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EXTENSIONS OF FUZZY IDEALS IN BCK-ALGEBRAS

YOUNG BAE JUN, EUN HwaN ROH aND HEE S1k Kim
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ABSTRACT. An extension of a fuzzy ideal in a BCK-algebra is established.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [6]. Since its inception, the theory
of fuzzy sets has developed in many directions and is finding applications in a wide variety
of fields. In [4], Rosenfeld used this concept to develop the theory of fuzzy groups. For
the first time, Xi [5] applied this concept to BCK-algebras. Some elementary properties of
fuzzy ideals in BCK-algebras were studied by Xi [5] and Jun [1, 2]. The purpose of this
paper is to construct an extension of a fuzzy ideal in a BCK-algebra. Let S be a subalgebra
of a BCK-algebra X. We give an extension of a fuzzy ideal p of S to a fuzzy ideal p® of X
such that g and p® have the same image.

2. Preliminaries

A BCK-algebra is an algebra (X; *,0) of type (2, 0) satisfying the following axioms:

(D) ((x*xy)*(x*kz))*(zxy) =0,

(IN) (2 * (z xy)) xy =0,

(II) z « 2 = 0,

(IV) 0«2 =0,

(V) 2 +y =0 and y * 2 = 0 imply that = y,
for all z,y,z € X. A partial ordering < on X can be defined by = < y if and only if z+y = 0.

A nonempty subset S of a BCK-algebra X is called a subalgebra of X if v xy € S
whenever z,y € S.

A nonempty subset I of a BCK-algebra X is called an ideal of X if

(i) 0 eI,

(ii) e *y € I and y € I imply that « € I.

We note that the intersection of all ideals of a BCK-algebra X is also an ideal of X. Let
I be a subset of a BCK-algebra X. The ideal generated by I is the intersection of all ideals
of X which contain I. Let A be a totally ordered set and let {I, | @ € A} be a family of
ideals of a BCK-algebra X such that for all a,8 € A, 8 > «a if and only if Ig C I,. Then

J I, is an ideal of X.
aEA

By a fuzzy set p in a nonempty set X, we mean a function g from X into the closed
interval [0, 1]. For o € [0, 1], let

o = {o € X | p(a) = a.

Then py is called a level subset of X.
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A fuzzy set p in a set X has the sup property if for any subset T of X, there exists
to € T such that p(to) = sup p(t).
teT

Definition 2.1. [5] A fuzzy set p in a BCK-algebra X is called a fuzzy ideal of X if it
satisfies:

(1) p(0) > p(x) for all z € X|

(i) p(x) = minfp(e +y), p(y)} for all w,y € X.

Lemma 2.2. [5] A fuzzy set p in a BCK-algebra X 1s a fuzzy ideal of X if and only if for
every o € [0,1], pta 15 an ideal of a BCK-algebra X, when o # 0.
3. Main Results
Theorem 3.1. Let {I, | a € A} be a collection of ideals of a BCK-algebra X such that
)X = U I,
a€A
(i) B > a if and only if Ig C I for all o, € A.
Define a fuzzy set i X by, for all x € X

p(z) =sup{a € Az € I,}.

Then p is a fuzzy ideal of X.

Proof. For any (8 € [0, 1], we consider the following two cases:
(1) B=sup{a € A | a < B} and (2) 8 #sup{a € A | o < 5}
For the case (1), we know that

re€ugerel,forala<feoze ) L,
a<f

whence g = [ Ia, which is an ideal of X. Case (2) implies that there exists ¢ > 0 such

a<lf
that (8 — ¢, 8) N A = 0. We claim that g = |J Io. If « € | I, then @ € I, for some
a>f3 a>f3
a > . It follows that p(z) > a > 3, so that @ € ug. Conversely if & |J I, then « ¢ I,

a>p
for all @ > 3, which implies that « & I, for all & > 3 — ¢, that is, if € [, then o < 3 —¢.

Thus p(x) < 8 —¢, and so & pg. Therefore g = |J I, which is an ideal of X. Using
a>p
Lemma 2.2, we know that u is a fuzzy ideal of X. O

Definition 3.2. [3] Let S be a nonempty set. By an extension of fuzzy set pin S to a
fuzzy set v in a set X containing S, we mean a fuzzy set v in X such that v = g in §.

Lemma 3.3. [3] Let S be a nonempty subset of a set X and let u be a fuzzy set in S such
that p has the sup property. If B ={Bqs | o € Im(p1)} 1s a collection of subsets of X such
that

) U Ba=X

()

(i) B8 > a if and only if Bg C By for all o, 8 € Im(u);

(iii) pa N Bg = pg for all a,p € Im(p), § > a;
then p has a unique extension to a fuzzy set p® in X such that (1°)o = Bq for all o € Im(pu)
and Im(p¢) = Im(p).
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Let I be a subset of a BCK-algebra X. The ideal generated by I, written 1€, is defined
to be the intersection of all ideals of X which contain I. Note that

IF={xeX|(--((z*a1)*az)*--)*a, =0 for some ay,aq,--- ,a, € I}.

Note also that if I is an ideal of X, then I¢ = 1.

Proposition 3.4. Let S be a subalgebra of a BCK-algebra X. If I is an ideal of S, then
Snie=1.

Proof. Clearly I C SN I¢ Let x € SNI€. Then there exist ay,a2, ---,a, € I such that

(...((x*al)*az)*...)*an:0.

Note that a1, as,---a, € S. Since I is an ideal of S, it follows that « € I so that SNI°® C I,
ending the proof. O

Proposition 3.5. Let p be a fuzzy set in a BCK-algebra X and let o, € Im(u) be such
that o < 3. Then pg C po. Moreover if (1 is a fuzzy ideal of X then (15)° C (ta)®.

Proof. Clearly g C 1o whenever a < . Let z,y € X be such that u(z) = o and p(y) = 3,
respectively. Since p(z) = a < 8 = p(y), it follows that = € po but @ ¢ pg. Therefore
pg C po. If pis a fuzzy ideal of X, then p, and p1g are ideals of X (see Lemma 2.2). Hence
(1g)° = pg C pa = (fta)?, ending the proof. O

Theorem 3.6. Let S be a subalgebra of a BCK-algebra X and let p be a fuzzy ideal of S

such that p has the sup property. If | (pa)® =X, then p has a unique extension to
acIm(p)

a fuzzy ideal ¢ of X such that (1) = (1a)¢ for all o € Im(p) and Im(p®) = Im(p).

Proof. Since > « if and only if ug C pe for all o, 8 € Im(p), it follows that 3 > o if
and only if ()¢ C (tta)®. If we let Bo = (fta)?, then by Lemma 3.3 we know that p has
a unique extension to a fuzzy set pu® in X such that (u)y = (o )¢ for all & € Im(p) and
Im(p®) = Im(p). Noticing that (1%)s = (po)° is an ideal of X, and using Lemma 2.2, we
conclude that p€ is a fuzzy ideal of X. This completes the proof. O
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