DELTA OPERATORS ON SEQUENCE SPACES

J.PRADA

Received March 18, 2001; revised June 12, 2001

ABSTRACT. In this paper we study differentiation-invariant operators on sequence spaces showing that they can be considered as convolutions in a certain sense. When they are isomorphisms we prove that they have an exponential representation behaving as "translations".

1 Introduction It is known that polynomials of convolution type and certain kind of linear operators on polynomials are linked [1]. In fact, let $(q_n)_{n \in \mathbb{N}}$ be a sequence of polynomials of convolution type with deg $q_n = n$, for all $n \in \mathbb{N}$; then $(q_n)_{n \in \mathbb{N}}$ is a basis for the vector space P of polynomials with coefficients in \mathbb{R} or \mathbb{C} (or any field K of characteristic zero). Hence there exists a unique linear operator Q on P with $Qq_n = q_{n-1}, n \geq 1$

and $Qq_0 = 0$, which turns out to be translation-invariant, where the translation operator E^a is defined by $(E^a p)(x) = p(x + a), p \in P$. Translation-invariant operators Q on P such that Qx = nonzero constant are called delta operators [1].

If D is the differentiation operator (example of a delta operator), then $q_n(x) = \frac{x^n}{n!}$ for all $n \in \mathbb{N}$ are the corresponding convolution polynomials. Algebraically, that is on P, any differentiation-invariant operator T is translation-invariant; besides T can be represented as a series, $T = \sum (Tq_n) (0) D^n$ [1]. Operators commuting with D (differentiation invariant) has been treated by several authors [1, 2, 5, 7, 9, 10, 11, 12] in different contexts.

Connected with the so-called "umbral calculus" Rota and his collaborators have studied certain sequences of special functions and related operators (Sheffer sequences and operators)

$$\lambda_{g,f} = \frac{1}{g(t)}\lambda_f = \lambda_f \frac{1}{g(\overline{f}(t))}$$

[11, formulas (3.4.5) and (3.5.1), p.42]. Then a Sheffer operator $\lambda_{g,f}$ is expressed as a composition of an umbral operator [11] and a multiplication operator (that is, an operator commuting with differentiation) and so in P these operators appear in the study of Sheffer operators and many of his properties are known [11, 12]. The question of extending them as continuous linear operators to Banach and Fréchet spaces (from this point of view) has been treated mainly by Grabiner [5]; using some expansion theorems she is able to extend some of the umbral methods, developed by Rota, Roman and some others to spaces of entire functions.

In section 2 we established the terminology used in this paper (following mainly [1], [5], [11]); we deal with weighted sequence spaces, $\ell^1(w_n)$ and $c_o(\frac{n!}{w_n})$ and state some basic results that will be used later on.

In section 3 we consider the problem of a differentiation-invariant operator being a translation-invariant operator and if so a convolution on a certain way.

In section 4 the spectrum of D is studied.

²⁰⁰⁰ Mathematics Subject Classification. 47B37, 46A45.

Key words and phrases. Deita Operators, Sequence Spaces.

J. PRADA

Finally, section 5, treats the relationship between the continuity (and invertibility) of a differentiation-invariant operator and the spectrum of D; when $\ell^1(w_n) = \ell^1(r^n)$, these results are essentially known to Grabiner [5] without being explicitly mentioned. The question of an isomorphism being of the type $e^{f(D)}$, that is, behaving as a "translation" comes in a natural way (note that the translation operator $E^1 = e^D$). For certain Fréchet spaces (infinite power series spaces) results of this type can be found in [10]; for $\ell^1(w_n)$ being an algebra (that is, if and only if $w_{n+m} \leq Cw_n w_m$, for all m, n) it turns out that all isomorphisms are of this type; in fact it is true for a much larger class of sequences (w_n) as it is proved in this paper.

2 Basic results and terminology If (w_n) is a sequence of positive numbers, $\ell^1(w_n)$ is the Banach space of formal power series $f(t) = \sum c_n t^n$ for which the norm

$$\|f\| = \sum |c_n| w_n$$

is finite and $c_o(\frac{n!}{w_n})$ is the Banach space with the usual norm

$$||f|| = \sup_{n} \left| \frac{c_n n!}{w_n} \right|$$

containing the formal series $f(x) = \sum c_n x^n$ such that

$$\lim \left| \frac{c_n n!}{w_n} \right| = 0$$

Note that the variables t and x are used in a formal sense; when we deal with $c_o(\frac{n!}{w_n})$ and its topological dual $\ell^1(w_n)$ (or P and P^*) the different variables are used to distinguish the elements of both spaces.

