DELTA OPERATORS ON SEQUENCE SPACES

J.Prada

Received March 18, 2001; revised June 12, 2001

Abstract

In this paper we study differentiation-invariant operators on sequence spaces showing that they can be considered as convolutions in a certain sense. When they are isomorphisms we prove that they have an exponential representation behaving as "translations".

1 Introduction It is known that polynomials of convolution type and certain kind of linear operators on polynomials are linked [1]. In fact, let $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polynomials of convolution type with $\operatorname{deg} q_{n}=n$, for all $n \in \mathbb{N}$; then $\left(q_{n}\right)_{n \in \mathbb{N}}$ is a basis for the vector space P of polynomials with coefficients in \mathbb{R} or \mathbb{C} (or any field K of characteristic zero). Hence there exists a unique linear operator Q on P with $Q q_{n}=q_{n-1}, n \geq 1$ and $Q q_{0}=0$, which turns out to be translation-invariant, where the translation operator E^{a} is defined by $\left(E^{a} p\right)(x)=p(x+a), p \in P$. Translation-invariant operators Q on P such that $Q x=$ nonzero constant are called delta operators [1].

If D is the differentiation operator (example of a delta operator), then $q_{n}(x)=\frac{x^{n}}{n!}$ for all $n \in \mathbb{N}$ are the corresponding convolution polynomials. Algebraically, that is on P, any differentiation-invariant operator T is translation-invariant; besides T can be represented as a series, $T=\sum\left(T q_{n}\right)(0) D^{n}[1]$. Operators commuting with D (differentiation invariant) has been treated by several authors $[1,2,5,7,9,10,11,12]$ in different contexts.

Connected with the so-called "umbral calculus" Rota and his collaborators have studied certain sequences of special functions and related operators (Sheffer sequences and operators)

$$
\lambda_{g, f}=\frac{1}{g(t)} \lambda_{f}=\lambda_{f} \frac{1}{g(\bar{f}(t))}
$$

[11, formulas (3.4.5) and (3.5.1), p.42]. Then a Sheffer operator $\lambda_{g, f}$ is expressed as a composition of an umbral operator [11] and a multiplication operator (that is, an operator commuting with differentiation) and so in P these operators appear in the study of Sheffer operators and many of his properties are known [11, 12]. The question of extending them as continuous linear operators to Banach and Fréchet spaces (from this point of view) has been treated mainly by Grabiner [5]; using some expansion theorems she is able to extend some of the umbral methods, developed by Rota, Roman and some others to spaces of entire functions.

In section 2 we established the terminology used in this paper (following mainly [1], [5], [11]); we deal with weighted sequence spaces, $\ell^{1}\left(w_{n}\right)$ and $c_{o}\left(\frac{n!}{w_{n}}\right)$ and state some basic results that will be used later on.

In section 3 we consider the problem of a differentiation-invariant operator being a translation- invariant operator and if so a convolution on a certain way.

In section 4 the spectrum of D is studied.

[^0]Finally, section 5 , treats the relationship between the continuity (and invertibility) of a differentiation-invariant operator and the spectrum of D; when $\ell^{1}\left(w_{n}\right)=\ell^{1}\left(r^{n}\right)$, these results are essentially known to Grabiner [5] without being explicitly mentioned. The question of an isomorphism being of the type $e^{f(D)}$, that is, behaving as a "translation" comes in a natural way (note that the translation operator $E^{1}=e^{D}$). For certain Fréchet spaces (infinite power series spaces) results of this type can be found in [10]; for $\ell^{1}\left(w_{n}\right)$ being an algebra (that is, if and only if $w_{n+m} \leq C w_{n} w_{m}$, for all m, n) it turns out that all isomorphisms are of this type; in fact it is true for a much larger class of sequences $\left(w_{n}\right)$ as it is proved in this paper.

