SOME RESULTS IN HYPER BCK-ALGEBRAS

EUN HWAN ROH, QUN ZHANG AND YOUNG BAE JUN

Received June 12, 2001

ABSTRACT. We introduce the concepts of a strong implicative hyper BCK-ideal and a strong positive implicative hyper BCK-ideal in hyper BCK-algebras, and investigates some related properties. Also we introduce the notions of a maximal hyper BCK-ideal and boundedness in hyper BCK-algebras, and investigates some related properties. First, we show that every strong (positive) implicative hyper BCK-ideal is a strong hyper BCK-ideal and (positive) implicative hyper BCK-ideal, but the converse is not true. Also we obtain the equivalent condition of strong implicative hyper BCK-ideals and strong hyper BCK-ideals, and we discuss the relations between strong positive implicative hyper BCK-ideals and strong implicative hyper BCK-ideals. Next, we show that if H is a bounded hyper BCK-algebra and $|H| \ge 2$, then H has at least one maximal strong hyper BCK-ideal, and if H is a bounded hyper BCK-algebra and I is a proper strong (positive) implicative hyper BCK-ideal one maximal strong hyper BCK-ideal of H, then there is a maximal strong (positive) implicative hyper BCK-ideal of H.

1. Introduction

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Since then a great deal of literature has been produced on the theory of BCK-algebras, In particular, emphasis seems to have been put on the ideal theory of BCK-algebras. The hyperstructure theory (called also multialgebras) is introduced in 1934 by F. Marty [9] at the 8th congress of Scandinavian Mathematiciens. In [8], Y. B. Jun et al. applied the hyperstructures to BCK-algebras, and introduced the concept of a hyper BCK-algebra which is a generalization of a BCK-algebra. and investigated some related properties. They also introduced the notion of a hyper BCKideal and a weak hyper BCK-ideal, and gave relations between hyper BCK-ideals and weak hyper BCK-ideals. Y. B. Jun et al. [7] gave a condition for a hyper BCK-algebra to be a BCK-algebra, and introduced the notion of a strong hyper BCK-ideal, a weak hyper BCK-ideal and a reflexive hyper BCK-ideal. They showed that every strong hyper BCKideal is a hypersubalgebra, a weak hyper BCK-ideal and a hyper BCK-ideal; and every reflexive hyper BCK-ideal is a strong hyper BCK-ideal. In [5], Y. B. Jun and X. L. Xin introduced the notion of an implicative hyper BCK-ideal. They gave the relations among hyper BCK-ideals, implicative hyper BCK-ideals and positive implicative hyper BCKideals. They stated some characterizations of implicative hyper BCK-ideals. And they also introduced the notion of implicative hyper BCK-algebras and investigated the relation between implicative hyper BCK-ideals and implicative hyper BCK-algebras. In [6], Y. B. Jun and X. L. Xin introduced the notion of a positive implicative hyper BCK-ideal, and investigated some related properties. E. H. Roh et al. [11] gave the extension theorem for

Key words and phrases. hyper BCK-algebra, (maximal, weak, strong) hyper BCK-ideal, (positive) implicative hyper BCK-ideal, strong (positive) implicative hyper BCK-ideal.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25, 20N20

The third author was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

hyper BCK-algebras. In this paper we introduce the notions of strong implicative hyper BCK-ideals and strong positive implicative hyper BCK-ideals in hyper BCK-algebras, and also we introduce the concepts of a maximal hyper BCK-ideal and boundedness in hyper BCK-algebras, and investigates some related properties.

2. Preliminaries

Let *H* be a non-empty set endowed with a hyperoperation "o". For two subsets *A* and *B* of *H*, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We shall use $x \circ y$ instead of $x \circ \{y\}, \{x\} \circ y$,

or $\{x\} \circ \{y\}$.

Definition 2.1 ([8]). By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation " \circ " and a constant 0 satisfing the following axioms:

- (HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,
- (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,

(HK3) $x \circ H \ll \{x\},\$

(HK4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$.

