ON THE BCI-KG PART OF BCI-ALGEBRAS

ZHAN JIANMING AND TAN ZHISONG

Received May 1, 2001

ABSTRACT. In this paper, we introduce the concept of BCI-KG part BCI-algebras and study their properties.

1 Introduction We recall some definitions and elementary properties. The following identities hold for any BCI-algebra X:

- (1) x * 0 = x;
- $(2) (x * \gamma) * z = (x * z) * \gamma$
- (3) $0 * (x * \gamma) = (0 * x) * (0 * \gamma)$

A nonempty subset A of a *BCI*-algebra X is called an ideal of X if $0 \in A$ and if $x * \gamma \in A$ and $\gamma \in A$ imply that $x \in A$. An ideal A of a *BCI*-algebra X is closed if $0 * x \in A$ for every $x \in A$.

For any elements x, γ in a *BCI*-algebra X, let us write $x * \gamma^n$ for $(\cdots (x * \gamma) * \gamma) * \cdots)$, where γ occurs n times.

Definition 1 For any *BCI*-algebra X and k a positive integer, the set $N_k(X) = \{x \in X \mid 0 * x^k = 0\}$. If $N_k(X) = 0$, then we say that X is a kp-semisimple *BCI*-algebra. In particular, k = 1, it's a *p*-semisimple *BCI*-algebra.

Definition 2 Let X be a BCI-algebra and K a positive integer. For any subset S of X, we difine

$$G_K(S) = \{ x \in S \mid 0 * x^k = x \}$$

In particular, if S = X, then we say that $G_K(X)$ is the BCI-KG part of X.

Definition 3 A nonempty subset I of a BCI-algebra X is called a k-ideal of X if

- $(1) \ 0 \in I;$
- (2) $x * \gamma^k \in I$ and $\gamma \in I$ imply $x \in I$.

Lemma ([1]) For any BCI-algebra X and any positive integer k,

- (1) $0 * (x * \gamma)^k = (0 * x^k) * (0 * \gamma^k)$
- $(2) \ 0 * (0 * x)^k = 0 * (0 * x^k)$
- (3) $(x * \gamma^k) * z^k = (x * z^k) * \gamma^k$
- $(4) \ (0 * x^m) * x^n = 0 * x^{m+n}$

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BCI-KG Part, KP-semisimple; K-ideal; Closed ideal.

Proposition 1 $G_K(X) \cap N_K(X) = 0$

It's obvious.

Proposition 2 If S is a subalgebra of a BCI-algebra X, then $G_K(S)$ is a subalgebra of X.

Proof Let $x, \gamma \in G_K(S)$, then $0 * x^k = x$, $0 * \gamma^k = \gamma$ and $x, \gamma \in S$. Hence $0 * (x * \gamma)^k = (0 * x^k) * (0 * \gamma^k) = x * \gamma$ and $x * \gamma \in S$, because S is a subalgebra. Therefore $x * \gamma \in G_K(S)$, which completes the proof.

Proposition 3 Let X be a BCI-algebra. If $G_K(X) = X$, then X is Kp-semisimple.

Proof Assume that $G_K(X) = X$, then by proposition 1, $0 = G_K(X) \cap N_K(X) = X \cap N_K(X) = N_K(X)$. Hence X is kp-semisimple.

2. Main Results

Then

Theorem 1 Let X be a BCI-algebra and K a positive integer, for any subalgebra S of X. If $G_K(S)$ is a k-ideal of X, then for any $x, \gamma \in N_K(X)$ and $a, b \in G_K(S)$,

 $x * a^k = \gamma * b^k$ implies $x = \gamma$ and a = b.

Proof Let $G_K(S)$ be a k-ideal of X. Assume that $x * a^k = \gamma * b^k$ for any $x, \gamma \in N_K(X)$ and $a, b \in G_K(S)$.

 $a = 0 * a^{k} = (0 * x^{k}) * (0 * a^{k})^{k} = 0 * (x * a^{k})^{k}$ = 0 * (\gamma * b^{k})^{k} = (0 * \gamma^{k}) * (0 * b^{k})^{k} = 0 * b^{k} = b

Thus $x * a^k = \gamma * b^k$ implies

 $(x * \gamma) * a^k = (x * a^k) * \gamma = (\gamma * a^k) * \gamma = (\gamma * \gamma) * a^k = 0 * a^k = a \in G_K(S).$ Since $G_K(S)$ is a k-ideal, it follows that $x * \gamma \in G_K(S)$.

As $x * \gamma \in N_K(X)$ and $N_K(X) \cap G_K(S) = 0$, we have $x * \gamma = 0$ *i.e.* $x \leq \gamma$.

Similarly, we get $\gamma \leq x$ and therefore $x = \gamma$. This completes the proof.

For any subalgebra S of BCI-algebra X and any element a in S, we use $a_r^k(x)$ denotes the selfmap of S defined by $a_r^k(x) = x * a^k$ for any $x \in S$.

Theorem 2 Let S be a subalgebra of a *BCI*-algebra X. If $G_K(S)$ is a k-ideal of X, then a_r^k is bijective for any $a \in G_K(S)$.

