SOME RESULTS ON ALMOST BIIDEALS

YUAN-HONG LIN

Received February 20, 2001; revised May 1, 2001

ABSTRACT. In this paper, we give some relations between biideals and almost biideals, and prove some properties on some special semigroups.

Definition $1^{[1]}$ A nonempty subset T of a semigroup S is a subsemigroup of S if it is closed under the operation of S; i.e. if $a, b \in T$, then $ab \in T$.

Definition $2^{[1],[2]}$ A nonempty subset T of a semigroup S is a two-sided ideal(or simply a biideal or an ideal) if $x, y \in S, t \in T$ imply $xt, ty \in T$.

Definition $3^{[3]}$ A nonempty subset T of a semigroup S is a almost bideal if for any $s \in S$, there exists $x, y \in T$ such that $xsy \in T$. It is clear that bideal are almost bideal.

Example 1. t Let S be a cyclic group generated by a of order 4, e is the identity of $S, \{e, a\}$ is a almost bideal of S, but $\{e, a\}$ is not a subsemigroup of $S, \{e, a^2\}$ is a subsemigroup of S, but $\{e, a^2\}$ is not a almost bideal of S.

Definition $4^{[1]}$ An element a of a semigroup S is regular if a = axa for some $x \in S$. A semigroup S is regular if every element of S is regular. A nonempty subset I of a semigroup S is a regular set of S if every element of I is regular.

Definition $5^{[2]}$ An element a of a semigroup S is **quasi regular** if $a^m = a^m x a^m$ for some positive integer m and some $x \in S$. A semigroup S is **quasi regular** if every element of S is quasi regular. A nonempty subset I of a semigroup S is a **quasi regular set** of S if every element of I is quasi regular.

Definition $6^{[1]}$ An element A of a semigroup S is **idempotent** if $a^2 = a$. The set of all idempotent elements of semigroup S is denote by E.

Theorem 1 Let S be a quasi regular semigroup and $E = \{e\}$, then we have

1) for any $y \in S$, there exists some positive integer m and some $x \in S$ satisfy

 $xy^m = y^m x = e, y^m e = ey^m = y^m, ye = ey;$

2) Se = eS is a group.

²⁰⁰⁰ Mathematics Subject Classification. 20M12.

Key words and phrases. Biideal, almost biideal, regular, minimal, group.

Proof. By the definition 5, for any $y \in S$, there exists some positive integer m and some $x \in S$ satisfies $y^m = y^m x y^m$, further we have $(y^m x)^2 = y^m x, (xy^m)^2 = xy^m$. On the other hand, as $E = \{e\}$, so we have $xy^m = y^m x = e$, moreover $ey^m = y^m e = y^m$; $ey = xy^m y = xyy^m = xyy^m e = xyy^m y^m x = xy^{2m+1}x$, $ye = yy^m x = y^m yx = ey^m yx = xy^m y^m yx = xy^{2m+1}x$, therefore ey = ye, and Se = eS.

For any $u \in Se$, there exists $s \in S$, satisfy u = se. Therefore $eu = ese = see = se^2 = se = u$, $ue = see = se^2 = se = u$, then e is the identity of Se. On the other hand, there exists some positive integer n and some $t \in S$ satisfies $ts^n = s^n t = e, s^n e = es^n = s^n, se = es$. Let $v = s^{n-1}te$. Thus $uv = ses^{n-1}te = ess^{n-1}te = es^nte = eee = e^2e = ee = e^2 = e$. Similarly, we have vu = e. So Se = eS is a group. \Box

Corollary 1. S is a quasi regular semigroup and $E = \{e\}$ (Where e is the identity of S) if and only if S is a group.

Lemma 1. Let B be both a almost bideal and a subsemigroup of a semigroup S, then for any $x, y \in S$, we have xBy is a almost bideal of a semigroup S.

Proof For any $x, y \in S, s \in S$, we have $ysx \in S$. Since B is a almost biddeal of a semigroup S, there exists $u, v \in B$ such that $uysxv \in B$. On the other hand, B is a subsemigroup of S, so

 $x(uysxv)y = (xuy)s(xvy) \in xBy$. Therefore xBy is a almost bideal of a semigroup S. Thus, the proof is completed. \Box

Remark 1. Generally, for a semigroup S, there uncertain exists a almost bideal M of S such that for any almost bideal B of S, have $x, y \in S$ satisfies B = xMy.

