ON THE $B C I$ - $K G$ PART OF $B C I$-ALGEBRAS

Zhan Jianming and Tan Zhisong

Received May 1, 2001

Abstract

In this paper, we introduce the concept of $B C I-K G$ part $B C I$-algebras and study their properties.

1 Introduction We recall some definitions and elementary properties. The following identities hold for any $B C I$-algebra X :
(1) $x * 0=x$;
(2) $(x * \gamma) * z=(x * z) * \gamma$
(3) $0 *(x * \gamma)=(0 * x) *(0 * \gamma)$

A nonempty subset A of a $B C I$-algebra X is called an ideal of X if $0 \in A$ and if $x * \gamma \in A$ and $\gamma \in A$ imply that $x \in A$. An ideal A of a $B C I$-algebra X is closed if $0 * x \in A$ for every $x \in A$.

For any elements x, γ in a $B C I$-algebra X, let us write $x * \gamma^{n}$ for $\left.(\cdots(x * \gamma) * \gamma) * \cdots\right)$, where γ occurs n times.

Definition 1 For any $B C I$-algebra X and k a positive integer, the set $N_{k}(X)=\{x \in$ $\left.X \mid 0 * x^{k}=0\right\}$. If $N_{k}(X)=0$, then we say that X is a kp-semisimple $B C I$-algebra. In particular, $k=1$, it's a p-semisimple $B C I$-algebra.
Definition 2 Let X be a $B C I$-algebra and K a positive integer. For any subset S of X, we difine

$$
G_{K}(S)=\left\{x \in S \mid 0 * x^{k}=x\right\}
$$

In particular, if $S=X$, then we say that $G_{K}(X)$ is the $B C I-K G$ part of X.
Definition 3 A nonempty subset I of a $B C I$-algebra X is called a k-ideal of X if
(1) $0 \in I$;
(2) $x * \gamma^{k} \in I$ and $\gamma \in I$ imply $x \in I$.

Lemma ([1]) For any BCI-algebra X and any positive integer k,
(1) $0 *(x * \gamma)^{k}=\left(0 * x^{k}\right) *\left(0 * \gamma^{k}\right)$
(2) $0 *(0 * x)^{k}=0 *\left(0 * x^{k}\right)$
(3) $\left(x * \gamma^{k}\right) * z^{k}=\left(x * z^{k}\right) * \gamma^{k}$
(4) $\left(0 * x^{m}\right) * x^{n}=0 * x^{m+n}$

[^0]Proposition $1 \quad G_{K}(X) \cap N_{K}(X)=0$
It's obvious.
Proposition 2 If S is a subalgebra of a $B C I$-algebra X, then $G_{K}(S)$ is a subalgebra of X.

Proof Let $x, \gamma \in G_{K}(S)$, then $0 * x^{k}=x, 0 * \gamma^{k}=\gamma$ and $x, \gamma \in S$. Hence $0 *(x * \gamma)^{k}=$ $\left(0 * x^{k}\right) *\left(0 * \gamma^{k}\right)=x * \gamma$ and $x * \gamma \in S$, because S is a subalgebra.

Therefore $x * \gamma \in G_{K}(S)$, which completes the proof.
Proposition 3 Let X be a $B C I$-algebra. If $G_{K}(X)=X$, then X is Kp-semisimple.
Proof Assume that $G_{K}(X)=X$, then by proposition $1,0=G_{K}(X) \cap N_{K}(X)=X \cap$ $N_{K}(X)=N_{K}(X)$. Hence X is $k p$-semisimple.

2. Main Results

Theorem 1 Let X be a $B C I$-algebra and K a positive integer, for any subalgebra S of X. If $G_{K}(S)$ is a k-ideal of X, then for any $x, \gamma \in N_{K}(X)$ and $a, b \in G_{K}(S)$,

$$
x * a^{k}=\gamma * b^{k} \text { implies } x=\gamma \text { and } a=b
$$

Proof Let $G_{K}(S)$ be a k-ideal of X. Assume that $x * a^{k}=\gamma * b^{k}$ for any $x, \gamma \in N_{K}(X)$ and $a, b \in G_{K}(S)$.
Then

$$
\begin{aligned}
a & =0 * a^{k}=\left(0 * x^{k}\right) *\left(0 * a^{k}\right)^{k}=0 *\left(x * a^{k}\right)^{k} \\
& =0 *\left(\gamma * b^{k}\right)^{k}=\left(0 * \gamma^{k}\right) *\left(0 * b^{k}\right)^{k} \\
& =0 * b^{k}=b
\end{aligned}
$$