Proof Let $a \in G_K(S)$ and $a_r^k(x) = a_r^k(\gamma)$ for some $x, \gamma \in S$, then $x * a^k = \gamma * a^k$. $((x * \gamma) * a^k) * a = ((x * a^k) * \gamma) * a$ $= ((\gamma * a^k) * \gamma) * a$

$$= ((\gamma * \gamma) * a^{k})$$
$$= (0 * a^{k}) * a$$
$$= a * a = 0$$

*a

Similarly, we have $a * ((x * \gamma) * a^k) = 0$, and so $(x * \gamma) * a^k = a$.

Since $G_K(S)$ is a k-ideal, it follows that $x * \gamma \in G_K(S)$. Now $a * (x * \gamma)^k = (0 * a^k) * (x * \gamma)^k = (0 * (x * \gamma)^k) * (0 * a^k)^k$ $= (0 * (x * \gamma)^k) * (0 * a^k)^k = 0 * ((x * \gamma) * a^k)^k$ In particular, $0 * (x * \gamma)^k = 0$, because $0 \in G_K(S)$.

Hence $x * \gamma = 0 * (x * \gamma)^k = 0$. Likewise, we obtain that $\gamma * x = 0$, and thus $x = \gamma$. This shows that a_r^k is injective.

To prove a_r^k is surjective, note that

$$(x * a^k) * a \le x$$
 for any $x \in S$ i.e. $((x * a^k) * a) * x = 0$.

Since a_r^k is injective, it follows that $x * ((x * a^k) * a) = 0$

Hence $x = (x * a^k) * a = (x * a) * a^k = a_r^k (x * a)$. So a_r^k is subjective. The proof is completed.

Theorem 3 Let X be a BCI-algebra which satisfies the identity $a * b^k = a * b$ for all $a, b \in G_K(S)$. If $G_K(S)$ is closed ideal of X, then $a_r^k a_r^k = (a * b)_r^k$.

Proof For any
$$x \in S$$
, we have

$$\begin{aligned} a_r^k a_r^k ((x*(a*b)^k)*((x*b^k)*a)) &= (((x*(a*b)^k)*((x*b^k)*a^k))*b^k)*a^k \\ &= (((x*(a*b)^k)*b^k)*((x*b^k)*a^k))*a^k \\ &= (((x*b^k)*(a*b)^k)*((x*b^k)*a^k))*a^k \\ &= (((x*b^k)*a^k)*(a*b)^k)*((x*b^k)*a^k))*a^k \\ &= (((x*b^k)*a^k)*(a*b)^k)*((x*b^k)*a^k))*a^k \\ &= 0((x*b^k)*a^k)*((x*b^k)*a^k))*(a*b)^k \\ &= 0*(a*b)^k \\ &= a*b = a*b^k = (0*a^k)*b^k = (0*b^k)*a^k \\ &= a_r^k a_r^k a_r^k(0) \end{aligned}$$

 and

$$\begin{aligned} (a*b)_r^k(((x*b^k)*a^k)*(x*(a*b)^k)) &= (((x*b^k)*a^k)*(x*(a*b)^k))*(a*b)^k \\ &= (((x*a^k)*b^k)*(a*b)^k))*(x*(a*b)^k) \\ &= (((x*(a*b)^k)*a^k)*b^k)*(x*(a*b)^k) \\ &= (((x*(a*b)^k)*a^k)*b^k)*(x*(a*b)^k))*a^k)*b^k \\ &= (0*a^k)*b^k \\ &= a*b^k = a*b \\ &= 0*(a*b)^k \\ &= (a*b)_r^k(0) \end{aligned}$$

As $G_K(S)$ is a ideal; hence a subalgebra.

Therefore $a * b \in G_K(S)$ and $(a * b)_r^k$ is injective by Theorem 2. Also since $a_r^k a_r^k$ is injective, we have $(x * (a * b)^k) * ((x * b^k) * a^k) = 0$ and $((x * b^k) * a^k) * (x * (a * b)^k) = 0$ Hence $a_r^k a_r^k (x) = (a * b)_r^k (x)$ for any $x \in S$, which implies $a_r^k a_r^k = (a * b)_r^k$ for any

Hence $a_r^* a_r^* (x) = (a * b)_r^* (x)$ for any $x \in S$, which implies $a_r^* a_r^* = (a * b)_r^*$ for any $a, b \in G_K(S)$.

References

- [1] W. Huang, Nil-radical in BCI-algebra, Math. Japon, 37 (1992), 363-366.
- [2] Y.B. Jun, J. Meng & E.H. Roh, On nil ideal in BCI-algebra, Math. Japon, 38 (1993), 1051-1056.
- [3] Y.B. Jun, & E.H. Roh, On the BCI-G Part of BCI-algebras, Math. Japon, 38 (1993), 697-702.
- [4] W. Huang, On the P-semisimple Part in BCI-algebra, Math. Japon, 37 (1992), 159-161.
- [5] C.S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japon, 35 (1990), 1103-1112.
- [6] Y-Liu, Some results on P-semisimple BCI-algebras, Math. Japon, 37 (1992), 79-81.
- [7] Zhan Jianming, Closed fuzzy N-Positive implicative ideal, Math. Japon, submitted.

Dept. of Math. Hubei Institute for Nationalities, Enshi, Hubei Province, 445000. P. R. China

E-mail : zhanjianming@hotmail.com