A SUBSET OF THE CLASS S

VIKRAMADITYA SINGH

Received August 24, 2000; revised May 29, 2001

> ABSTRACT. We investigate some properties of the class of univalent functions $f(z)=$ $z+a_{3} z^{3}+a_{4} z^{4}$, analytic in the unit disc and satisfying $\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq \alpha \leq 2$

Introduction

Let A denote the class of functions analytic in $U=\{z:|z|<1\}$ and have the Taylor series

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{1}
\end{equation*}
$$

and let S denote the well-known subclass of A consisting of univalent functions. A function $f(z) \in S$ is said to be starlike in U if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re} z \frac{f^{\prime}(z)}{f(z)}>0, \quad z \in U \tag{2}
\end{equation*}
$$

In [1] the following theorem was established.
Theorem 1. Let $f(z) \in A$ with $f(z) \neq 0$ for $0<|z|<1$ and let

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right|<1, \quad z \in U \tag{3}
\end{equation*}
$$

Then, $f \in S$.
For $0<\alpha \leq 2$, let $S(\alpha)$ denote the class of functions $f(z) \in A$ that satisfy

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq \alpha, \quad z \in U, \quad f(z) \neq 0, \quad 0<|z|<1 \tag{4}
\end{equation*}
$$

In [3] Theorem 1 was extended to the class $S(\alpha)$ and some results for the class $S(\alpha)$ were obtained. Here we prove the following theorem.

Theorem 2. Let $f(z) \in S(\alpha)$ such that $f^{\prime \prime}(0)=0$, then
(i) $\operatorname{Re} \frac{f(z)}{z} \geq \frac{2}{2+\alpha}, z \in U$,
(ii) f is starlike in $|z| \leq \frac{\sqrt[4]{2}}{\sqrt{\alpha}},(\sqrt{2}<\alpha<2)$. In particular, if $0<\alpha \leq \sqrt{2}$, then $f(z)$ is starshaped in U.
(iii) $\operatorname{Re} f^{\prime}(z)>0$ in $|z| \leq \frac{1}{\sqrt{\alpha}}$.

Items (i), (ii) and (iii) are improvements of results in [3] and in fact (i) and (iii) are sharp as shown by the function

$$
\begin{equation*}
f(z)=\frac{z}{1-\frac{\alpha}{2} z^{2}} \tag{5}
\end{equation*}
$$

Key words and phrases. univalent functions, starlike functions and subordination.

In (ii) the starlikeness of $f(z)$ for $0<\alpha \leq \sqrt{2}$ is in keeping with a result in [2] for a subclass of S that is related to $S(\alpha)$.

We need the notion of subordination. Let $f(z)$ and $g(z)$ be analytic functions in U with $f(0)=g(0)$. Then $f(z)$ is said to be subordinate to $g(z)$, written $f(z) \prec g(z)$ if there exists a function $\omega(z)$ analytic in U with $\omega(0)=0$ and $|\omega(z)|<1, z \in U$ such that $f(z)=g(\omega(z))$, $z \in U$.

Proof of the Theorem

Let

$$
\begin{equation*}
p(z)=\frac{z}{f(z)}-z\left(\frac{z}{f(z)}\right)^{\prime}=z^{2} \frac{f^{\prime}(z)}{f^{2}(z)} \tag{6}
\end{equation*}
$$

In view of the expansion (1) it is easily checked that

$$
\begin{equation*}
\left.\left(\frac{1}{z}-\frac{1}{f(z)}\right)\right|_{z=0}=a_{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right)^{\prime}=2 z^{2}\left(a_{3}-a_{2}^{2}\right)+\ldots \tag{8}
\end{equation*}
$$

From (6) we obtain

$$
\begin{equation*}
p^{\prime}(z)=-z\left(\frac{z}{f(z)}\right)^{\prime \prime}=\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right)^{\prime} \tag{9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq \alpha \Longleftrightarrow z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime} \prec \alpha z \tag{10}
\end{equation*}
$$

and equivalently

$$
\begin{equation*}
z\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right)^{\prime} \prec \alpha z \tag{11}
\end{equation*}
$$

On account of (8), (11) can be written in the form

$$
\begin{equation*}
z\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right)^{\prime}=\alpha \omega(z), \quad \omega(0)=\omega^{\prime}(0)=0, \quad|\omega(z)| \leq|z|^{2} \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=1+\alpha \int_{0}^{1} \frac{\omega(t z)}{t} d t \tag{13}
\end{equation*}
$$

