A SUBSET OF THE CLASS S

VIKRAMADITYA SINGH

Received August 24, 2000; revised May 29, 2001

ABSTRACT. We investigate some properties of the class of univalent functions f(z) = $z + a_3 z^3 + a_4 z^4$, analytic in the unit disc and satisfying $\left| \left(\frac{z}{f(z)} \right)'' \right| \le \alpha \le 2$.

Introduction

Let A denote the class of functions analytic in $U = \{z : |z| < 1\}$ and have the Taylor series

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

and let S denote the well-known subclass of A consisting of univalent functions. A function $f(z) \in S$ is said to be starlike in U if and only if it satisfies

(2)
$$\operatorname{Re} z \frac{f'(z)}{f(z)} > 0, \quad z \in U.$$

In [1] the following theorem was established.

Theorem 1. Let $f(z) \in A$ with $f(z) \neq 0$ for 0 < |z| < 1 and let

(3)
$$\left| \left(\frac{z}{f(z)} \right)'' \right| < 1, \quad z \in U.$$

Then, $f \in S$.

For $0 < \alpha \leq 2$, let $S(\alpha)$ denote the class of functions $f(z) \in A$ that satisfy

(4)
$$\left| \left(\frac{z}{f(z)} \right)'' \right| \leq \alpha, \quad z \in U, \quad f(z) \neq 0, \quad 0 < |z| < 1.$$

In [3] Theorem 1 was extended to the class $S(\alpha)$ and some results for the class $S(\alpha)$ were obtained. Here we prove the following theorem.

Theorem 2. Let $f(z) \in S(\alpha)$ such that f''(0) = 0, then

- (i) $Re \frac{f(z)}{z} \ge \frac{2}{2+\alpha}, z \in U$, (ii) f is starlike in $|z| \le \frac{\sqrt[4]{2}}{\sqrt{\alpha}}$, $(\sqrt{2} < \alpha < 2)$. In particular, if $0 < \alpha \le \sqrt{2}$, then f(z) is
- (iii) Re f'(z) > 0 in $|z| \le \frac{1}{\sqrt{\alpha}}$.

Items (i), (ii) and (iii) are improvements of results in [3] and in fact (i) and (iii) are sharp as shown by the function

(5)
$$f(z) = \frac{z}{1 - \frac{\alpha}{2}z^2}.$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. univalent functions, starlike functions and subordination.

VIKRAMADITYA SINGH

In (ii) the starlikeness of f(z) for $0 < \alpha \le \sqrt{2}$ is in keeping with a result in [2] for a subclass of S that is related to $S(\alpha)$.

We need the notion of subordination. Let f(z) and g(z) be analytic functions in U with f(0) = g(0). Then f(z) is said to be subordinate to g(z), written $f(z) \prec g(z)$ if there exists a function $\omega(z)$ analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$, $z \in U$ such that $f(z) = g(\omega(z))$, $z \in U$.

Proof of the Theorem

Let

(6)
$$p(z) = \frac{z}{f(z)} - z \left(\frac{z}{f(z)}\right)' = z^2 \frac{f'(z)}{f^2(z)}.$$

In view of the expansion (1) it is easily checked that

(7)
$$\left(\frac{1}{z} - \frac{1}{f(z)}\right)\Big|_{z=0} = a_2$$

and

(8)
$$z\left(\frac{z^2f'(z)}{f^2(z)}\right)' = 2z^2(a_3 - a_2^2) + \dots$$

From (6) we obtain

(9)
$$p'(z) = -z \left(\frac{z}{f(z)}\right)'' = \left(\frac{z^2 f'(z)}{f^2(z)}\right)'.$$

Thus

(10)
$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le \alpha \iff z^2 \left(\frac{z}{f(z)} \right)'' \prec \alpha z$$

and equivalently

(11)
$$z\left(\frac{z^2f'(z)}{f^2(z)}\right)' \prec \alpha z$$

On account of (8), (11) can be written in the form

(12)
$$z\left(\frac{z^2 f'(z)}{f^2(z)}\right)' = \alpha \omega(z), \quad \omega(0) = \omega'(0) = 0, \quad |\omega(z)| \le |z|^2.$$

Therefore

(13)
$$\frac{z^2 f'(z)}{f^2(z)} = 1 + \alpha \int_0^1 \frac{\omega(tz)}{t} dt$$

Further, because of the identity $z^2 \left(\frac{1}{z} - \frac{1}{f(z)}\right)' = \frac{z^2 f'(z)}{f^2(z)} - 1$, and using (7) with the hypothesis $a_2 = 0$, we obtain in view of (13)