2 Basic results and terminology If $\left(w_{n}\right)$ is a sequence of positive numbers, $\ell^{1}\left(w_{n}\right)$ is the Banach space of formal power series $f(t)=\sum c_{n} t^{n}$ for which the norm

$$
\|f\|=\sum\left|c_{n}\right| w_{n}
$$

is finite and $c_{o}\left(\frac{n!}{w_{n}}\right)$ is the Banach space with the usual norm

$$
\|f\|=\sup _{n}\left|\frac{c_{n} n!}{w_{n}}\right|
$$

containing the formal series $f(x)=\sum c_{n} x^{n}$ such that

$$
\lim \left|\frac{c_{n} n!}{w_{n}}\right|=0
$$

Note that the variables t and x are used in a formal sense; when we deal with $c_{o}\left(\frac{n!}{w_{n}}\right)$ and its topological dual $\ell^{1}\left(w_{n}\right)$ (or P and P^{*}) the different variables are used to distinguish the elements of both spaces.

Suppose that T is a linear transformation on the space P of polynomials, and let T^{*} be its adjoint on P^{*}. The following lemma will be frequently used [5].

Lemma 2.1. Suppose that T is a linear operator on the space P of polynomials with $T^{*}\left(t^{k}\right)=h_{k}(t)$ and that $\left(w_{n}\right)$ and $\left(\mu_{n}\right)$ are sequences of positive numbers. Then the following are equivalent:
(a) Thas a (necessarily unique) extension to a bounded operator from $c_{o}\left(\frac{n!}{w_{n}}\right)$ to $c_{o}\left(\frac{n!}{\mu_{n}}\right)$.
(b) T^{*} maps $\ell^{1}\left(\mu_{n}\right)$ to $\ell^{1}\left(w_{n}\right)$ (the restriction map is necessarily continuous).
(c) $h_{k}(t)$ belongs to $\ell^{1}\left(w_{n}\right)$ for all k, and $\left\|h_{k}(t)\right\|_{w_{n}}=O\left(\mu_{k}\right)$.

Moreover, when the above conditions hold, the maps T and T^{*} have the same operator norm, which is $M=\sup _{k} \frac{\left\|h_{k}(t)\right\|}{\mu_{k}}$.

Considering the algebra of formal power series denoted by P^{*} (or $\mathbb{C}[[t]]$ for Grabiner) as the dual space of $P(\mathbb{C}[x]$ for Grabiner), that is, explicitly defining the duality by

$$
\left\langle\sum \frac{a_{n} t^{n}}{n!} / \sum b_{n} x^{n}\right\rangle=\sum a_{n} b_{n}
$$

then multiplication by $f(t)=\sum c_{n} t^{n}$ on P^{*} is the adjoint of the operator $f(t) p(x)=$ $\sum c_{n} p^{(n)}(x)$ on P [11]; this is a fundamental tool throughout our paper. With this duality $\ell^{1}\left(w_{n}\right)$ has predual $c_{o}\left(\frac{n!}{w_{n}}\right)$.

In [5] multiplication for $f(t)$ means not only power-series multiplication on P^{*} but also the action on P of the operator mentioned above. In this paper we talk of differentiationinvariant (commuting with D) and multiplication operators, following [5].

3 Continuous operators commuting with D

Proposition 3.1. A linear operator T commuting with D from $c_{o}\left(\frac{n!}{w_{n}}\right)$ to $c_{o}\left(\frac{n!}{\mu_{n}}\right)$ is continuous if and only if, for all n

$$
\sum_{k=0}^{k=\infty} \frac{\left|c_{k}\right|}{k!} w_{n+k} \leq C \mu_{n}
$$

A necessary condition for T to be continuous is

$$
\left\|\sum_{k=0}^{k=n} c_{k}\binom{n}{k} x^{n-k}\right\|_{c_{o}\left(\frac{n!}{\mu_{n}}\right)} \leq C\left\|x^{n}\right\|_{c_{o}\left(\frac{n!}{w_{n}}\right)}
$$

or equivalently, for all n

$$
\sup _{0 \leq k \leq n}\left(\frac{\left|c_{k}\right|}{k!} \frac{1}{\mu_{n-k}}\right) \leq \frac{C}{w_{n}}
$$