Example 2.2 ([8]). (1) Let (H, *, 0) be a *BCK*-algebra and define a hyperoperation " \circ " on *H* by $x \circ y = \{x * y\}$ for all $x, y \in H$. Then (H, \circ) is a hyper *BCK*-algebra.

(2) Define a hyperoperation "o" on $H := [0, \infty)$ by

$$x \circ y := \begin{cases} [0, x] & \text{if } x \le y \\ (0, y] & \text{if } x > y \ne 0 \\ \{x\} & \text{if } y = 0 \end{cases}$$

for all $x, y \in H$. Then (H, \circ) is a hyper *BCK*-algebra.

(3) Let $H = \{0, 1, 2\}$. Consider the following table:

0	0	1	2
0	{0}	{0}	{0}
1	$\{1\}$	$\{0, 1\}$	$\{0, 1\}$
2	$\{2\}$	$\{1, 2\}$	$\{0, 1, 2\}$

Then (H, \circ) is a hyper *BCK*-algebra.

Proposition 2.3 ([8]). In a hyper BCK-algebra (H, \circ) , the condition (HK3) is equivalent to the condition:

(i) $x \circ y \ll \{x\}$ for all $x, y \in H$.

Proposition 2.4 ([4, 8]). Let (H, \circ) be a hyper BCK-algebra. Then the following hold: (1) $x \circ 0 \ll \{x\}, 0 \circ x \ll \{0\}$ and $0 \circ 0 \ll \{0\},$

- (2) $(A \circ B) \circ C = (A \circ C) \circ B$, $A \circ B \ll A$ and $0 \circ A \ll \{0\}$
- $(3) \ 0 \ll x,$
- $(4) \ 0 \circ 0 = \{0\},\$
- (5) $x \ll x$,
- (6) $A \ll A$,
- (7) $A \subseteq B$ implies $A \ll B$,
- $(8) \ 0 \circ x = \{0\},\$
- (9) $0 \circ A = \{0\},\$

(10) $A \ll \{0\}$ implies $A = \{0\}$, (11) $A \circ B \ll A$, (12) $x \circ 0 = \{x\}$, (13) $A \circ 0 = A$, (14) $x \circ 0 \ll \{y\}$ implies $x \ll y$, (15) $y \ll z$ implies $x \circ z \ll x \circ y$, (16) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$, (17) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$,

for all $x, y, z \in H$ and all non-empty subsets A, B and C of H.

Definition 2.5 ([8]). Let (H, \circ) be a hyper *BCK*-algebra and let *S* be a subset of *H* containing 0. If *S* is a hyper *BCK*-algebra with respect to the hyperoperation " \circ " on *H*, we say that *S* is a hypersubalgebra of *H*.

Definition 2.6 ([5, 6, 7, 8]). Let I be a non-empty subset of a hyper BCK-algebra H. Then

I is said to be a hyper BCK-ideal of H if (HI1) $0 \in I$, (HI2) $x \circ y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$. I is called a *weak hyper BCK-ideal* of H if (HI1) $0 \in I$, (WHI) $x \circ y \subset I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$. I is called a strong hyper BCK-ideal of H if (HI1) $0 \in I$, (SHI) $(x \circ y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$ for all $x, y \in H$. I is called an *implicative hyper BCK-ideal* if it satisfies: (HI1) $0 \in I$, (IHI) $(x \circ z) \circ (y \circ x) \ll I$ and $z \in I$ imply $x \in I$ for all $x, y, z \in H$. I is called a *positive implicative hyper BCK-ideal* if it satisfies: (HI1) $0 \in I$, (PIHI) $(x \circ y) \circ z \ll I$ and $y \circ z \subset I$ imply $x \circ z \subset I$ for all $x, y, z \in H$.

Note from [4] that every hyper BCK-ideal of a hyper BCK-algebra H is a hypersubalgebra of H, but the converse may not be true. Note from [8] that every hyper BCK-ideal of a hyper BCK-algebra H is a weak hyper BCK-ideal of H, but the converse may not be true.

Lemma 2.7 ([7]). Let I be a reflexive hyper BCK-ideal of a hyper BCK-algebra H. Then

 $(x \circ y) \cap I \neq \emptyset$ implies $x \circ y \ll I$ for all $x, y \in H$.

