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DELTA OPERATORS ON SEQUENCE SPACES
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ABSTRACT. In this paper we study differentiation-invariant operators on sequence
spaces showing that they can be considered as convolutions in a certain sense. When
they are isomorphisms we prove that they have an exponential representation behaving
as “translations”.

1 Introduction It is known that polynomials of convolution type and certain kind of
linear operators on polynomials are linked [1]. In fact, let (¢,)nen be a sequence of poly-
nomials of convolution type with deggq, = n, for all n € N; then (g,)nen is a basis for the
vector space P of polynomials with coefficients in R or C (or any field K of characteristic
zero). Hence there exists a unique linear operator () on P with Qqn, = ¢n—1,n > 1

and Qqo = 0, which turns out to be translation-invariant, where the translation operator
E* is defined by (E*p)(z) = p(x + a), p € P. Translation-invariant operators () on P such
that Qz = nonzero constant are called delta operators [1].

If D is the differentiation operator (example of a delta operator), then g, (z) = fL—", for
all n € N are the corresponding convolution polynomials. Algebraically, that is on P, any
differentiation-invariant operator T is translation-invariant; besides T' can be represented as
a series, T'= > (T'qn) (0) D™ [1]. Operators commuting with D (differentiation invariant)
has been treated by several authors [1, 2, 5, 7, 9, 10, 11, 12] in different contexts.

Connected with the so-called “umbral calculus” Rota and his collaborators have studied
certain sequences of special functions and related operators (Sheffer sequences and opera-
tors)

1 1
Yot = 50N =N 9Ty

[11, formulas (3.4.5) and (3.5.1), p.42]. Then a Sheffer operator A, s is expressed as a
composition of an umbral operator [11] and a multiplication operator (that is, an operator
commuting with differentiation) and so in P these operators appear in the study of Sheffer
operators and many of his properties are known [11, 12]. The question of extending them
as continuous linear operators to Banach and Fréchet spaces (from this point of view) has
been treated mainly by Grabiner [5]; using some expansion theorems she is able to extend
some of the umbral methods, developed by Rota, Roman and some others to spaces of entire
functions.

In section 2 we established the terminology used in this paper (following mainly [1],
[5], [11]); we deal with weighted sequence spaces, ¢! (w,,) and ¢,(2-) and state some basic
results that will be used later on. "

In section 3 we consider the problem of a differentiation-invariant operator being a
translation- invariant operator and if so a convolution on a certain way.

In section 4 the spectrum of D is studied.
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Finally, section 5, treats the relationship between the continuity (and invertibility) of
a differentiation-invariant operator and the spectrum of D; when ¢!(w,) = ¢!(r™), these
results are essentially known to Grabiner [5] without being explicitly mentioned. The ques-
tion of an isomorphism being of the type ef(P) that is, behaving as a ”translation” comes
in a natural way (note that the translation operator E' = e”). For certain Fréchet spaces
(infinite power series spaces) results of this type can be found in [10]; for ¢!(w,,) being an
algebra (that is, if and only if w,yn < Cwpwn,, for all m,n) it turns out that all isomor-
phisms are of this type; in fact it is true for a much larger class of sequences (w,,) as it is
proved in this paper.

2 Basic results and terminology If (w,,) is a sequence of positive numbers, £*(w,,) is
the Banach space of formal power series f(t) = > ¢,t™ for which the norm

171 = 3" lealw

is finite and co(wli ) is the Banach space with the usual norm

cpn!

[I£1l = sup

n

containing the formal series f(z) = Y ¢,2™ such that

cpn!

lim =0

Wn

Note that the variables ¢ and z are used in a formal sense; when we deal with co(w"—i)
and its topological dual ¢*(w,) (or P and P*) the different variables are used to distinguish
the elements of both spaces.

Suppose that T is a linear transformation on the space P of polynomials, and let 7" be
its adjoint on P*. The following lemma will be frequently used [5].