Suppose that T is a linear transformation on the space P of polynomials, and let T^* be its adjoint on P^* . The following lemma will be frequently used [5].

Lemma 2.1. Suppose that T is a linear operator on the space P of polynomials with $T^*(t^k) = h_k(t)$ and that (w_n) and (μ_n) are sequences of positive numbers. Then the following are equivalent:

- (a) T has a (necessarily unique) extension to a bounded operator from $c_o(\frac{n!}{w_n})$ to $c_o(\frac{n!}{\mu_n})$.
- (b) T^* maps $\ell^1(\mu_n)$ to $\ell^1(w_n)$ (the restriction map is necessarily continuous).
- (c) $h_k(t)$ belongs to $\ell^1(w_n)$ for all k, and $\|h_k(t)\|_{w_n} = O(\mu_k)$.

Moreover, when the above conditions hold, the maps T and T^* have the same operator norm, which is $M = \sup_{k} \frac{\|h_k(t)\|}{\mu_k}$.

Considering the algebra of formal power series denoted by P^* (or $\mathbb{C}[[t]]$ for Grabiner) as the dual space of P ($\mathbb{C}[x]$ for Grabiner), that is, explicitly defining the duality by

$$\left\langle \sum \frac{a_n t^n}{n!} / \sum b_n x^n \right\rangle = \sum a_n b_n,$$

then multiplication by $f(t) = \sum c_n t^n$ on P^* is the adjoint of the operator $f(t)p(x) = \sum c_n p^{(n)}(x)$ on P [11]; this is a fundamental tool throughout our paper. With this duality $\ell^1(w_n)$ has predual $c_o(\frac{n!}{w_n})$.

In [5] multiplication for f(t) means not only power-series multiplication on P^* but also the action on P of the operator mentioned above. In this paper we talk of differentiationinvariant (commuting with D) and multiplication operators, following [5].

3 Continuous operators commuting with D

Proposition 3.1. A linear operator T commuting with D from $c_o(\frac{n!}{w_n})$ to $c_o(\frac{n!}{\mu_n})$ is continuous if and only if, for all n

$$\sum_{k=0}^{k=\infty} \frac{|c_k|}{k!} w_{n+k} \le C\mu_n$$

A necessary condition for T to be continuous is

$$\left\|\sum_{k=0}^{k=n} c_k \binom{n}{k} x^{n-k}\right\|_{c_o\left(\frac{n+1}{\mu_n}\right)} \le C \parallel x^n \parallel_{c_o\left(\frac{n+1}{w_n}\right)}$$

or equivalently, for all n

$$\sup_{0 \le k \le n} \left(\frac{|c_k|}{k!} \frac{1}{\mu_{n-k}} \right) \le \frac{C}{w_n}$$

Proof. As T commutes with $D, T = \sum_{k=0}^{k=\infty} \frac{c_k}{k!} D^k$; then $Tx^n = \sum_{k=0}^{k=n} c_k {n \choose k} x^{n-k}$ and the result follows from c of lemma 2.1. Writing $T = \sum c_k D^k$, the necessary and sufficient condition is $\sum_{k=0}^{k=\infty} |c_k| w_{n+k} \leq C \mu_n$, for all n while the necessary one is $\sup_{0 \leq k \leq n} (|c_k| \frac{1}{\mu_{n-k}}) \leq \frac{C}{w_n}$, for all n.

Proposition 3.2. Let $T = \sum c_k D^k$ a continuous linear operator commuting with D. If $\limsup(w_k)^{\frac{1}{k}} = a > 0$, then the function $f(z) = \sum c_k z^k$ is analytic on the open disc $\{z : |z| < a\}$.

Proof. Continuity of T implies $|c_k| \leq C \frac{\mu_0}{w_k}$, for all k and so the result.

Remark. Observe that the operator D is continuous if and only if $\sup \frac{w_k}{w_{k-1}} < \infty$.

On the other hand $\limsup_{k} \|D^k\|^{\frac{1}{k}} \ge \lim_{k} \sup(w_k)^{\frac{1}{k}}$; this relationship will be made more precise later on.

Proposition 3.3. Assume that D is continuous from $c_o(\frac{n!}{w_n})$ to $c_o(\frac{n!}{w_n})$. Then, the continuity of D implies the continuity of the translation operator E^a , for all $a \in \mathbb{C}$.