Thus $x * a^{k}=\gamma * b^{k}$ implies

$$
(x * \gamma) * a^{k}=\left(x * a^{k}\right) * \gamma=\left(\gamma * a^{k}\right) * \gamma=(\gamma * \gamma) * a^{k}=0 * a^{k}=a \in G_{K}(S)
$$

Since $G_{K}(S)$ is a k-ideal, it follows that $x * \gamma \in G_{K}(S)$.
As $x * \gamma \in N_{K}(X)$ and $N_{K}(X) \cap G_{K}(S)=0$, we have $x * \gamma=0$ i.e. $x \leq \gamma$.
Similarly, we get $\gamma \leq x$ and therefore $x=\gamma$.
This completes the proof.
For any subalgebra S of $B C I$-algebra X and any element a in S, we use $a_{r}^{k}(x)$ denotes the selfmap of S defined by $a_{r}^{k}(x)=x * a^{k}$ for any $x \in S$.

Theorem 2 Let S be a subalgebra of a $B C I$-algebra X. If $G_{K}(S)$ is a k-ideal of X, then a_{r}^{k} is bijective for any $a \in G_{K}(S)$.

Proof Let $a \in G_{K}(S)$ and $a_{r}^{k}(x)=a_{r}^{k}(\gamma)$ for some $x, \gamma \in S$, then $x * a^{k}=\gamma * a^{k}$.

$$
\begin{aligned}
\left((x * \gamma) * a^{k}\right) * a & =\left(\left(x * a^{k}\right) * \gamma\right) * a \\
& =\left(\left(\gamma * a^{k}\right) * \gamma\right) * a \\
& =\left((\gamma * \gamma) * a^{k}\right) * a \\
& =\left(0 * a^{k}\right) * a \\
& =a * a=0
\end{aligned}
$$

Similarly, we have $a *\left((x * \gamma) * a^{k}\right)=0$, and so $(x * \gamma) * a^{k}=a$.

Since $G_{K}(S)$ is a k-ideal, it follows that $x * \gamma \in G_{K}(S)$. Now

$$
\begin{aligned}
a *(x * \gamma)^{k} & =\left(0 * a^{k}\right) *(x * \gamma)^{k}=\left(0 *(x * \gamma)^{k}\right) *\left(0 * a^{k}\right)^{k} \\
& =\left(0 *(x * \gamma)^{k}\right) *\left(0 * a^{k}\right)^{k}=0 *\left((x * \gamma) * a^{k}\right)^{k}
\end{aligned}
$$

In particular, $0 *(x * \gamma)^{k}=\overline{\overline{0}}, \underset{\text { because }}{0} \boldsymbol{a}^{k}=\stackrel{a}{\in} G_{K}(S)$.
Hence $x * \gamma=0 *(x * \gamma)^{k}=0$. Likewise, we obtain that $\gamma * x=0$, and thus $x=\gamma$.
This shows that a_{r}^{k} is injective.
To prove a_{r}^{k} is surjective, note that

$$
\left(x * a^{k}\right) * a \leq x \text { for any } x \in S \text { i.e. }\left(\left(x * a^{k}\right) * a\right) * x=0 .
$$

On the other hand,

$$
\begin{aligned}
a_{r}^{k} a_{r}^{k}\left(x *\left(\left(x * a^{k}\right) * a\right)\right) & =a_{r}^{k}\left(\left(x *\left(\left(x * a^{k}\right) * a\right)\right) * a^{k}\right) \\
& =a_{r}^{k}\left(\left(x * a^{k}\right) *\left(\left(x * a^{k}\right) * a\right)\right) \\
& =\left(\left(x * a^{k}\right) *\left(\left(x * a^{k}\right) * a\right)\right) * a^{k} \\
& =\left(\left(x * a^{k}\right) * a^{k}\right) *\left(\left(x * a^{k}\right) * a\right) \\
& =\left(\left(\left(x * a^{k}\right) * a^{k-1}\right) *\left(\left(x * a^{k}\right) * a\right)\right) * a \\
& =\left(\left(\left(x * a^{k}\right) * a\right) *\left(\left(x * a^{k}\right) * a\right)\right) * a^{k-1} \\
& =0 * a^{k-1}=(a * a) * a^{k-1}=a * a^{k}=\left(0 * a^{k}\right) * a^{k} \\
& =a_{r}^{k} a_{r}^{k}(0)
\end{aligned}
$$