Lemma 2.1. Suppose that T is a linear operator on the space P of polynomials with
T*(t*) = hi(t) and that (w,) and (p,) are sequences of positive numbers. Then the follow-
ing are equivalent:

n!

(a) T has a (necessarily unique) extension to a bounded operator from c,(2-) to c,(2L).

n
Wy, Hn
(b) T* maps *(un) to *(w,) (the restriction map is necessarily continuous).

(c) hi(t) belongs to £'(wy) for all k, and ||he(t)]l,, = O(ur).

Moreover, when the above conditions hold, the maps T and T* have the same operator

o ha(t
norm, which is M = sup %
k

Considering the algebra of formal power series denoted by P* (or C[[t]] for Grabiner) as
the dual space of P (C[z] for Grabiner), that is, explicitly defining the duality by

<Z“;f” / an:n">:2:anbn,
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then multiplication by f(t) = Y c,t™ on P* is the adjoint of the operator f(t)p(z) =
3" c,p'™(x) on P [11]; this is a fundamental tool throughout our paper. With this duality
' (wy) has predual ¢, ().

In [5] multiplication for f(£) means not only power-series multiplication on P* but also
the action on P of the operator mentioned above. In this paper we talk of differentiation-
invariant (commuting with D) and multiplication operators, following [5].

3 Continuous operators commuting with D

Proposition 3.1. A linear operator T commuting with D from c,(- ) to co( ') is con-
tinwous if and only if, for all n

2 S < O

A necessary condition for T to be continuous is

or equivalently, for all n

1 c
sup (M > < ¢
0<k<n \ k! fnp Wy

k=oco k=n
Proof. As T commutes with D, T = 3" %Dk; then Tx™ = Y ¢ (k) "~k and the result
k=0 k=0
follows from ¢ of lemma 2.1. Writing T = 3" ¢ D*, the necessary and sufficient condition
k=oco
is > |ek| wnir < Cunp, for all n while the necessary one is sup (
k=0 0<k<n

n. O

L) < C forall
Hn—k Wn,

Proposition 3.2. Let T = Y cxD* a continuous linear operator commuting with D. If
limsup(wk)% = a > 0, then the function f(z) = Y. cipz* is analytic on the open disc
{z:]z]| < a}.

Proof. Continuity of T implies |cx| < C :—‘;, for all k¥ and so the result. O

Remark. Observe that the operator D is continuous if and only if su

1
On the other hand li,rcn sup ||D’c || k> 1lim sup(wk)%; this relationship will be made more

precise later on.

Proposition 3.3. Assume that D is continuous from c,(2- =) to co(y- nt ~). Then, the conti-
nuity of D implies the continuity of the translation opemtor E*, for all a € C.
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k=n
Proof. As E*(z™) = Y (})a™ *a*, E* (symbolically e*”) is continuous if and only if
k=0
k=00 a k
Fwnﬂc < Cwy,, for alln
k=0 :

D continuous implies wffl < A, for all k and so w;}—;r’“ < A*, for all k and n. Then

alA

= Wntk < el Wy, for all n.

O

Remark. The continuity of D does not implies the continuity of E* in all cases. It is
enough to consider the sequences w,, = ﬁ and p1, = 2 and the previous result is false.
Therefore in P differentiation-invariant operators are translation-invariant but in a more
general setting the statement translation-invariant does not even “makes sense”.

The results stated above are true if the weighted sequences spaces are substituted by a
Banach space B with a Schauder basis but in the context of Fréchet spaces it is no longer so.
On an infinite power series space, as in [10], continuity of both operators is not simultaneous.
The study of conditions to ensure both things happening will be the object of a separate

paper.