Further, because of the identity $z^{2}\left(\frac{1}{z}-\frac{1}{f(z)}\right)^{\prime}=\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1$, and using (7) with the hypothesis $a_{2}=0$, we obtain in view of (13)

$$
\begin{equation*}
\frac{z}{f(z)}=1-\alpha \int_{0}^{1} \frac{\omega(t z)(1-t)}{t^{2}} d t \tag{14}
\end{equation*}
$$

Indeed, if $\omega(z)=\sum_{n=2}^{\infty} b_{n} z^{n}$ then by (13), $z^{2}\left(\frac{1}{z}-\frac{1}{f(z)}\right)^{\prime}=\alpha \sum_{n=2}^{\infty} \frac{b_{n} z^{n}}{n}$, and on dividing by z^{2} and integrating we obtain, because $a_{2}=0$,

$$
\frac{1}{z}-\frac{1}{f(z)}=\alpha \sum_{n=2}^{\infty} \frac{b_{n} z^{n-1}}{n(n-1)}=\frac{\alpha}{z} \int_{0}^{1} \frac{\omega(t z)}{t^{2}}(1-t) d t
$$

which is (14).

As $|\omega(z)| \leq|z|^{2},(14)$ gives

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq \frac{\alpha}{2}|z|^{2} \tag{15}
\end{equation*}
$$

Since $0<\alpha \leq 2$ this yields

$$
\begin{equation*}
\operatorname{Re} \frac{z}{f(z)} \geq 1-\frac{\alpha}{2} \tag{16}
\end{equation*}
$$

which is sharp in view of (5). Further, (15) is equivalent to

$$
\left|\frac{f(z)}{z}-\frac{1}{1-\frac{\alpha^{2}}{4}|z|^{4}}\right| \leq \frac{\alpha \frac{|z|^{2}}{2}}{1-\frac{\alpha^{2}}{4}|z|^{4}} .
$$

This yields

$$
\begin{equation*}
\operatorname{Re} \frac{f(z)}{z} \geq \frac{1}{1+\frac{\alpha}{2}|z|^{2}} \geq \frac{1}{1+\frac{\alpha}{2}} \tag{17}
\end{equation*}
$$

which establishes (i).
From (13) we obtain

$$
z \frac{f^{\prime}(z)}{f(z)}=\frac{f(z)}{z}\left(1+\alpha \omega_{1}(z)\right), \quad \omega_{1}(z)=\int_{0}^{1} \frac{\omega(t z)}{t} d t
$$

which leads to

$$
\begin{align*}
\left|\arg \left(z \frac{f^{\prime}(z)}{f(z)}\right)\right| & =\left|\arg \frac{f(z)}{z}+\arg \left(1+\alpha \omega_{1}(z)\right)\right| \\
& \leq\left|\arg \frac{f(z)}{z}\right|+\left|\arg \left(1+\alpha \omega_{1}(z)\right)\right| \\
& \leq 2 \sin ^{-1}\left(\alpha \frac{|z|^{2}}{2}\right) \tag{18}
\end{align*}
$$

because of (15) and the fact that $\left|\omega_{1}(z)\right| \leq \frac{|z|^{2}}{2}$.
As $\operatorname{Re} z \frac{f^{\prime}(z)}{f(z)}>0 \Longleftrightarrow\left|\arg \left(z \frac{f^{\prime}(z)}{f(z)}\right)\right| \leq \frac{\pi}{2}$, we obtain from (18)

$$
\operatorname{Re} z \frac{f^{\prime}(z)}{f(z)}>0 \text { if }|z|^{2} \leq \frac{\sqrt{2}}{\alpha}
$$

This establishes (ii).
Once again, from (13) we get

$$
f^{\prime}(z)=\left(\frac{f(z)}{z}\right)^{2}\left(1+\alpha \omega_{1}(z)\right)
$$

and a similar argument gives

$$
\left|\arg f^{\prime}(z)\right| \leq 3 \sin ^{-1}\left(\alpha \frac{|z|^{2}}{2}\right)
$$

which gives (iii). This completes the proof of the theorem.
It may be mentioned that in [2] the class of functions $f(z)$ satisfying $\left|z^{2} \frac{f^{\prime}(z)}{f^{2}(z)}-1\right| \leq \mu$ had been considered and in the present situation $\mu=\frac{\alpha}{2}$.

References

[1] M. Nunokawa, M. Obradovic and S. Owa, One criterion for univalency, Proceedings American Mathematical Society, 106(1989), 1035-1037.
[2] V. Singh, On a class of univalent functions, International Journal of Mathematics and Mathematical Sciences, 23(2000), 855-858.
[3] D. Yang, J. Liu, On a class of univalent functions, International Journal of Mathematics and Mathematical Sciences, 22(1999), 605-610.
Vikramaditya Singh, 3A/95 Azad Nagar, Kanpur UP 208002, India.
Tel \#: 91-512-560278.