Proof. As T commutes with $D, T=\sum_{k=0}^{k=\infty} \frac{c_{k}}{k!} D^{k}$; then $T x^{n}=\sum_{k=0}^{k=n} c_{k}\binom{n}{k} x^{n-k}$ and the result follows from c of lemma 2.1. Writing $T=\sum c_{k} D^{k}$, the necessary and sufficient condition is $\sum_{k=0}^{k=\infty}\left|c_{k}\right| w_{n+k} \leq C \mu_{n}$, for all n while the necessary one is $\sup _{0 \leq k \leq n}\left(\left|c_{k}\right| \frac{1}{\mu_{n-k}}\right) \leq \frac{C}{w_{n}}$, for all n 。

Proposition 3.2. Let $T=\sum c_{k} D^{k}$ a continuous linear operator commuting with D. If $\limsup \left(w_{k}\right)^{\frac{1}{k}}=a>0$, then the function $f(z)=\sum c_{k} z^{k}$ is analytic on the open disc $\{z:|z|<a\}$.

Proof. Continuity of T implies $\left|c_{k}\right| \leq C \frac{\mu_{0}}{w_{k}}$, for all k and so the result.

Remark. Observe that the operator D is continuous if and only if $\sup \frac{w_{k}}{\mu_{k-1}}<\infty$.
On the other hand $\limsup _{k}\left\|D^{k}\right\|^{\frac{1}{k}} \geq \lim \sup \left(w_{k}\right)^{\frac{1}{k}}$; this relationship will be made more precise later on.

Proposition 3.3. Assume that D is continuous from $c_{o}\left(\frac{n!}{w_{n}}\right)$ to $c_{o}\left(\frac{n!}{w_{n}}\right)$. Then, the continuity of D implies the continuity of the translation operator E^{a}, for all $a \in \mathbb{C}$.

Proof. As $E^{a}\left(x^{n}\right)=\sum_{k=0}^{k=n}\binom{n}{k} a^{n-k} x^{k}, E^{a}$ (symbolically $e^{a D}$) is continuous if and only if

$$
\sum_{k=0}^{k=\infty} \frac{|a|^{k}}{k!} w_{n+k} \leq C w_{n}, \text { for all } n
$$

D continuous implies $\frac{w_{k}}{w_{k-1}}<A$, for all k and so $\frac{w_{n+k}}{w_{n}}<A^{k}$, for all k and n. Then

$$
\sum_{k=0}^{k=\infty} \frac{|a|^{k}}{k!} w_{n+k} \leq e^{|a| A} w_{n}, \text { for all } n
$$

Remark. The continuity of D does not implies the continuity of E^{a} in all cases. It is enough to consider the sequences $w_{n}=\frac{1}{(n-1)!}$ and $\mu_{n}=\frac{1}{n!}$ and the previous result is false. Therefore in P differentiation-invariant operators are translation-invariant but in a more general setting the statement translation-invariant does not even "makes sense".

The results stated above are true if the weighted sequences spaces are substituted by a Banach space B with a Schauder basis but in the context of Fréchet spaces it is no longer so. On an infinite power series space, as in [10], continuity of both operators is not simultaneous. The study of conditions to ensure both things happening will be the object of a separate paper.

Theorem 3.1. Assume that D is a continuous operator on $c_{o}\left(\frac{n!}{w_{n}}\right)$ (and so E^{a} by the previous proposition). If T is a differentiation-invariant continuous linear operator on $c_{o}\left(\frac{n!}{w_{n}}\right)$, then T can be written as a "convolution" in the following way