J. PRADA

Proof. As $E^a(x^n) = \sum_{k=0}^{k=n} {n \choose k} a^{n-k} x^k$, E^a (symbolically e^{aD}) is continuous if and only if

$$\sum_{k=0}^{k=\infty} \frac{\left|a\right|^k}{k!} w_{n+k} \leq C w_n, \text{ for all } n$$

D continuous implies $\frac{w_k}{w_{k-1}} < A$, for all k and so $\frac{w_{n+k}}{w_n} < A^k$, for all k and n. Then

$$\sum_{k=0}^{k=\infty} \frac{|a|^k}{k!} w_{n+k} \le e^{|a|A} w_n, \text{ for all } n.$$

Remark. The continuity of D does not implies the continuity of E^a in all cases. It is enough to consider the sequences $w_n = \frac{1}{(n-1)!}$ and $\mu_n = \frac{1}{n!}$ and the previous result is false. Therefore in P differentiation-invariant operators are translation-invariant but in a more general setting the statement translation-invariant does not even "makes sense".

The results stated above are true if the weighted sequences spaces are substituted by a Banach space B with a Schauder basis but in the context of Fréchet spaces it is no longer so. On an infinite power series space, as in [10], continuity of both operators is not simultaneous. The study of conditions to ensure both things happening will be the object of a separate paper.

Theorem 3.1. Assume that D is a continuous operator on $c_o(\frac{n!}{w_n})$ (and so E^a by the previous proposition). If T is a differentiation-invariant continuous linear operator on $c_o(\frac{n!}{w_n})$, then T can be written as a "convolution" in the following way

$$Tx^n = (T_o * E^a)(x^n)$$

where T_o is the continuous linear functional such that

$$T_o x^n = (T x^n)_{x=0}.$$

Proof.
$$(T_o * E^a)(x^n)$$
 means $(T(x+a)^n)_{a=0}$ considering a and x as two variables.
Therefore, as $T = \sum c_n D^n$, computing we have

$$T(x+a)^{n} = T\left(\sum_{k=0}^{k=n} {n \choose k} a^{n-k} x^{k}\right) = \sum_{k=0}^{k=n} {n \choose k} a^{n-k} T(x^{k}) =$$
$$= \sum_{k=0}^{k=n} {n \choose k} a^{n-k} \left(\sum_{p=0}^{p=k} c_{p} \times (k(k-1)\dots(k-p+1))x^{k-p}\right) \text{ and it is enough to take } a = 0.$$

The continuity of all operators involved guaranteed the extension to all $c_o(\frac{n!}{w_n})$.

Remark. The problem of characterizing translation-invariant operators is a classical one; for instance, Hörmander [7] studies translation-invariant operators on the spaces $L^p(\mathbb{R}^n)$ finding that they are differentiation-invariant and a convolution.

Note, on the other hand, that translations are isomorphisms and have a exponential representation; the result is true, in certain cases, for all isomorphisms as have been proved in [2, 9, 10]. Finally, let us stress the importance, in this context, of the value 0 as the previous theorem and the representation $T = \sum (Tq_n) (0) D^n[1]$ shows.

4 Spectrum of *D* Grabiner [5], Prada [10] have proved that there is a strong relationship between the spectrum of *D* and the isomorphisms commuting with *D*; this fact is, also, implicitly stated in [2, 9], where they deal with exponential functions as eigenvectors of the differential equation $Df(z) = \lambda f(z)$ on spaces of analytic functions. The formal solutions of the equation $D(\sum a_n x^n) = \lambda \sum a_n x^n$ are, in fact, the sequences $a_n = \frac{\lambda^n}{n!}$, for all $\lambda \in \mathbb{C}$ (exponential functions); then the first step to determine the spectrum of *D* is to consider the functions $e^{\lambda x} = \sum \frac{\lambda^n}{n!} x^n$, what we do stating the following obvious proposition.

Proposition 4.1. Consider the Banach space $c_o(\frac{n!}{w_n})$. Then,

- a) $\lambda = 0$ is always an eigenvalue.
- b) If $\sup(w_n)^{\frac{1}{n}} = a > 0$, the set of eigenvalues is the open disc D(0, a).
- c) If $\sup(w_n)^{\frac{1}{n}} = \infty$, the set of eigenvalues can be $\lambda = 0$ only, an open disc or \mathbb{C} .