Since a_{r}^{k} is injective, it follows that $x *\left(\left(x * a^{k}\right) * a\right)=0$
Hence $x=\left(x * a^{k}\right) * a=(x * a) * a^{k}=a_{r}^{k}(x * a)$. So a_{r}^{k} is subjective. The proof is completed.
Theorem 3 Let X be a BCI-algebra which satisfies tthe identity $a * b^{k}=a * b$ for all $a, b \in G_{K}(S)$. If $G_{K}(S)$ is closed ideal of X, then $a_{r}^{k} a_{r}^{k}=(a * b)_{r}^{k}$.
Proof For any $x \in S$, we have

$$
\begin{aligned}
a_{r}^{k} a_{r}^{k}\left(\left(x *(a * b)^{k}\right) *\left(\left(x * b^{k}\right) * a\right)\right) & =\left(\left(\left(x *(a * b)^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)\right) * b^{k}\right) * a^{k} \\
& =\left(\left(\left(x *(a * b)^{k}\right) * b^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)\right) * a^{k} \\
& =\left(\left(\left(x * b^{k}\right) *(a * b)^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)\right) * a^{k} \\
& =\left(\left(\left(x * b^{k}\right) * a^{k}\right) *(a * b)^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right) \\
& =\left(\left(\left(x * b^{k}\right) * a^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)\right) *(a * b)^{k} \\
& =0 *(a * b)^{k} \\
& =a * b=a * b^{k}=\left(0 * a^{k}\right) * b^{k}=\left(0 * b^{k}\right) * a^{k} \\
& =a_{r}^{k} a_{r}^{k}(0)
\end{aligned}
$$

and

$$
\begin{aligned}
(a * b)_{r}^{k}\left(\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *(a * b)^{k}\right)\right) & =\left(\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *(a * b)^{k}\right)\right) *(a * b)^{k} \\
& \left.=\left(\left(\left(x * a^{k}\right) * b^{k}\right) *(a * b)^{k}\right)\right) *\left(x *(a * b)^{k}\right) \\
& =\left(\left(\left(x *(a * b)^{k}\right) * a^{k}\right) * b^{k}\right) *\left(x *(a * b)^{k}\right) \\
& =\left(\left(\left(x *(a * b)^{k}\right) *\left(x *(a * b)^{k}\right)\right) * a^{k}\right) * b^{k} \\
& =\left(0 * a^{k}\right) * b^{k} \\
& =a * b^{k}=a * b \\
& =0 *(a * b)^{k} \\
& =(a * b)_{r}^{k}(0)
\end{aligned}
$$

As $G_{K}(S)$ is a ideal; hence a subalgebra.
Therefore $a * b \in G_{K}(S)$ and $(a * b)_{r}^{k}$ is injective by Theorem 2. Also since $a_{r}^{k} a_{r}^{k}$ is injective, we have $\left(x *(a * b)^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)=0$ and $\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *(a * b)^{k}\right)=0$

Hence $a_{r}^{k} a_{r}^{k}(x)=(a * b)_{r}^{k}(x)$ for any $x \in S$, which implies $a_{r}^{k} a_{r}^{k}=(a * b)_{r}^{k}$ for any $a, b \in G_{K}(S)$.

References

[1] W. Huang, Nil-radical in BCI-algebra, Math. Japon, $\mathbf{3 7}$ (1992), 363-366.
[2] Y.B. Jun, J. Meng \& E.H. Roh, On nil ideal in BCI-algebra, Math. Japon, $\mathbf{3 8}$ (1993), 10511056.
[3] Y.B. Jun, \& E.H. Roh, On the BCI-G Part of BCI-algebras, Math. Japon, 38 (1993), 697702.
[4] W. Huang, On the P-semisimple Part in BCI-algebra, Math. Japon, 37 (1992), 159-161.
[5] C.S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japon, 35 (1990), 1103-1112.
[6] Y-Liu, Some results on P-semisimple BCI-algebras, Math. Japon, $\mathbf{3 7}$ (1992), 79-81.
[7] Zhan Jianming, Closed fuzzy N-Positive implicative ideal, Math. Japon, submitted.
Dept. of Math. Hubei Institute for Nationalities, Enshi, Hubei Province, 445000. P. R. China

E-mail: zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 06F 35, 03G25.
 Key words and phrases. BCI-KG Part, KP-semisimple; K-ideal; Closed ideal.