$$
T x^{n}=\left(T_{o} * E^{a}\right)\left(x^{n}\right)
$$

where T_{o} is the continuous linear functional such that

$$
T_{o} x^{n}=\left(T x^{n}\right)_{x=0}
$$

Proof. $\left(T_{o} * E^{a}\right)\left(x^{n}\right)$ means $\left(T(x+a)^{n}\right)_{a=0}$ considering a and x as two variables.
Therefore, as $T=\sum c_{n} D^{n}$, computing we have
$T(x+a)^{n}=T\left(\sum_{k=0}^{k=n}\binom{n}{k} a^{n-k} x^{k}\right)=\sum_{k=0}^{k=n}\binom{n}{k} a^{n-k} T\left(x^{k}\right)=$
$=\sum_{k=0}^{k=n}\binom{n}{k} a^{n-k}\left(\sum_{p=0}^{p=k} c_{p} \times(k(k-1) \ldots(k-p+1)) x^{k-p}\right)$ and it is enough to take $a=0$.
The continuity of all operators involved guaranteed the extension to all $c_{o}\left(\frac{n!}{w_{n}}\right)$.
Remark. The problem of characterizing translation-invariant operators is a classical one; for instance, Hörmander [7] studies translation-invariant operators on the spaces $L^{p}\left(\mathbb{R}^{n}\right)$ finding that they are differentiation-invariant and a convolution.

Note, on the other hand, that translations are isomorphisms and have a exponential representation; the result is true, in certain cases, for all isomorphisms as have been proved in $[2,9,10]$. Finally, let us stress the importance, in this context, of the value 0 as the previous theorem and the representation $T=\sum\left(T q_{n}\right)(0) D^{n}[1]$ shows.

4 Spectrum of D Grabiner [5], Prada [10] have proved that there is a strong relationship between the spectrum of D and the isomorphisms commuting with D; this fact is, also, implicitly stated in $[2,9]$, where they deal with exponential functions as eigenvectors of the differential equation $D f(z)=\lambda f(z)$ on spaces of analytic functions. The formal solutions of the equation $D\left(\sum a_{n} x^{n}\right)=\lambda \sum a_{n} x^{n}$ are, in fact, the sequences $a_{n}=\frac{\lambda^{n}}{n!}$, for all $\lambda \in \mathbb{C}$ (exponential functions); then the first step to determine the spectrum of D is to consider the functions $e^{\lambda x}=\sum \frac{\lambda^{n}}{n!} x^{n}$, what we do stating the following obvious proposition.

Proposition 4.1. Consider the Banach space $c_{o}\left(\frac{n!}{w_{n}}\right)$. Then,
a) $\lambda=0$ is always an eigenvalue.
b) If $\sup \left(w_{n}\right)^{\frac{1}{n}}=a>0$, the set of eigenvalues is the open disc $D(0, a)$.
c) If $\sup \left(w_{n}\right)^{\frac{1}{n}}=\infty$, the set of eigenvalues can be $\lambda=0$ only, an open disc or \mathbb{C}.

Proof. We give some simple examples to show the possibilities in c. Take $w_{n}=n^{2}, n$ even and $w_{n}=\frac{1}{n^{2}}, n$ odd; in this case $\lambda=0$ is the only eigenvalue. If $w_{n}=1, n$ even and $w_{n}=n^{2}, n$ odd, then the set of eigenvalues is the open disc $D(0,1)$; finally taking $w_{n}=n^{2}, n$ even and $w_{n}=n^{3}, n$ odd, all complex numbers are eigenvalues.

Remark. Notice that in case c) the operator D is not continuous on $c_{o}\left(\frac{n!}{w_{n}}\right)$; then this case is not to be considered in what follows because we assume D to be continuous. Compare the above proposition with theorem 2 in [10].
Theorem 4.1. Suppose that D is continuous on $c_{o}\left(\frac{n!}{w_{n}}\right)$ (equivalent to $\left.\sup \frac{w_{n+1}}{w_{n}}<\infty\right)$. Then,
a) The set of eigenvalues of D is an open disc.
b) The spectral radius of $D=\lim _{n \rightarrow \infty}\left\|D^{n}\right\|^{\frac{1}{n}}=r$, where $r=\lim _{n \rightarrow \infty}\left(\sup _{k} \frac{w_{n+k}}{w_{k}}\right)^{\frac{1}{n}}$.
c) SpectrumD $=$ SpectrumD $D^{*}=a$ closed disc of center 0 and radius equal to r.