Proposition 2.8 ([4]). Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal of H such that $A \ll I$, then $A \subseteq I$.

Proposition 2.9 ([5]). In a hyper BCK-algebra H, the following axiom holds:

 $((x \circ z) \circ (y \circ z)) \circ u \ll (x \circ y) \circ u$ for all $x, y, z, u \in H$.

3. Strong implicative hyper BCK-ideals

Definition 3.1. Let H be a hyper BCK-algebra. A non-empty subset I of H is called a *strong implicative hyper BCK-ideal* if it satisfies:

(HI1) $0 \in I$,

(SIHI) $((x \circ z) \circ (y \circ x)) \cap I \neq \emptyset$ and $z \in I$ imply $x \in I$ for all $x, y, z \in H$.

Example 3.2. Let $H = \{0, 1, 2\}$. Consider the following table:

$\begin{array}{c c} 0 & \{0\} & \{0\} & \{0\} \\ 1 & (1) & (0) & (1) \end{array}$	0	0	1	2
$\begin{array}{c c} 1 & \{1\} & \{0\} & \{1\} \\ 0 & (0) & (0) \\ \end{array}$	0	$\{0\}$	$\{0\}$	$\{0\}$
	1	$\{1\}$	$\{0\}$	$\{1\}$

Then (H, \circ) is a hyper BCK-algebra([7]). Putting $I := \{0, 2\}$, we can see that I is a strong implicative hyper BCK-ideal of H. But $\{0, 1\}$ is not a strong implicative hyper BCK-ideal of H since $((2 \circ 0) \circ (2 \circ 2)) \cap \{0, 1\} \neq \emptyset$ and $0 \in \{0, 1\}$ but $2 \notin \{0, 1\}$.

Theorem 3.3. If $\{I_{\lambda}|\lambda \in \Lambda\}$ is a family of strong implicative hyper BCK-ideals of a hyper BCK-algebra H, then so is $\bigcap_{\lambda \in \Lambda} I_{\lambda}$.

Proof. For any $\lambda \in \Lambda$, let I_{λ} be a strong implicative hyper BCK-ideal of a hyper BCKalgebra H. Then clearly $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Let $x, y, z \in H$ be such that $((x \circ z) \circ (y \circ x)) \cap (\bigcap_{\lambda \in \Lambda} I_{\lambda}) \neq \emptyset$ and $z \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Then $((x \circ z) \circ (y \circ x)) \cap I_{\lambda} \neq \emptyset$ and $z \in I_{\lambda}$ for all $\lambda \in \Lambda$. By using (SIHI),
we have $x \in I_{\lambda}$ for all $\lambda \in \Lambda$, and hence $x \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$. \Box

Theorem 3.4. Every strong implicative hyper BCK-ideal of a hyper BCK-algebra H is a strong hyper BCK-ideal of H.

Proof. Let I be a strong implicative hyper BCK-ideal of a hyper BCK-algebra H and let $x, y \in H$ be such that $(x \circ y) \cap I \neq \emptyset$ and $y \in I$. Note that $(x \circ y) \circ (0 \circ x) = (x \circ y) \circ 0 = x \circ y$. Thus we have $((x \circ y) \circ (0 \circ x)) \cap I \neq \emptyset$ and $y \in I$. Using (SIHI), we get $x \in I$ and so I is a strong hyper BCK-ideal of H. \Box

The converse of Theorem 3.4 may not be true since $\{0,1\}$ is a strong hyper *BCK*-ideal of *H* in Example 3.2.

By Theorem 3.8 in [7] and Theorem 3.4, we have the following result.

Corollary 3.5. Let I be a strong implicative hyper BCK-ideal of a hyper BCK-algebra H. Then

- (i) I is a hypersubalgebra of H,
- (ii) I is a weak hyper BCK-ideal of H,
- (iii) I is a hyper BCK-ideal of H.

Theorem 3.6. Every strong implicative hyper BCK-ideal of a hyper BCK-algebra H is an implicative hyper BCK-ideal of H.

