NOTE ON THE NUMBER OF SEMISTAR-OPERATIONS, IV

Ryûki Matsuda

Received June 19, 2001; revised June 29, 2001

Abstract

We study a certain kind of integral domains D with dimension three, and construct star-operations on D of new type. Furthermore, we prove a proposition in [MS] whose proof was wrong.

This note is a continuation of our [M1], [M2] and [M3] on the number of semistaroperations on a domain. Let D be a three-dimensional Prüfer domain with exactly two maximal ideals M and N, and assume that there exist prime ideals P_{1} and P_{2} of D such that $M \cap N \supsetneqq P_{2} \supsetneqq P_{1} \supsetneqq(0)$, and assume that there exist elements π_{1}, π_{2}, p and q of D such that $P_{1} D_{P_{1}}=\pi_{1} D_{P_{1}}, P_{2} D_{P_{2}}=\pi_{2} D_{P_{2}}, M=(p)$ and $N=(q)$. We will study such kind of the domains D, and will construct star-operations on D of new type. On the other hand, $[\mathrm{MS}]$ showed the following two facts:

1. Let D be an integrally closed quasi-local domain with dimension n. Then D is a valuation domain if and only if $n+1 \leq\left|\Sigma^{\prime}(D)\right| \leq 2 n+1$, where $\Sigma^{\prime}(D)$ denotes the set of semistar-operations on D.
2. Let D be an integrally closed domain with dimension $n \leq 3$. If $n+1 \leq\left|\Sigma^{\prime}(D)\right| \leq$ $2 n+1$, then D is a valuation domain.

We show that the proof in [MS] of the above fact 2 is wrong, and we give its correct proof. The above fact 1 and its proof in [MS] are right.

Let D be an integral domain, and let $\mathrm{F}(D)$ be the set of non-zero fractional ideals of D. A mapping $I \longmapsto I^{*}$ of $\mathrm{F}(D)$ into itself is called a star-operation on D if it satisfies the following conditions:
(1) $(a)^{*}=(a)$ for each non-zero element of K, where K is the quotient field of D.
(2) $(a I)^{*}=a I^{*}$ for each non-zero element a of K and for each element $I \in \mathrm{~F}(D)$.
(3) $I \subset I^{*}$ for each element $I \in \mathrm{~F}(D)$.
(4) $I \subset J$ implies $I^{*} \subset J^{*}$ for all elements I and J in $\mathrm{F}(D)$.
(5) $\left(I^{*}\right)^{*}=I^{*}$ for each element $I \in \mathrm{~F}(D)$.

Let $\mathrm{F}^{\prime}(D)$ be the set of non-zero D-submodules of K. A mapping $I \longmapsto I^{*}$ of $\mathrm{F}^{\prime}(D)$ into itself is called a semistar-operation on D if it satisfies the following conditions:
(1) $(a I)^{*}=a I^{*}$ for each non-zero element a of K and for each element $I \in \mathrm{~F}^{\prime}(D)$.
(2) $I \subset I^{*}$ for each element $I \in \mathrm{~F}^{\prime}(D)$.
(3) $I \subset J$ implies $I^{*} \subset J^{*}$ for all elements I and J in $\mathrm{F}^{\prime}(D)$.
(4) $\left(I^{*}\right)^{*}=I^{*}$ for each element $I \in \mathrm{~F}^{\prime}(D)$.

The set of star-operations (resp. semistar-operations) on D is denoted by $\Sigma(D)$ (resp. $\Sigma^{\prime}(D)$). The identity mapping d on $\mathrm{F}(D)$ is a star-operation, and is called the d-operation on D. The mapping $I \longmapsto I^{v}=\left(I^{-1}\right)^{-1}$ of $\mathrm{F}(D)$ is a star-operation, and is called the v-operation on D. The identity mapping d^{\prime} on $\mathrm{F}^{\prime}(D)$ is a semistar-operation on D, and is called the d^{\prime}-operation on D. We set $I^{v^{\prime}}=I^{v}$ for each element $I \in \mathrm{~F}(D)$, and set $I^{v^{\prime}}=K$ for each element $I \in \mathrm{~F}^{\prime}(D)-\mathrm{F}(D)$, where K is the quotient field of D. Then v^{\prime} is a

