EXTENSIONS OF FUZZY IDEALS IN BCK-ALGEBRAS

YOUNG BAE JUN, EUN HWAN ROH AND HEE SIK KIM

Received July 31, 2001

ABSTRACT. An extension of a fuzzy ideal in a BCK-algebra is established.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [6]. Since its inception, the theory of fuzzy sets has developed in many directions and is finding applications in a wide variety of fields. In [4], Rosenfeld used this concept to develop the theory of fuzzy groups. For the first time, Xi [5] applied this concept to BCK-algebras. Some elementary properties of fuzzy ideals in BCK-algebras were studied by Xi [5] and Jun [1, 2]. The purpose of this paper is to construct an extension of a fuzzy ideal in a BCK-algebra. Let S be a subalgebra of a BCK-algebra X. We give an extension of a fuzzy ideal μ of S to a fuzzy ideal μ^{ϵ} of X such that μ and μ^{ϵ} have the same image.

2. Preliminaries

A BCK-algebra is an algebra (X; *, 0) of type (2, 0) satisfying the following axioms:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) 0 * x = 0,

(V) x * y = 0 and y * x = 0 imply that x = y,

for all $x, y, z \in X$. A partial ordering \leq on X can be defined by $x \leq y$ if and only if x * y = 0. A nonempty subset S of a BCK-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$.

A nonempty subset I of a BCK-algebra X is called an *ideal* of X if

(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$.

We note that the intersection of all ideals of a BCK-algebra X is also an ideal of X. Let I be a subset of a BCK-algebra X. The ideal generated by I is the intersection of all ideals of X which contain I. Let Λ be a totally ordered set and let $\{I_{\alpha} \mid \alpha \in \Lambda\}$ be a family of ideals of a BCK-algebra X such that for all $\alpha, \beta \in \Lambda, \beta > \alpha$ if and only if $I_{\beta} \subset I_{\alpha}$. Then $\bigcup_{\alpha \in \Lambda} I_{\alpha}$ is an ideal of X.

By a fuzzy set μ in a nonempty set X, we mean a function μ from X into the closed interval [0, 1]. For $\alpha \in [0, 1]$, let

$$\mu_{\alpha} = \{ x \in X \mid \mu(x) \ge \alpha \}.$$

Then μ_{α} is called a *level subset* of X.

⁽i) $0 \in I$,

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 94D05.

Key words and phrases. Fuzzy ideal, extension of fuzzy ideal.

The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

A fuzzy set μ in a set X has the sup property if for any subset T of X, there exists $t_0 \in T$ such that $\mu(t_0) = \sup \mu(t)$.

Definition 2.1. [5] A fuzzy set μ in a BCK-algebra X is called a *fuzzy ideal* of X if it satisfies:

(i) $\mu(0) \ge \mu(x)$ for all $x \in X$, (ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Lemma 2.2. [5] A fuzzy set μ in a BCK-algebra X is a fuzzy ideal of X if and only if for every $\alpha \in [0, 1]$, μ_{α} is an ideal of a BCK-algebra X, when $\mu_{\alpha} \neq \emptyset$.

3. Main Results

Theorem 3.1. Let $\{I_{\alpha} \mid \alpha \in \Lambda\}$ be a collection of ideals of a BCK-algebra X such that (i) $X = \bigcup_{\alpha \in \Lambda} I_{\alpha},$

(ii) $\beta > \alpha$ if and only if $I_{\beta} \subset I_{\alpha}$ for all $\alpha, \beta \in \Lambda$. Define a fuzzy set μ in X by, for all $x \in X$,

$$\mu(x) = \sup\{\alpha \in \Lambda \mid x \in I_{\alpha}\}.$$

Then μ is a fuzzy ideal of X.

Proof. For any $\beta \in [0, 1]$, we consider the following two cases:

(1)
$$\beta = \sup\{\alpha \in \Lambda \mid \alpha < \beta\}$$
 and (2) $\beta \neq \sup\{\alpha \in \Lambda \mid \alpha < \beta\}.$

For the case (1), we know that

$$x \in \mu_{\beta} \Leftrightarrow x \in I_{\alpha} \text{ for all } \alpha < \beta \Leftrightarrow x \in \bigcap_{\alpha < \beta} I_{\alpha},$$

whence $\mu_{\beta} = \bigcap_{\alpha < \beta} I_{\alpha}$, which is an ideal of X. Case (2) implies that there exists $\varepsilon > 0$ such that $(\beta - \varepsilon, \beta) \cap \Lambda = \emptyset$. We claim that $\mu_{\beta} = \bigcup_{\alpha \ge \beta} I_{\alpha}$. If $x \in \bigcup_{\alpha \ge \beta} I_{\alpha}$, then $x \in I_{\alpha}$ for some $\alpha \ge \beta$. It follows that $\mu(x) \ge \alpha \ge \beta$, so that $x \in \mu_{\beta}$. Conversely if $x \notin \bigcup_{\alpha \ge \beta} I_{\alpha}$, then $x \notin I_{\alpha}$ for all $\alpha \geq \beta$, which implies that $x \notin I_{\alpha}$ for all $\alpha > \beta - \varepsilon$, that is, if $x \in \overline{I_{\alpha}}$ then $\alpha \leq \beta - \varepsilon$. Thus $\mu(x) \leq \beta - \varepsilon$, and so $x \notin \mu_{\beta}$. Therefore $\mu_{\beta} = \bigcup_{\alpha \geq \beta} I_{\alpha}$, which is an ideal of X. Using Lemma 2.2, we know that μ is a fuzzy ideal of X.