(14)
$$\frac{z}{f(z)} = 1 - \alpha \int_0^1 \frac{\omega(tz)(1-t)}{t^2} dt.$$

Indeed, if $\omega(z) = \sum_{n=2}^{\infty} b_n z^n$ then by (13), $z^2 \left(\frac{1}{z} - \frac{1}{f(z)}\right)' = \alpha \sum_{n=2}^{\infty} \frac{b_n z^n}{n}$, and on dividing by z^2 and integrating we obtain, because $a_2 = 0$,

$$\frac{1}{z} - \frac{1}{f(z)} = \alpha \sum_{n=2}^{\infty} \frac{b_n z^{n-1}}{n(n-1)} = \frac{\alpha}{z} \int_0^1 \frac{\omega(tz)}{t^2} (1-t) dt$$

which is (14).

As
$$|\omega(z)| \leq |z|^2$$
, (14) gives

(15)
$$\left|\frac{z}{f(z)} - 1\right| \le \frac{\alpha}{2}|z|^2.$$

Since $0 < \alpha \leq 2$ this yields

(16)
$$Re \ \frac{z}{f(z)} \ge 1 - \frac{\alpha}{2}$$

which is sharp in view of (5). Further, (15) is equivalent to

$$\left|\frac{f(z)}{z} - \frac{1}{1 - \frac{\alpha^2}{4}|z|^4}\right| \le \frac{\alpha \frac{|z|^2}{2}}{1 - \frac{\alpha^2}{4}|z|^4}$$

This yields

(17)
$$Re \; \frac{f(z)}{z} \ge \frac{1}{1 + \frac{\alpha}{2}|z|^2} \ge \frac{1}{1 + \frac{\alpha}{2}}$$

which establishes (i).

From (13) we obtain

$$z\frac{f'(z)}{f(z)} = \frac{f(z)}{z}(1 + \alpha\omega_1(z)), \quad \omega_1(z) = \int_0^1 \frac{\omega(tz)}{t} dt$$

which leads to

(18)

$$\begin{aligned} \left| \arg\left(z\frac{f'(z)}{f(z)}\right) \right| &= \left| \arg\frac{f(z)}{z} + \arg(1 + \alpha\omega_1(z)) \right| \\ &\leq \left| \arg\frac{f(z)}{z} \left| + \right| \arg(1 + \alpha\omega_1(z)) \right| \\ &\leq 2\sin^{-1}\left(\alpha\frac{|z|^2}{2}\right) \end{aligned}$$

because of (15) and the fact that $|\omega_1(z)| \leq \frac{|z|^2}{2}$. As $Re \ z \frac{f'(z)}{f(z)} > 0 \iff \left| \arg\left(z \frac{f'(z)}{f(z)} \right) \right| \leq \frac{\pi}{2}$, we obtain from (18)

$$Re \ z \frac{f'(z)}{f(z)} > 0 \quad if \quad |z|^2 \le \frac{\sqrt{2}}{\alpha}.$$

This establishes (ii).

Once again, from (13) we get

$$f'(z) = \left(\frac{f(z)}{z}\right)^2 (1 + \alpha \omega_1(z))$$

and a similar argument gives

$$|\arg f'(z)| \le 3\sin^{-1}\left(\alpha \frac{|z|^2}{2}\right)$$

which gives (iii). This completes the proof of the theorem.

It may be mentioned that in [2] the class of functions f(z) satisfying $\left|z^2 \frac{f'(z)}{f^2(z)} - 1\right| \le \mu$ had been considered and in the present situation $\mu = \frac{\alpha}{2}$.

VIKRAMADITYA SINGH

References

- M. Nunokawa, M. Obradovic and S. Owa, One criterion for univalency, Proceedings American Mathematical Society, 106(1989), 1035-1037.
- [2] V. Singh, On a class of univalent functions, International Journal of Mathematics and Mathematical Sciences, 23(2000), 855-858.
- [3] D. Yang, J. Liu, On a class of univalent functions, International Journal of Mathematics and Mathematical Sciences, 22(1999), 605-610.

Vikramaditya Singh, 3A/95 Azad Nagar, Kanpur UP 208002, India. Tel #: 91-512-560278.