Example 2 Let S be a cyclic group group generated by a of order 4, e is the identity of S, there not exists a almost bideal M of S such that for any almost bideal B of S, have $x, y \in S$ satisfies B = xMy.

Example 3. There a almost bideal B of a quasi regular semigroup S and $E = \{e\}$, but B is not a bideal of S.

Proof Let S be a infinitely cyclic group generated by a, e is the identity of S, it is clear that S is also a quasi regular semi- group and $E = \{e\}$. Take $B = \{e, a, a^2, a^3, \dots\}$, then B is a almost bideal of S. Because for any $s \in S$, there exists integer m such that $s = a^m$, so there exists positive integer n = |m| + 1,

 $a^n s a^n \in B$, therefore B is a almost bideal of S.

On the other hand, $a^{-1} = ea^{-1}e \notin B$. In fact, if exists integer $n \ge 0$ satisfies $a^{-1} = a^n$, then $a^{n+1} = e$. It contradicts to the assumption S is a infinitely cyclic group. Thus, B is not a bideal of S. Hence there exists a proper almost bideal B of a quasi regular semigroup S and $E = \{e\}$. \Box

But we have the conclusions:

Theorem 2. Let B be a subgroup of semigroup S, and also is a almost bideal of semigroup S, then B = S.

Proof As B is a almost bideal of semigroup S, then for any $s \in S$, exists $u, v \in B$ satisfies $usv \in B$. On the other hand, B is a subgroup of semigroup S, so $u^{-1}, v^{-1} \in B$, therefore $s = u^{-1}(usv)v^{-1}$

 $= s \in B$, moreover, $S \subseteq B$. Since $B \subseteq S$, then B = S. \Box

Corollary 1. For any a semigroup S, B is a nonempty proper subset of S. If B is a subgroup of S, then B is not a almost bideal of S.

Corollary 2. For any a semigroup S, B is a nonempty proper subset of S. If B is a almost bideal of S, then B is not a subgroup of S. On the other hand, by the process of the proof of the theorem 2, we have the following conclusions:

Theorem 3. There exists a regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a regular semigroup.

Similarly, there exists a quasi regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a quasi regular semigroup.

Theorem 4. There exists a proper almost biideal B of a group S. But we have the following conclusion:

Theorem 5. Let S be a monoid, If S have not exists proper almost biideal, then S is a group.

Proof. Assume contrary. Take e be the identity of S, S is not a group. Order $B = S - \{e\}$, then esists $x \in S, x$ is not inverse, i.e. for any $y \in S, xy \neq e$. Therefore for any $s \in S$, let y = sx, we have $xy = xsx \neq e$, i.e. $x \in B, xsx \in B$. So B is a proper almost bideal of S, it contradicts to the assumption S have not exists proper almost bideal and we have the conclusion. \Box

Lemma $2^{[3]}$. Let S be a semigroup, then S is a group if and only if for any $a \in S$ satisfies aSa = S.

Example 4. There exists a regular semigroup S and $u, v \in S$ such that $uSv \neq S$. Take $S = \{0, 1\}$ with the multiplication operation, then S is a regular semigroup, and $0S0 = \{0\} \neq S$. \Box We have the following conclusion:

Theorem 6 Let B be both a minimal almost bideal and a subsemigroup of S, then B is a subgroup of S, moreover B = S.

Proof For any $x \in B$, by the lemma 1, we have xBx is a almost bideal of S. Since $xBx \subseteq B, B$ is a minimal almost bideal of S, so xBx = B. On the other hand, B is

also a subsemigroup of S, by the lemma 2, then B is a group and B is a subgroup of S. Therefore,from the theorem 2, we have B = S. \Box

Finally, I mention the following unsolved problem:

Let B be a minimal almost bideal of a semigroup S, for any $x, y \in S$, is xBy a minimal almost bideal of S?

References

- Mario Petrich, Introduction to Semigroups, Chares E. Merrill Publishing Company, A Bell & Howell Company, Columbus, Ohio, 1973
- [2] Bogdanovic S. Semigroups with a System of Subsemigroups, NoviSad, 1985, 1-196
- [3] J.M.Howie, An Introduction to Semigroup Theory, Academic Press London New York San Francisco, 1975

Department of Basic Courses, Jimei University, Xiamen 361021, CHINA E-Mail: JM-Lyh 2000 @ 21 cn. com