Proof. (a) is obvious from the previous proposition and b comes from $\left\|D^{n}\right\|=\sup _{k} \frac{\left\|D^{n} e_{k}\right\|}{\left\|e_{k}\right\|}$ $=\sup _{k} \frac{w_{n+k}}{w_{k}}$.
$\stackrel{k}{\text { To }}$ prove (c) observe, first, that $(\lambda I-D)^{*}=\lambda I-D^{*}$ and, second, that $(\lambda I-D)$ is continuous on $c_{o}\left(\frac{n!}{w_{n}}\right)$ if and only if $\left(\lambda I-D^{*}\right)$ is continuous on $\ell^{1}\left(w_{n}\right)$ (lemma 2.1). Therefore, let us determine those λ that make
$\left(\lambda I-D^{*}\right)$ invertible and continuous; as $\left(\lambda I-D^{*}\right)^{-1}=\sum_{k=0}^{k=\infty} \frac{1}{\lambda^{n+1}} D^{n}$, the mapping $\left(\lambda I-D^{*}\right)^{-1}$ is continuous if and only if

$$
\sum_{k=0}^{k=\infty}\left|\frac{1}{\lambda^{n+1}}\right| w_{n+k} \leq C w_{k}, \text { for all } k \text { or } \sum_{k=0}^{k=\infty}\left|\frac{1}{\lambda^{n+1}}\right| \frac{w_{n+k}}{w_{k}} \leq C
$$

Assume that $|\lambda|>\lim _{n \rightarrow \infty}\left(\sup k \frac{w_{n+k}}{w_{k}}\right)^{\frac{1}{n}} ;$ then, $\lim _{n \rightarrow \infty}\left(\frac{1}{|\lambda|^{n+1}}\left(\sup _{k} \frac{w_{n+k}}{w_{k}}\right)\right)^{\frac{1}{n}}<1$ and so $\lambda \notin$ spectrum D^{*} or spectrum $D^{*} \subset \overline{D(0, r)}$.

Finally, it is enough to see that $D(0, r) \subset$ spectrum D^{*}. Take $\lambda \notin$ spectrum D^{*} from what follows that $\left(\lambda I-D^{*}\right)$ is continuous and therefore analytic on the disc $D(0, r)$ (notice that $\left\|\lambda I-D^{*}\right\| \geq \sum_{k=0}^{k=\infty}\left|\frac{1}{\lambda^{n+1}}\right| \frac{w_{n+k}}{w_{k}} \geq \frac{1}{\left|\lambda^{n+1}\right|} \frac{w_{n+k}}{w_{k}}$, for all k; consequently $\lim _{n \rightarrow \infty}\left(\frac{1}{\left|\lambda^{n+1}\right|}\right)^{\frac{1}{n}} \leq$ $\frac{1}{r}$ and $\lambda \notin D(0, r)$.

Remark. In the previous theorem it is assumed that r is greater than zero; when $r=0$, spectrum $D=\{0\}$. Besides $\lim _{n \rightarrow \infty}\left(\sup _{k} \frac{w_{n+k}}{w_{k}}\right)^{\frac{1}{n}}$ exists because $\left(\frac{w_{n+1}}{w_{n}}\right)$ is bounded $(D$ continuous). If $\ell^{1}\left(w_{n}\right)$ is an algebra, that is, if and only if $w_{n+m} \leq C w_{n} w_{m}$, for all m and n, then $\sup _{k} \frac{w_{n+k}}{w_{k}}=w_{n}$ and the closed disc $D(0, r)$ is, precisely, the maximal ideal space of the Banach algebra $\ell^{1}\left(w_{n}\right)$.
D^{*} is always one-to-one and so it is $\left(\lambda I-D^{*}\right)\left(D^{*}\right.$ has not eigenvalues); then $\lambda \in$ spectrum D^{*} if and only if the space generated by $\left[\left(\lambda I-D^{*}\right) \ell^{1}\left(w_{n}\right)\right]$ is not $\ell^{1}\left(w_{n}\right)$.

If T is a continuous linear operator commuting with D (given by the function $f(t)$) and λ is an eigenvalue of D, from $T\left(e^{\lambda x}\right)=f(\lambda) e^{\lambda x}$ it follows that $f(\lambda)$ is an eigenvalue of T; in fact, it is easy to see that the set $\{f(\lambda), \lambda \in D(0, r)\} \subset$ spectrum T.