Definition 3.2. [3] Let S be a nonempty set. By an *extension* of fuzzy set μ in S to a fuzzy set ν in a set X containing S, we mean a fuzzy set ν in X such that $\nu = \mu$ in S.

Lemma 3.3. [3] Let S be a nonempty subset of a set X and let μ be a fuzzy set in S such that μ has the sup property. If $\mathcal{B} = \{B_{\alpha} \mid \alpha \in \operatorname{Im}(\mu)\}\$ is a collection of subsets of X such that

(i) $\bigcup_{\alpha \in \operatorname{Im}(\mu)} B_{\alpha} = X;$

(ii) $\beta > \alpha$ if and only if $B_{\beta} \subset B_{\alpha}$ for all $\alpha, \beta \in \text{Im}(\mu)$;

(iii) $\mu_{\alpha} \cap B_{\beta} = \mu_{\beta}$ for all $\alpha, \beta \in \text{Im}(\mu), \beta \geq \alpha$;

then μ has a unique extension to a fuzzy set μ^e in X such that $(\mu^e)_{\alpha} = B_{\alpha}$ for all $\alpha \in \text{Im}(\mu)$ and $\operatorname{Im}(\mu^e) = \operatorname{Im}(\mu)$.

Let I be a subset of a BCK-algebra X. The ideal generated by I, written I^e , is defined to be the intersection of all ideals of X which contain I. Note that

$$I^{e} = \{x \in X \mid (\cdots ((x * a_{1}) * a_{2}) * \cdots) * a_{n} = 0 \text{ for some } a_{1}, a_{2}, \cdots, a_{n} \in I\}$$

Note also that if I is an ideal of X, then $I^e = I$.

Proposition 3.4. Let S be a subalgebra of a BCK-algebra X. If I is an ideal of S, then $S \cap I^e = I$.

Proof. Clearly $I \subseteq S \cap I^{\epsilon}$. Let $x \in S \cap I^{\epsilon}$. Then there exist $a_1, a_2, \dots, a_n \in I$ such that

$$(\cdots ((x \ast a_1) \ast a_2) \ast \cdots) \ast a_n = 0.$$

Note that $a_1, a_2, \dots, a_n \in S$. Since I is an ideal of S, it follows that $x \in I$ so that $S \cap I^e \subseteq I$, ending the proof.

Proposition 3.5. Let μ be a fuzzy set in a BCK-algebra X and let $\alpha, \beta \in \text{Im}(\mu)$ be such that $\alpha < \beta$. Then $\mu_{\beta} \subseteq \mu_{\alpha}$. Moreover if μ is a fuzzy ideal of X then $(\mu_{\beta})^e \subseteq (\mu_{\alpha})^e$.

Proof. Clearly $\mu_{\beta} \subseteq \mu_{\alpha}$ whenever $\alpha < \beta$. Let $x, y \in X$ be such that $\mu(x) = \alpha$ and $\mu(y) = \beta$, respectively. Since $\mu(x) = \alpha < \beta = \mu(y)$, it follows that $x \in \mu_{\alpha}$ but $x \notin \mu_{\beta}$. Therefore $\mu_{\beta} \subsetneq \mu_{\alpha}$. If μ is a fuzzy ideal of X, then μ_{α} and μ_{β} are ideals of X (see Lemma 2.2). Hence $(\mu_{\beta})^{e} = \mu_{\beta} \subsetneq \mu_{\alpha} = (\mu_{\alpha})^{e}$, ending the proof.

Theorem 3.6. Let S be a subalgebra of a BCK-algebra X and let μ be a fuzzy ideal of S such that μ has the sup property. If $\bigcup_{\alpha \in \text{Im}(\mu)} (\mu_{\alpha})^e = X$, then μ has a unique extension to

a fuzzy ideal μ^e of X such that $(\mu^e)_{\alpha} = (\mu_{\alpha})^e$ for all $\alpha \in \operatorname{Im}(\mu)$ and $\operatorname{Im}(\mu^e) = \operatorname{Im}(\mu)$.

Proof. Since $\beta > \alpha$ if and only if $\mu_{\beta} \subset \mu_{\alpha}$ for all $\alpha, \beta \in \text{Im}(\mu)$, it follows that $\beta > \alpha$ if and only if $(\mu_{\beta})^e \subset (\mu_{\alpha})^e$. If we let $B_{\alpha} = (\mu_{\alpha})^e$, then by Lemma 3.3 we know that μ has a unique extension to a fuzzy set μ^e in X such that $(\mu^e)_{\alpha} = (\mu_{\alpha})^e$ for all $\alpha \in \text{Im}(\mu)$ and $\text{Im}(\mu^e) = \text{Im}(\mu)$. Noticing that $(\mu^e)_{\alpha} = (\mu_{\alpha})^e$ is an ideal of X, and using Lemma 2.2, we conclude that μ^e is a fuzzy ideal of X. This completes the proof. \Box

References

- Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK(BCI)- algebras, Math. Japonica 38 (1993), 67-71.
- [2] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japonica 42(2) (1995), 333-335.
- [3] D. S. Malik and J. N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets and Systems 45 (1992), 245 - 251.
- [4] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [5] O. G. Xi, Fuzzy BCK-algebra, Math. Japonica 36 (1991), 935-942.
- [6] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338-353.

Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail : ybjun@nongae.gsnu.ac.kr

E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea E-mail : ehroh@ns.chinju-e.ac.kr

H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea E-mail : heekim@hanyang.ac.kr