Proof. Let I be a strong implicative hyper BCK-ideal of a hyper BCK-algebra H and let $x, y, z \in H$ be such that $(x \circ z) \circ (y \circ x) \ll I$ and $z \in I$. Then for each $a \in (x \circ z) \circ (y \circ x)$ there exists $b \in I$ such that $a \ll b$, i.e., $0 \in a \circ b$. It follows that $(a \circ b) \cap I \neq \emptyset$. By Theorem 3.4, we have $a \in I$. Thus $(x \circ z) \circ (y \circ x) \subseteq I$ and so $((x \circ z) \circ (y \circ x)) \cap I \neq \emptyset$, and using (SIHI) we get $x \in I$. Hence I is an implicative hyper BCK-ideal of H. \Box

In general, the converse of Theorem 3.6 may not be true.

Example 3.7. Let $H = \{0, 1, 2\}$. Consider the following table:

Then (H, \circ) is a hyper *BCK*-algebra and $I := \{0, 2\}$ is an implicative hyper *BCK*-ideal of H([5]). But I is not a strong implicative hyper *BCK*-ideal of H since $((2 \circ 1) \circ (0 \circ 2)) \cap I \neq \emptyset$ and $1 \in I$ but $2 \notin I$.

We know that the converse of Theorem 3.4 is not true. It is then natural to ask that given a strong hyper BCK-ideal, under what condition the converse of the Theorem 3.4 is also true? Now we solve this question.

Theorem 3.8. Let I be a non-empty subset of a hyper BCK-algebra H. Then I is a strong implicative hyper BCK-ideal of H if and only if I is a strong hyper BCK-ideal of H and $(x \circ (y \circ x)) \cap I \neq \emptyset$ implies $x \in I$ for all $x, y \in H$.

Proof. Assume that I is a strong implicative hyper BCK-ideal of a hyper BCK-algebra H. By Theorem 3.4, I is a strong hyper BCK-ideal of H. Let $x, y \in H$ be such that $(x \circ (y \circ x)) \cap I \neq \emptyset$. Note that $(x \circ 0) \circ (y \circ x) = x \circ (y \circ x)$. Thus we get $((x \circ 0) \circ (y \circ x)) \cap I \neq \emptyset$. Since $0 \in I$, it follows from (SIHI) that $x \in I$

Conversely, suppose that I is a strong hyper BCK-ideal of a hyper BCK-algebra Hand $(x \circ (y \circ x)) \cap I \neq \emptyset$ implies $x \in I$ for all $x, y \in H$. Let $x, y, z \in H$ be such that $((x \circ z) \circ (y \circ x)) \cap I \neq \emptyset$ and $z \in I$. Then $((x \circ (y \circ x)) \circ z) \cap I \neq \emptyset$ and so $(u \circ z) \cap I \neq \emptyset$ for all $u \in x \circ (y \circ x)$. Since I is a strong hyper BCK-ideal and $z \in I$, we have $u \in I$ for all $u \in x \circ (y \circ x)$ and thus $x \circ (y \circ x) \subseteq I$ which implies $(x \circ (y \circ x)) \cap I \neq \emptyset$. By hypothesis, we get $x \in I$, which shows that I is a strong implicative hyper BCK-ideal of H. \Box

4. Strong positive implicative hyper BCK-ideals

Definition 4.1. Let H be a hyper BCK-algebra. A non-empty subset I of H is called a strong positive implicative hyper BCK-ideal if it satisfies:

(HI1) $0 \in I$,

(SPIHI) $((x \circ y) \circ z) \cap I \neq \emptyset$ and $y \circ z \subseteq I$ imply $x \circ z \subseteq I$ for all $x, y, z \in H$.

Example 4.2. In Example 3.2, we can see that $\{0, 2\}$ is a strong positive implicative hyper *BCK*-ideal of *H*.

Theorem 4.3. If $\{I_{\lambda} | \lambda \in \Lambda\}$ is a family of strong positive implicative hyper BCK-ideals of a hyper BCK-algebra H, then so is $\bigcap_{\lambda \in \Lambda} I_{\lambda}$.

