists a almost biideal M of S such that for any almost biideal B of S, have $x, y \in S$
satisfies $B=x M y$.

Example 3. There a almost biideal B of a quasi regular semigroup S and $E=\{e\}$, but B is not a biideal of S.

Proof Let S be a infinitely cyclic group generated by a, e is the identity of S, it is clear that S is also a quasi regular semi- group and $E=\{e\}$. Take $B=\left\{e, a, a^{2}, a^{3}, \cdots\right\}$, then B is a almost biideal of S. Because for any $s \in S$, there exists integer m such that $s=a^{m}$, so there exists positive integer $n=|m|+1$,
$a^{n} s a^{n} \in B$, therefore B is a almost biideal of S.
On the other hand, $a^{-1}=e a^{-1} e \notin B$.In fact, if exists integer $n \geq 0$ satisfies $a^{-1}=a^{n}$, then $a^{n+1}=e$.It contradicts to the assumption S is a infinitely cyclic group. Thus, B is not a biideal of S. Hence there exists a proper almost biideal B of a quasi regular semigroup S and $E=\{e\}$.

But we have the conclusions:

Theorem 2. Let B be a subgroup of semigroup S, and also is a almost biideal of semigroup S, then $B=S$.

Proof As B is a almost biideal of semigroup S, then for any $s \in S$, exists $u, v \in B$ satisfies $u s v \in B$. On the other hand, B is a subgroup of semigroup S, so $u^{-1}, v^{-1} \in B$,therefore $s=u^{-1}(u s v) v^{-1}$
$=s \in B$, moreover, $S \subseteq B$. Since $B \subseteq S$, then $B=S$.

Corollary 1. For any a semigroup S, B is a nonempty proper subset of S. If B is a subgroup of S, then B is not a almost biideal of S.

Corollary 2. For any a semigroup S, B is a nonempty proper subset of S. If B is a almost biideal of S, then B is not a subgroup of S.
On the other hand, by the process of the proof of the theorem 2, we have the following conclusions:

Theorem 3. There exists a regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a regular semigroup.
Similarly, there exists a quasi regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a quasi regular
semigroup.

Theorem 4. There exists a proper almost biideal B of a group S.
But we have the following conclusion:

Theorem 5. Let S be a monoid, If S have not exists proper almost biideal, then S is a group.

Proof. Assume contrary. Take e be the identity of S, S is not a group.
Order $B=S-\{e\}$, then esists $x \in S, x$ is not inverse,i.e. for any $y \in S, x y \neq e$.Therefore for any $s \in S$, let $y=s x$, we have $x y=x s x \neq e$, i.e. $x \in B, x s x \in B$. So B is a proper almost biideal of S, it contradicts to the assumption S have not exists proper almost biideal and we have the conclusion.

Lemma $2^{[3]}$. Let S be a semigroup, then S is a group if and only if for any $a \in S$ satisfies $a S a=S$.

Example 4. There exists a regular semigroup S and $u, v \in S$ such that $u S v \neq S$.
Take $S=\{0,1\}$ with the multiplication operation, then S is a regular semigroup, and $0 S 0=\{0\} \neq S . \square$ We have the following conclusion:

Theorem 6 Let B be both a minimal almost biideal and a subsemigroup of S, then B is a subgroup of S, moreover $B=S$.

Proof For any $x \in B$, by the lemma 1, we have $x B x$ is a almost biideal of S. Since $x B x \subseteq B, B$ is a minimal almost biideal of S, so $x B x=B$. On the other hand, B is
also a subsemigroup of S, by the lemma 2 , then B is a group and B is a subgroup of S.Therefore, from the theorem 2 , we have $B=S$.

Finally, I mention the following unsolved problem:
Let B be a minimal almost biideal of a semigroup S, for any $x, y \in S$, is $x B y$ minimal almost biideal of S ?

References

[1] Mario Petrich, Introduction to Semigroups, Chares E. Merrill Publishing Company, A Bell \& Howell Company,Columbus,Ohio, 1973
[2] Bogdanovic S. Semigroups with a System of Subsemigroups, NoviSad, 1985, 1-196
[3] J.M.Howie, An Introduction to Semigroup Theory, Academic Press London New York San Francisco, 1975

[^0]: 2000 Mathematics Subject Classification. 20M12.
 Key words and phrases. Biideal, almost biideal, regular, minimal, group .