Theorem 3.1. Assume that D is a continuous operator on co(wlz) (and so E* by the pre-

vious proposition). If T is a differentiation-invariant continuous linear operator on co(=-),
then T can be written as a “convolution” in the following way

Tz" = (T, « E*)(z")

where T, is the continuous linear functional such that
Tox" = (Tx")p—0-

Proof. (T, «+ E*)(z™) means (T'(z + a)™),_, considering a and z as two variables.
Therefore, as T = 3" ¢, D™, computing we have

T n_mp Ky ek k) e n n—krp (k) —
(z+a) > (k)a T > (k)a (z*)

k=0

k=n p=k
=3 (Ha~* (E cp X (k(k—1)...(k—p+ 1))3:’“”) and it is enough to take a = 0.
k=0 p=0

The continuity of all operators involved guaranteed the extension to all ¢,(2-). O

Remark. The problem of characterizing translation-invariant operators is a classical one;
for instance, Hérmander [7] studies translation-invariant operators on the spaces L?(R™)
finding that they are differentiation-invariant and a convolution.

Note, on the other hand, that translations are isomorphisms and have a exponential
representation; the result is true, in certain cases, for all isomorphisms as have been proved
in [2, 9, 10]. Finally, let us stress the importance, in this context, of the value 0 as the
previous theorem and the representation T' = 3" (T'q,) (0) D™[1] shows.
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4 Spectrum of D Grabiner [5], Prada [10] have proved that there is a strong relationship
between the spectrum of D and the isomorphisms commuting with D; this fact is, also,
implicitly stated in [2, 9 ], where they deal with exponential functions as eigenvectors of the
differential equation D f(z) = Af(z) on spaces of analytic functions. The formal solutions
of the equation D(>_ a,x™) = A Y. a,z™ are, in fact, the sequences a,, = %, for all A € C
(exponential functions) then the first step to determine the spectrum of D is to consider
the functions e** = > >‘, x™, what we do stating the following obvious proposition.

Proposition 4.1. Consider the Banach space c, (- ) Then,

a) A =0 is always an eigenvalue.
b) If sup(wn)® = a > 0, the set of eigenvalues is the open disc D(0,a).

c) If sup(wn)% = 00, the set of eigenvalues can be X = 0 only, an open disc or C.

Proof. We give some simple examples to show the possibilities in c. Take w,, = n?,n even

and w,=-;,n odd; in this case A = 0 is the only eigenvalue. If w,, = 1, n even and w,= n?,n

)

odd, then the set of eigenvalues is the open disc D(0, 1); finally taking w, = n?,n even and

w, =n3, n odd, all complex numbers are eigenvalues. O

Remark. Notice that in case c) the operator D is not continuous on ¢, (- L); then this case
is not to be considered in what follows because we assume D to be continuous. Compare
the above proposition with theorem 2 in [10].

Theorem 4.1. Suppose that D is continuous on c,(= ) (equivalent to
sup 24 < 00). Then,

a) The set of eigenvalues of D is an open disc.

b) The spectral radius of D = hm ||D"||" =r, where r = lim < w;;”‘) "
k

n—oo

c) SpectrumD = SpectrumD* = a closed disc of center 0 and radius equal to r.

. . . .. D"
Proof. (a) is obvious from the previous proposition and b comes from ||D™|| = suplL ”e:l’l“”
k

= sup "+’“.

To prove (c) observe, first, that (Al — D)* = Al — D* and, second, that (Al — D)
is continuous on ¢,(2) if and only if (A\I — D*) is continuous on ¢*(w,) (lemma 2.1).
Therefore, let us determine those A that make

k=oco

(AI—D*) invertible and continuous; as (A\[—=D*)™" = Y~ 2 D™, the mapping (A\I-D*)~*
k=0

is continuous if and only if

k=oco

Wotr < Cwy, for all k orz
k=0

k=oco

1
)\n+1

1
AnJrl

Wn+k
Wi

<C.