Proof. For any $\lambda \in \Lambda$, let I_{λ} be a strong positive implicative hyper BCK-ideal of a hyper BCK-algebra H. Then clearly $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Let $x, y, z \in H$ be such that $((x \circ y) \circ z) \cap (\bigcap_{\lambda \in \Lambda} I_{\lambda}) \neq \emptyset$ and $y \circ z \subseteq \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Then $((x \circ y) \circ z) \cap I_{\lambda} \neq \emptyset$ and $y \circ z \subseteq I_{\lambda}$ for all $\lambda \in \Lambda$. By using (SPIHI), we have $x \circ z \subseteq I_{\lambda}$ for all $\lambda \in \Lambda$, and hence $x \circ z \subseteq \bigcap_{\lambda \in \Lambda} I_{\lambda}$. \Box

Theorem 4.4. Every strong positive implicative hyper BCK-ideal of a hyper BCK-algebra H is a strong hyper BCK-ideal of H.

Proof. Let I be a strong positive implicative hyper BCK-ideal of a hyper BCK-algebra H and let $x, y \in H$ be such that $(x \circ y) \cap I \neq \emptyset$ and $y \in I$. Putting z = 0 in (SPIHI), we have

 $((x \circ y) \circ 0) \cap I \neq \emptyset$ since $(x \circ y) \circ 0 = x \circ y$. Because of $y \circ 0 = \{y\} \subseteq I$, it follows from (SPIHI) that $\{x\} = x \circ 0 \subseteq I$. Thus I is a strong hyper *BCK*-ideal of *H*. \Box

The converse of Theorem 4.4 may not be true. In Example 3.2, $I := \{0, 1\}$ is a strong hyper BCK-ideal of H, but I is not a strong positive implicative hyper BCK-ideal of H since $((2 \circ 0) \circ 2) \cap I \neq \emptyset$ and $0 \circ 2 \subseteq I$ but $2 \circ 2 \not\subseteq I$.

By Theorem 3.8 in [7] and Theorem 4.4, we have the following result.

Corollary 4.5. Let I be a strong positive implicative hyper BCK-ideal of a hyper BCKalgebra H. Then

- (i) I is a hypersubalgebra of H,
- (ii) I is a weak hyper BCK-ideal of H,
- (iii) I is a hyper BCK-ideal of H.

Theorem 4.6. Every strong positive implicative hyper BCK-ideal of a hyper BCK-algebra H is a positive implicative hyper BCK-ideal of H.

Proof. Let I be a strong positive implicative hyper BCK-ideal of a hyper BCK-algebra H and let $x, y, z \in H$ be such that $(x \circ y) \circ z \ll I$ and $y \circ z \subseteq I$. Then for each $a \in (x \circ y) \circ z$ there exists $b \in I$ such that $a \ll b$, i.e., $0 \in a \circ b$. It follows that $(a \circ b) \cap I \neq \emptyset$. By Theorem 4.4, we have $a \in I$. Thus $(x \circ y) \circ z \subseteq I$ and so $((x \circ y) \circ z) \cap I \neq \emptyset$, and using (SPIHI) we get $x \circ z \subseteq I$. Hence I is a positive implicative hyper BCK-ideal of H. \Box

In general, the converse of Theorem 4.6 may not be true. In Example 3.2, we can see that $\{0,1\}$ is a positive implicative hyper BCK-ideal of H, but $\{0,1\}$ is not a strong positive implicative hyper BCK-ideal of H.

In the above section, we introduced the notion of strong (positive) implicative hyper BCK-ideals in hyper BCK-algebras. Now, we discuss relations between strong positive implicative hyper BCK-ideals and strong implicative hyper BCK-ideals.

Theorem 4.7. Each reflexive strong implicative hyper BCK-ideal of a hyper BCK-algebra H is a strong positive implicative hyper BCK-ideal of H.