5 Invertible operators Linear translation-invariant operators on P are well-known; a family $\left(T_{t}\right)_{t>0}$ of linear translation-invariant operators is a semigroup if $T_{s+t}=T_{s} T_{t}$, for all $s, t>0$. If $\left(T_{t}\right)_{t>0}$ is a semigroup on P, then T_{t} is invertible for all $t>0$ and hence, $\left(T_{t}\right)_{t>0}$ can be extended to a group $\left(T_{t}\right)_{t \in R}[1]$. Besides as T_{t} can be expanded into powers of D (linear translation-invariant operators on P coincide with linear differentiation-invariant ones) the coefficients of these expansion are studied and the infinitesimal generator of the semigroup is determined. We mention theorem 2.5.4. of [1] for the sake of completeness:

Theorem 2.5.4. Let $\left(T_{t}\right)_{t>0}$ be a semigroup of linear translation-invariant operators on P and let the functions $a_{n}(n \in \mathbb{N})$ be defined by $T_{t}=\sum_{k=0}^{k=\infty} a_{n}(t) D^{n}$ for all $t>0$ and all $n \in \mathbb{N}$. Then:
a) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of functions of convolution type.
b) If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable functions, then there exists a linear translationinvariant operator T on P such that $T_{t}=e^{t T}$ for all $t>0$ and $\left(T_{t}\right)_{t>0}$ can be extended to a group $\left(T_{t}\right)_{t \in R}$.

Therefore, the question of all invertible linear differentiation-invariant operators being exponential ones in a "certain sense" seems to be natural. In [10] it was proved that on $H(C)$ (space of entire functions) all differentiation-invariant isomorphism (translation-invariant too) are of the type $e^{a D+b}, a, b \in \mathbb{C}$ (in fact, this result had been found previously by Delsarte and Lions [2] and Nagnibida [9]; in [10] more general results are obtained including as a particular case the one mentioned); note that in this case $e^{a D+b}=e^{b} \sum_{k=0}^{k=\infty} \frac{a^{n}}{n!} D^{n}$ and the functions $\left(a_{n}\right)$ are $\left(e^{b} \frac{a^{n}}{n!}\right)$, for all $a, b \in \mathbb{C}$ (continuous which is not surprising considering theorem2.5.5. of [1]).

We prove here that the conjecture is true for a large class of weighted spaces that includes Grabiner results for $\ell^{1}\left(r^{n}\right)$; for $\ell^{1}\left(w_{n}\right)$ being an algebra they come straightforwardly from theorem (3.3) of [5] as the next theorem shows.

Theorem 5.1. Let $T=\sum_{k=0}^{k=\infty} a_{n} D^{n}$ be a differentiation-invariant operator on $c_{o}\left(\frac{n!}{w_{n}}\right)$. Then T is an isomorphism if and only if the following equivalent conditions are true:
a) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to inv $\ell^{1}\left(w_{n}\right)=\exp \ell^{1}\left(w_{n}\right)$, that is, $f(t)=e^{g(t)}, g(t) \in \ell^{1}\left(w_{n}\right)$.
b) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to $\ell^{1}\left(w_{n}\right)$ and $\sum_{k=0}^{k=\infty} a_{n} z^{n} \neq 0$, for all $|z| \leq \rho, \rho=\lim \left(w_{n}\right)^{\frac{1}{n}}$.
c) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to $\ell^{1}\left(w_{n}\right)$ and does not vanish on the spectrum of D.

Proof. The maximal ideal space of the Banach algebra $\ell^{1}\left(w_{n}\right)$ is the closed disc $\overline{D(0, \rho)}$ ([3], Section 19, pp. 116-120). As T is a multiplication operator on $\ell^{1}\left(w_{n}\right)$, then $f(t)$ and $\frac{1}{f(t)}$ are elements of $l^{1}\left(w_{n}\right)$ and the result follows ([1], Chapter 4, Section 4.2, p.88).