k=0

1 *
Assume that |A| > lim (supkw"“) " then, lim <ﬁ <supm>> < 1 and so
n—o00 k

n—00 Wk

\ ¢ spectrum D* or spectrum D* C D(0,r).
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Finally, it is enough to see that D(0,r) C spectrum D*. Take A ¢ spectrum D* from

what follows that (A — D*) is continuous and therefore analytic on the disc D(0,r) (notice
1

k=oco 1
that |\ — D*|| > kzo | o | 22 > 2 “atk for all k); consequently nl;m (ﬁ) <

wy 2 T 0
L and A ¢ D(0,r). O

Remark. In the previous theorem it is assumed that r is greater than zero; when r = 0,
1

spectrum D = {0} . Besides lim (supw;‘j““) exists because (w"“) is bounded (D
n—o00 k k W,

continuous). If /! (w,) is an algebra, that is, if and only if wy1m < Cw,wy,, for all m and
n, then sup=2*t: = w,, and the closed disc D(0,r) is, precisely, the maximal ideal space of
k

Wk
the Banach algebra ¢! (w,).
D* is always one-to-one and so it is (A\I — D*) (D* has not eigenvalues); then A €
spectrum D* if and only if the space generated by [(AI — D*) (*(w,)] is not £ (w,).
If T is a continuous linear operator commuting with D (given by the function f(t)) and
A is an eigenvalue of D, from T'(e**) = f(\)e*® it follows that f()) is an eigenvalue of T';

in fact, it is easy to see that the set {f(A),A € D(0,r)} C spectrum T.

5 Invertible operators Linear translation-invariant operators on P are well -known; a
family (T})¢>o of linear translation-invariant operators is a semigroup if T = TsT%, for
all s, t > 0. If (T})¢>0 is a semigroup on P , then T} is invertible for all ¢ > 0 and hence,
(T:)e>0 can be extended to a group (7T}):cr[1]. Besides as T; can be expanded into powers of
D (linear translation-invariant operators on P coincide with linear differentiation-invariant
ones) the coefficients of these expansion are studied and the infinitesimal generator of the
semigroup is determined. We mention theorem 2.5.4. of [1] for the sake of completeness:

Theorem 2.5.4. Let (T})i>0 be a semigroup of linear translation-invariant operators on
k=00

P and let the functions a, (n € N) be defined by Ty = > a,(t)D™ for all t > 0 and all
k=0

n € N. Then:

a) The sequence (an)nen s a sequence of functions of convolution type.

b) If (an)nen is a sequence of measurable functions, then there exists a linear translation-
invariant operator T on P such that T, = '™ forallt > 0 and (Tt)t>o0 can be extended

to a group (T})ier.

Therefore, the question of all invertible linear differentiation-invariant operators being
exponential ones in a “certain sense” seems to be natural. In [10] it was proved that on H(C)
(space of entire functions) all differentiation-invariant isomorphism (translation-invariant
too) are of the type e*”*t? a,b € C (in fact, this result had been found previously by
Delsarte and Lions [2] and Nagnibida [9]; in [10] more general results are obtained including

k=oco
as a particular case the one mentioned); note that in this case e?P*b = e® S Sy D™ and the
k=0
functions (a,) are (eb%), for all a,b € C (continuous which is not surprising considering
theorem?2.5.5. of [1]).
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We prove here that the conjecture is true for a large class of weighted spaces that includes
Grabiner results for 1 (r™); for ¢! (w,) being an algebra they come straightforwardly from
theorem (3.3) of [5] as the next theorem shows.

k=oco
Theorem 5.1. LetT = Y. a,D" be a differentiation-invariant operator on c,(2-). Then

k=
T is an isomorphism if and only if the following equivalent conditions are true:

k=oco

a) f(t) = 3 ant™ belongs to inv £*(w,) = exp (*(w,), that is, f(t) = e?®), g(t) € (*(w,).
k=0
k=oco k=oco 1

b) f(t) = ant™ belongs to 0 (w,) and > anz™ #0, for all |z] < p, p = lim(w,)~.
k=0 k=0
k=oco

c) f(t) = 3 ant™ belongs to (*(w,) and does not vanish on the spectrum of D.
k=0

Proof. The maximal ideal space of the Banach algebra ¢ (w,,) is the closed disc D(0, p) ([3],