Proof. Assume that I is a reflexive strong implicative hyper BCK-ideal of a hyper BCK-algebra H. Let $x, y, z \in H$ be such that $((x \circ y) \circ z) \cap I \neq \emptyset$ and $y \circ z \subseteq I$. First, we prove that $(x \circ z) \circ z \subseteq I$. Assume $t \in x \circ z$. Note that

$$(t \circ z) \circ (y \circ z) \ll t \circ y \subseteq (x \circ y) \circ z.$$

Since $((x \circ y) \circ z) \cap I \neq \emptyset$, we have $(x \circ y) \circ z \ll I$ by Lemma 2.7. By Proposition 2.8, we get $(x \circ y) \circ z \subseteq I$ and so $(t \circ z) \circ (y \circ z) \ll I$. Using Proposition 2.8 again, we have $(t \circ z) \circ (y \circ z) \subseteq I$ and hence $((t \circ z) \circ (y \circ z)) \cap I \neq \emptyset$. Since I is a strong hyper *BCK*-ideal, it follows from $y \circ z \subseteq I$ that $t \circ z \subseteq I$ for each $t \in x \circ z$. Hence $(x \circ z) \circ z \subseteq I$. Next, we prove that $x \circ z \subseteq I$. Let $t \in x \circ z$. Then we have

$$\begin{aligned} ((x \circ z) \circ (x \circ t)) \circ (t \circ z) &= ((x \circ z) \circ (t \circ z)) \circ (x \circ t) \\ &= \bigcup_{u \in x \circ t} (((x \circ z) \circ (t \circ z)) \circ u) \\ &\ll \bigcup_{u \in x \circ t} ((x \circ t) \circ u) \quad \text{[by Proposition 2.9]} \\ &= (x \circ t) \circ (x \circ t) \\ &\ll x \circ x \subset I. \end{aligned}$$

By Proposition 2.8, we have that $((x \circ z) \circ (x \circ t)) \circ (t \circ z) \subseteq I$. Since $t \circ z \subseteq (x \circ z) \circ z \subseteq I$, we get $(x \circ z) \circ (x \circ t) \subseteq I$. It follows that $(x \circ z) \circ (x \circ (x \circ z)) \subseteq I$. Since $b \circ (x \circ b) \subseteq (x \circ z) \circ (x \circ (x \circ z))$ for all $b \in x \circ z$, we have $b \circ (x \circ b) \subseteq I$ and hence $(b \circ 0) \circ (x \circ b) \subseteq I$. Since I is a strong implicative hyper *BCK*-ideal and $0 \in I$, it follows that $b \in I$ for all $b \in x \circ z$. Therefore we obtain $x \circ z \subseteq I$, which show that I is a strong positive implicative hyper *BCK*-ideal of H. \Box

5. Bounded hyper *BCK*-algebras

Definition 5.1. Given a hyper BCK-algebra H, a hyper BCK-ideal I of H is said to be maximal if $I \neq H$ and for every hyper BCK-ideal J such that $I \subset J \subset H$, either J = I or J = H.

Example 5.2 ([11]). Let (H, \circ') be a hyper *BCK*-algebra and $u \notin H$. We define a hyper operation \circ on $H_1 := H \cup \{u\}$ as follows: for all $x, y \in H_1$,

$$x \circ y := \begin{cases} x \circ' y & \text{if } x, y \in H, \\ \{0\} & \text{if } x \in H, y = u \text{ or } x = y = u, \\ \{u\} & \text{if } x = u, y \in H. \end{cases}$$

Then (H_1, \circ) is a hyper *BCK*-algebra.

Theorem 5.3. In Example 5.2, H is a maximal strong hyper BCK-ideal of a hyper BCKalgebra H_1 .

Proof. Clearly, $0 \in H$. Let $x, y \in H_1$ be such that $(x \circ y) \cap H \neq \emptyset$ and $y \in H$. If x = u, then we get $(x \circ y) \cap H = \{u\} \cap H = \emptyset$, it is a contradiction. Thus H is a maximal strong hyper BCK-ideal of a hyper BCK-algebra H_1 . \Box

Definition 5.4. Let H be a hyper BCK-algebra. If there exists an element $u \in H$ such that $x \ll u$ for all $x \in H$, then H is said to be *bounded* and such u is called the *unit* of H.

Note that if H is a bounded hyper BCK-algebra, then the unit of H is unique by (HK4).