[^0]semistar-operation on D, and is called the v^{\prime}-operation on D. Let $*$ be a star-operation on D, and let $*^{\prime}$ be a semistar-operation on D. If the restriction of $*^{\prime}$ to $\mathrm{F}(D)$ coincides with *, then $*^{\prime}$ is called an extension of $*$ to a semistar-operation. Let R be a domain, let D be a subdomain of R, and let $*$ be a semistar-operation on D. If we set $I^{\alpha(*)}=I^{*}$ for each $I \in \mathrm{~F}^{\prime}(R)$, then $\alpha(*)$ is a semistar-operation on R, and is called the ascent of $*$ to R. Let * be a semistar-operation on R. If we set $I^{\delta(*)}=(I R)^{*}$, then $\delta(*)$ is a semistar-operation on D, and is called the descent of $*$ to D.

In this note, D denotes a domain, K denotes the quotient field of D, n denotes a positive integer, and the descent of the d^{\prime}-operation d_{R}^{\prime} on R is also denoted by $*_{R}$.

Proposition 1. Let D be a three-dimensional Prüfer domain with exactly two maximal ideals M and N. Assume that there exist prime ideals P_{1} and P_{2} of D such that $M \cap N \supsetneqq$ $P_{2} \supsetneqq P_{1} \supsetneqq(0)$, and that there exist elements π_{1}, π_{2}, p and q of D such that $P_{1} D_{P_{1}} \xlongequal{=}$ $\pi_{1} D_{P_{1}}, P_{2} D_{P_{2}}=\pi_{2} D_{P_{2}}, M=(p)$ and $N=(q)$. Then
(1) Each non-zero element x of K can be expressed as $\pi_{1}^{l_{1}} \pi_{2}^{l_{2}} p^{l_{3}} q^{l_{4}}$ up to a unit of D with the integers l_{i}. This expression is unique up to a unit of D.
(2) Each finitely generated ideal of D is principal.
(3) Define the fractional ideals $A_{2}=\left(1 / \pi_{2}, 1 / \pi_{2}^{2}, \cdots\right), A=\left(1 / p, 1 / p^{2}, \cdots\right), B=$ $\left(1 / q, 1 / q^{2}, \cdots\right)$ and $C=\left(1 /(p q), 1 /(p q)^{2}, \cdots\right)$ of D. Then each non-finitely generated ideal I of D is of the form $d A_{2}$ or $d A$ or $d B$ or $d C$ with $d \in D$.
(4) We have $P_{1}=P_{1}^{v}=\pi_{1} A_{2}, P_{2}=P_{2}^{v}=\pi_{2} C=\pi_{2} A^{v}=\pi_{2} B^{v}, C=C^{v}, A_{2}=A_{2}^{v}$ and $A \neq A^{v}, B \neq B^{v}$.
(5) For a fractionl ideal I of D, set $I^{*_{1}}=I$ if I is of the form $x A$, and set $I^{*_{1}}=I^{v}$ otherwise. Then $*_{1}$ is a star-operation on D. Set $I^{*_{2}}=I$ if I is of the form $x B$, and set $I^{*_{2}}=I^{v}$ otherwise. Then $*_{2}$ is a star-operation on D.