Section 19, pp. 116-120). As T is a multiplication operator on ¢*(w,,), then f(t) andf(lt)

are elements of 1! (w,,) and the result follows ([1], Chapter 4, Section 4.2, p.88). O

When ¢! (w,,) is not an algebra the result is still true, at least, for a large class of weighted
spaces; it is our conjecture that the result is valid for a larger class still. We assume (w,,)
to satisfy a condition that includes all sequences (w,,) such that “2+% is increasing (as <+

is bounded, then lim =2+t = A). Explicitly "
n—oo n

Theorem 5.2. Suppose that the sequence (w,) satisfies the condition:

Vn,Ve, 3k, () such that Witk , W2+ oo Wnthn >A—¢
Wg,,  Wi+tk, Wn—1+k,
k=oco
where A = sup w;}“. Then T = . an,D™ is a differentiation-invariant isomorphism on
n " k=0
co(w”—i) if and only if the following equivalent conditions are true:
k=oco
a) f(t) = 3 ant™ belongs to inv (*(A™) = exp (' (A™), that is, f(t) = eI g(t) € £*(A™).
k=0
k=oco k=oco
b) f(t) = > ant™ belongs to (*(A™) and Y. a,2™ #0 for all |z] < A.
k=0 k=0
k=00
c) f(t) = Y. ant™ belongs to £*(A™) and does not vanish on the spectrum of D.
k=0
k=oco
Proof. To prove (a) we will see that T' is continuous if and only if f(t) = Y. a,t™ belongs
k=0

to (1(A™). Therefore if T is an isomorphism f(t) and ﬁ are elements of ¢*(A™) and a)

follows. As ¢'(A™) is an algebra, a) and b) are equivalent. Noting that sup w;‘j:’“ = A" we
k

have c).
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Assume that T is continuous; so

k=co

E |an] Lk <C, forall k
Wi
k=0

Taking ¢ and k (¢)

] (A - 2) < Jar ot < ¢
w 1
For the same ¢ and ky(¢)
w w
(A=¢)|ar] + (A —e)?|as| < ar| =22 4 |an| =2 < ©
Wk, Wy

and so for the same ¢ and k,(¢)

lay| (A — &)+ |as] (A—e)? + -+ |an| (A — )™ <

w w w
jag| Lithn 4 gy B2tke 4 g, %’% <C
which implies
k=n
Z(A —e)far| < C, for all n and all &
k=0
and therefore
k=oco
> Atan|<C
k=0
Conversely, if (a,) € £*(A™) it is obvious that T is a continuous operator. O

Remark. Note that ¢1(A™) C ¢'(w,); besides, calling o, = supng—:’“, it is clear that
k

M (a,) C £ (w,) and that all elements of ¢!(a,) give differentiation-invariant continuous
operators. The question is to know if /! (a,) is, precisely, the algebra that solves the problem
in all cases as it seems.

Note, too, that all elements of ¢!(w,) (when it is an algebra) are generators of a semi-
group of differentiation-invariant isomorphisms. When it is not an algebra but (w,,) satisfies
the above condition the roll is assumed by all elements of ¢!(A™).

Finally we give some examples of sequences (w,,) that satisfy the hypothesis of theorem
5,2; as it was said before all (wy) such that (“2+1) is increasing are included. Take, for

instance, w, = L, “2+L = 1 then (' (A") = (",

The following sequence (w,,) is such that w;—:l is not increasing but the above condition
is true;

w1 w2 w3 Wy ws
_:17_:27_: y T — 7_:27
Wo wy w2 w3 Wy

We wr wg Wy w10
—=1,—=2,—=2,—=2,—=1...
Ws We wy wsg Wy

In this case (*(A™) = (1(2™).
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