When $\ell^{1}\left(w_{n}\right)$ is not an algebra the result is still true, at least, for a large class of weighted spaces; it is our conjecture that the result is valid for a larger class still. We assume (w_{n}) to satisfy a condition that includes all sequences $\left(w_{n}\right)$ such that $\frac{w_{n+1}}{w_{n}}$ is increasing (as $\frac{w_{n+1}}{w_{n}}$ is bounded, then $\lim _{n \rightarrow \infty} \frac{w_{n+1}}{w_{n}}=A$). Explicitly

Theorem 5.2. Suppose that the sequence $\left(w_{n}\right)$ satisfies the condition:

$$
\forall n, \forall \varepsilon, \exists k_{n}(\varepsilon) \text { such that } \frac{w_{1+k_{n}}}{w_{k_{n}}}, \frac{w_{2+k_{n}}}{w_{1+k_{n}}}, \ldots \frac{w_{n+k_{n}}}{w_{n-1+k_{n}}} \geq A-\varepsilon
$$

where $A=\sup _{n} \frac{w_{n+1}}{w_{n}}$. Then $T=\sum_{k=0}^{k=\infty} a_{n} D^{n}$ is a differentiation-invariant isomorphism on $c_{o}\left(\frac{n!}{w_{n}}\right)$ if and only if the following equivalent conditions are true:
a) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to inv $\ell^{1}\left(A^{n}\right)=\exp \ell^{1}\left(A^{n}\right)$, that is, $f(t)=e^{g(t)}, g(t) \in \ell^{1}\left(A^{n}\right)$.
b) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to $\ell^{1}\left(A^{n}\right)$ and $\sum_{k=0}^{k=\infty} a_{n} z^{n} \neq 0$ for all $|z| \leq A$.
c) $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to $\ell^{1}\left(A^{n}\right)$ and does not vanish on the spectrum of D.

Proof. To prove (a) we will see that T is continuous if and only if $f(t)=\sum_{k=0}^{k=\infty} a_{n} t^{n}$ belongs to $\ell^{1}\left(A^{n}\right)$. Therefore if T is an isomorphism $f(t)$ and $\frac{1}{f(t)}$ are elements of $\ell^{1}\left(A^{n}\right)$ and a) follows. As $\ell^{1}\left(A^{n}\right)$ is an algebra, $\left.a\right)$ and b) are equivalent. Noting that $\sup _{k} \frac{w_{n+k}}{w_{k}}=A^{n}$ we have c).

Assume that T is continuous; so

$$
\sum_{k=0}^{k=\infty}\left|a_{n}\right| \frac{w_{n+k}}{w_{k}} \leq C, \text { for all } k
$$

Taking ε and $k_{1}(\varepsilon)$

$$
\left|a_{1}\right|(A-\varepsilon) \leq\left|a_{1}\right| \frac{w_{1+k_{1}}}{w_{k_{1}}} \leq C
$$

For the same ε and $k_{2}(\varepsilon)$

$$
(A-\varepsilon)\left|a_{1}\right|+(A-\varepsilon)^{2}\left|a_{2}\right| \leq\left|a_{1}\right| \frac{w_{1+k_{2}}}{w_{k_{2}}}+\left|a_{2}\right| \frac{w_{2+k_{2}}}{w_{k_{2}}} \leq C
$$

and so for the same ε and $k_{n}(\varepsilon)$

$$
\begin{aligned}
\left|a_{1}\right|(A-\varepsilon)+ & \left|a_{2}\right|(A-\varepsilon)^{2}+\cdots+\left|a_{n}\right|(A-\varepsilon)^{n} \leq \\
& \left|a_{1}\right| \frac{w_{1+k_{n}}}{w_{k_{n}}}+\left|a_{2}\right| \frac{w_{2+k_{n}}}{w_{k_{n}}}+\cdots+\left|a_{n}\right| \frac{w_{n+k_{n}}}{w_{k_{n}}} \leq C
\end{aligned}
$$

which implies

$$
\sum_{k=0}^{k=n}(A-\varepsilon)^{k}\left|a_{k}\right| \leq C, \text { for all } n \text { and all } \varepsilon
$$