Proof. (1) and (2) are straightforward.
(3) We may assume that there exist principal ideals $I_{n}=\left(x_{n}\right)$ of D such that $I_{1} \varsubsetneqq I_{2} \varsubsetneqq$ $I_{3} \varsubsetneqq \cdots$ and $I=\cup_{1}^{\infty} I_{n}$. We may assume that each x_{i} is of the form $\pi_{1}^{a_{i}} \pi_{2}^{b_{i}} p^{c_{i}} q^{d_{i}}$ with integers a_{i}, b_{i}, c_{i} and d_{i}. Next, we may assume that $x_{i}=\pi_{2}^{b i} p^{c_{i}} q^{d_{i}}$ with integers b_{i}, c_{i} and d_{i} for each i. If $\inf \left(b_{i}\right)=-\infty$, then $I=d A_{2}$. If $\inf \left(b_{i}\right)>-\infty$, then we may assume that $x_{i}=p^{c_{i}} q^{d_{i}}$ for each i. If $\inf \left(c_{i}\right)>-\infty$, then $I=d B$. If $\inf \left(d_{i}\right)>-\infty$, then $I=d A$. If inf $\left(c_{i}\right)=\inf \left(d_{i}\right)=-\infty$, then $A=d C$.
(4) We have $P_{1}=\cap_{1}^{\infty}\left(\pi_{2}^{n}\right)$, and hence $P_{1}=P_{1}^{v}$. Next, $P_{2}=\cap_{1}^{\infty}(p q)^{n}$, and hence $P_{2}=P_{2}^{v}$. Next, $\pi_{2} C=\left(\pi_{2} /(p q), \pi_{2} /(p q)^{2}, \cdots\right)=P_{2}$, and hence $C=C^{v}$. Next, $\pi_{1} A_{2}=$ $\left(\pi_{1} / \pi_{2}, \pi_{1} / \pi_{2}^{2}, \cdots\right)=P_{1}$, and hence $A_{2}=A_{2}^{v}$. Assume that $\pi_{2} A \subset(\alpha)$ for an element $\alpha \in K$. It follows that $P_{2} \subset(\alpha)$. Hence $\pi_{2} A^{v}=P_{2}$. Similarly, $\pi_{2} B^{v}=P_{2}$. Clearly, $A \neq A^{v}$ and $B \neq B^{v}$.
(5) Let I and J be non-zero fractional ideals of D such that $I \subset J$. We must show that $I^{*_{1}} \subset J^{*_{1}}$. We may assume that I is not of the form $x A$, and J is of the form $x A$. Next, we may assume that $I=B$ and $J=x A$ for an element $x \in K . x$ is expressed as $\pi_{1}^{a} \pi_{2}^{b} p^{c} q^{d}$ up to a unit of D with integers a, b, c and d. Then we see that either $a<0$ or $a=0>b$. Hence $I^{*_{1}}=P_{2} / \pi_{2} \subset \pi_{1}^{a} \pi_{2}^{b} p^{c} q^{d} A=J$. Similarly, $*_{2}$ is a star-operation on D.

In the proof of [MS, Proposition 8], we asserted that: For the domain D in Proposition 1 , there exists an ideal I of D such that $M \not \supset I \neq I^{v}$. But this is clearly impossible. We state [MS, Proposition 8] again, and prove it.

Proposition 2. Let D be an integrally closed domain with dimension $n \leq 3$. If $n+1 \leq 1$ $\Sigma^{\prime}(D) \mid \leq 2 n+1$, then D is a valuation domain.

Proof. Suppose the contrary. We may assume that D is as in Proposition 1. Then, by Proposition 1(4), the semistar-operations e, $*_{U_{1}}, *_{U_{2}}, *_{V}, *_{W}, \mathrm{~d}^{\prime}$ and v^{\prime} are distinct each other. Let $*_{1}$ and $*_{2}$ be star-operations on D constructed in Proposition 1(5), then they induce semistar-operations $*_{1}^{\prime}$ and $*_{2}^{\prime}$ on D. There does not exist an element $x \in K$ such that $B=x A$. Therefore the star-operations $*_{1}, *_{2}, \mathrm{~d}$ and v are distinct each other. It follows that the semistar-operations e, $*_{U_{1}}, *_{U_{2}}, *_{V}, *_{W}, \mathrm{~d}^{\prime}, \mathrm{v}^{\prime}, *_{1}$ and $*_{2}$ are distinct each other. Hence $\left|\Sigma^{\prime}(D)\right| \geq 9 ;$ a contradiction.

REFEENCES

[M1] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ. 31(1999),47-53.
[M2] R. Matsuda, Note on the number of semistar-operations,II, Far East J. Math. Sci. $2(2000), 159-172$.
[M3] R. Matsuda, Note on the number of semistar-operations,III, Internal. J. of Commutative Rings, submitted.
[MS] R. Matsuda and T. Sugatani, Semistar-operations on integral domains,II, Math. J. Toyama Univ. 18(1995),155-161.

Department of Mathematical Sciences, Ibaraki University, Mito 310, @Japan
@Tel: 029-228-8336
@matsuda@mito.ipc.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification. 13A15.
 Key words and phrases, star-operation, Prüfer domain.