Example 5.5. (1) In Example 5.2, H_1 is a bounded hyper *BCK*-algebra and the unit is u.

(2) In Example 2.2(3), H is a bounded hyper BCK-algebra and the unit is 2.

(3) In Example 3.2, (H, \circ) is not bounded since there does not exist $u \in H$ such that $x \ll u$ for all $x \in H$.

Theorem 5.6. If H is a bounded hyper BCK-algebra and $|H| \ge 2$, then H has at least one maximal strong hyper BCK-ideal.

Proof. First, we prove that a strong hyper BCK-ideal I of H is proper if and only if $u \notin I$, where u is the unit of H. In fact, if $u \notin I$, then $I \neq H$, and so I is a proper strong hyper BCK-ideal. Conversely, assume that I is a proper strong hyper BCK-ideal of H and let $x \in H$. If $u \in I$, then since $x \ll u$, we have $(x \circ u) \cap I \neq \emptyset$. Since I is a strong hyper BCK-ideal, we get $x \in I$. This means that I = X, which contradicts that I is proper. Therefore $u \notin I$. We now prove that every strong hyper BCK-ideal A of H is contained in a maximal strong hyper BCK-ideal. The set of all proper strong hyper BCK-ideals containing A is denoted by S. Obviously, (S, \subseteq) is a partially ordered set and $S \neq \emptyset$. Let S_0 be a chain of S and let $B := \cup \{I | I \in S_0\}$. Noticing that A is the least element of (S, \subseteq) , we have $A \subseteq B$. Hence $0 \in B$. Let $x, y \in H$ be such that $(x \circ y) \cap B \neq \emptyset$ and $y \in B$. Then there are $I_1, I_2 \in S_0$ such that $(x \circ y) \cap I_1 \neq \emptyset$ and $y \in I_2$. We may assume $I_2 \subseteq I_1$, without

loss of generality. Thus $(x \circ u) \cap I_1 \neq \emptyset, y \in I_1$ and so $x \in I_1$. It follows that $x \in B$. This means that B is a strong hyper BCK-ideal of H. Since every strong hyper BCK-ideal of S_0 does not contain the element u, we have $u \notin B$, and so B is a proper strong hyper BCK-ideal. Hence $B \in S$. This proves that every chain of S has an upper bound in S. By Zorn's Lemma, S have a maximal element M. Clearly, $A \subseteq M$. Therefore M is indeed a maximal strong hyper BCK-ideal. \Box

As an immediate consequence of the above theorem, we have

Corollary 5.7. Suppose that H is a bounded hyper BCK-algebra and let I be a proper strong (positive) implicative hyper BCK-ideal of H. Then there is a maximal strong (positive) implicative hyper BCK-ideal containing I.

$\operatorname{References}$

- [1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [2] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1) (1978), 1-26.
- Y. B. Jun and X. L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematicae 2(3) (1999), 303-309.
- Y. B. Jun and X. L. Xin, Implicative hyper BCK-ideals of hyper BCK-algebras, Math. Japonica 52(3) (2000), 435-443.
- [6] Y. B. Jun and X. L. Xin, *Positive implicative hyper BCK-ideals of hyper BCK-algebras*, To appear in Math. Japonica.
- [7] Y. B. Jun, X. L. Xin, M. M. Zahedi and E. H. Roh, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japonica 51(3) (2000), 493-498.
- [8] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics 8 (2000), 127-136.
- [9] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
- [10] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994.
- [11] E. H. Roh, Y. B. Jun and W. H. Shim, On extension of hyper BCK-algebras, Submitted.
- [12] M. M. Zahedi and A. Hasankhani, F-polygroups (I), J. Fuzzy Math. 3 (1996), 533-548.

Eun Hwan Roh Department of Mathematics Education Chinju National University of Education Chinju 660-756, Korea *E-mail:* ehroh@cue.ac.kr

Qun Zhang Department of Mathematics South-Central University for Ethnic Communities Wuhan 430074, P. R. China

Young Bae Jun Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea *e-mail*: ybjun@nongae.gsnu.ac.kr