and therefore

$$
\sum_{k=0}^{k=\infty} A^{n}\left|a_{n}\right| \leq C
$$

Conversely, if $\left(a_{n}\right) \in \ell^{1}\left(A^{n}\right)$ it is obvious that T is a continuous operator.
Remark. Note that $\ell^{1}\left(A^{n}\right) \subset \ell^{1}\left(w_{n}\right)$; besides, calling $\alpha_{n}=\sup _{k} \frac{w_{n+k}}{w_{k}}$, it is clear that $\ell^{1}\left(\alpha_{n}\right) \subset \ell^{1}\left(w_{n}\right)$ and that all elements of $\ell^{1}\left(\alpha_{n}\right)$ give differentiation-invariant continuous operators. The question is to know if $\ell^{1}\left(\alpha_{n}\right)$ is, precisely, the algebra that solves the problem in all cases as it seems.

Note, too, that all elements of $\ell^{1}\left(w_{n}\right)$ (when it is an algebra) are generators of a semigroup of differentiation-invariant isomorphisms. When it is not an algebra but (w_{n}) satisfies the above condition the roll is assumed by all elements of $\ell^{1}\left(A^{n}\right)$.

Finally we give some examples of sequences $\left(w_{n}\right)$ that satisfy the hypothesis of theorem 5,2 ; as it was said before all $\left(w_{n}\right)$ such that $\left(\frac{w_{n+1}}{w_{n}}\right)$ is increasing are included. Take, for instance, $w_{n}=\frac{1}{n}, \frac{w_{n+1}}{w_{n}}=\frac{n}{n+1}$; then $\ell^{1}\left(A^{n}\right)=\ell^{1}$.

The following sequence $\left(w_{n}\right)$ is such that $\frac{w_{n+1}}{w_{n}}$ is not increasing but the above condition is true;

$$
\begin{aligned}
& \frac{w_{1}}{w_{0}}=1, \frac{w_{2}}{w_{1}}=2, \frac{w_{3}}{w_{2}}=1, \frac{w_{4}}{w_{3}}=2, \frac{w_{5}}{w_{4}}=2, \\
& \frac{w_{6}}{w_{5}}=1, \frac{w_{7}}{w_{6}}=2, \frac{w_{8}}{w_{7}}=2, \frac{w_{9}}{w_{8}}=2, \frac{w_{10}}{w_{9}}=1 \ldots
\end{aligned}
$$

In this case $\ell^{1}\left(A^{n}\right)=\ell^{1}\left(2^{n}\right)$.

References

[1] A. Di Bucchianico, Probabilistic and analytical aspects of the umbral calculus, CW/TRACT, 119, 1996.
[2] J.Delsarte et J.L.Lions, Transmutations d'opérateurs différentiels, Comment.Math.Helv. 32 (1957), 113-128.
[3] I. Gelfand, D.Raikov, and G. Shilov, Commutative Normed Rings, Chelsea, New York, (1964).
[4] S.Grabiner, Dense subspaces of entire functions, Michigan Math.J. 33 (1986), 417-422..
[5] S. Grabiner, Convergent expansions and bounded operators in the Umbral Calculus, Advances in Mathematics. 72, (1988), 132-167.
[6] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Providence, RI, 1957.
[7] L.Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Mathematica. 104, (1960), 93-140.
[8] I. I. Ibragimov and N. I. Nagnibida, The matrix method and quasi-power bases in the space of analytic functions in a disc, Russian Math. Surveys 30:6 (1975), 107-154.
[9] N. I. Nagnibida, Isomorphisms of analytic spaces that commute with differentiation, Math. Sbornik. Tom 72 (114) (1967). No. 2.
[10] J. Prada, Operators commuting with differentiation, Math. Japonica. 38, No. 3 (1993), 461-467.
[11] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
[12] S.Roman and G.-R. Rota, The Umbral Calculus, Advances in Mathematics. 27 (1978), 95-188.
[13] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.
Sección de Matemáticas
Universidad de Salamanca.
37008, Salamanca.
Spain
E-mail: prada@gugu.usal.es

[^0]: 2000 Mathematics Subject Classification. 47B37, 46A45.
 Key words and phrases. Deita Operators, Sequence Spaces.