Proof. We give some simple examples to show the possibilities in c. Take $w_n = n^2$, n even and $w_n = \frac{1}{n^2}$, n odd; in this case $\lambda = 0$ is the only eigenvalue. If $w_n = 1$, n even and $w_n = n^2$, n odd, then the set of eigenvalues is the open disc D(0, 1); finally taking $w_n = n^2$, n even and $w_n = n^3$, n odd, all complex numbers are eigenvalues.

Remark. Notice that in case c) the operator D is not continuous on $c_o(\frac{n!}{w_n})$; then this case is not to be considered in what follows because we assume D to be continuous. Compare the above proposition with theorem 2 in [10].

Theorem 4.1. Suppose that D is continuous on $c_o(\frac{n!}{w_n})$ (equivalent to $\sup \frac{w_{n+1}}{w_n} < \infty$). Then,

a) The set of eigenvalues of D is an open disc.

b) The spectral radius of
$$D = \lim_{n \to \infty} \|D^n\|^{\frac{1}{n}} = r$$
, where $r = \lim_{n \to \infty} \left(\sup_k \frac{w_{n+k}}{w_k} \right)^{\frac{1}{n}}$

c) $Spectrum D = Spectrum D^* = a$ closed disc of center 0 and radius equal to r.

Proof. (a) is obvious from the previous proposition and b comes from $||D^n|| = \sup_k \frac{||D^n e_k||}{||e_k||} = \sup_k \frac{w_{n+k}}{w_k}$.

To prove (c) observe, first, that $(\lambda I - D)^* = \lambda I - D^*$ and, second, that $(\lambda I - D)$ is continuous on $c_o(\frac{n!}{w_n})$ if and only if $(\lambda I - D^*)$ is continuous on $\ell^1(w_n)$ (lemma 2.1). Therefore, let us determine those λ that make

 $(\lambda I - D^*)$ invertible and continuous; as $(\lambda I - D^*)^{-1} = \sum_{k=0}^{k=\infty} \frac{1}{\lambda^{n+1}} D^n$, the mapping $(\lambda I - D^*)^{-1}$ is continuous if and only if

$$\begin{split} \sum_{k=0}^{k=\infty} \left| \frac{1}{\lambda^{n+1}} \right| w_{n+k} &\leq C w_k, \text{ for all } k \text{ or} \sum_{k=0}^{k=\infty} \left| \frac{1}{\lambda^{n+1}} \right| \frac{w_{n+k}}{w_k} \leq C. \\ \text{Assume that } |\lambda| &> \lim_{n \to \infty} \left(\sup k \frac{w_{n+k}}{w_k} \right)^{\frac{1}{n}}; \text{ then, } \lim_{n \to \infty} \left(\frac{1}{|\lambda|^{n+1}} \left(\sup_k \frac{w_{n+k}}{w_k} \right) \right)^{\frac{1}{n}} < 1 \text{ and so} \\ \lambda \notin spectrum \ D^* \text{ or } spectrum \ D^* \subset \overline{D(0, r)}. \end{split}$$

J. PRADA

Finally, it is enough to see that $D(0,r) \subset spectrum \ D^*$. Take $\lambda \notin spectrum \ D^*$ from what follows that $(\lambda I - D^*)$ is continuous and therefore analytic on the disc D(0,r) (notice that $\|\lambda I - D^*\| \geq \sum_{k=0}^{k=\infty} \left|\frac{1}{\lambda^{n+1}}\right| \frac{w_{n+k}}{w_k} \geq \frac{1}{|\lambda^{n+1}|} \frac{w_{n+k}}{w_k}$, for all k); consequently $\lim_{n \to \infty} \left(\frac{1}{|\lambda^{n+1}|}\right)^{\frac{1}{n}} \leq \frac{1}{r}$ and $\lambda \notin D(0,r)$.

Remark. In the previous theorem it is assumed that r is greater than zero; when r = 0, spectrum $D = \{0\}$. Besides $\lim_{n \to \infty} \left(\sup_k \frac{w_{n+k}}{w_k} \right)^{\frac{1}{n}}$ exists because $\left(\frac{w_{n+1}}{w_n} \right)$ is bounded (D continuous). If $\ell^1(w_n)$ is an algebra, that is, if and only if $w_{n+m} \leq Cw_n w_m$, for all m and n, then $\sup_k \frac{w_{n+k}}{w_k} = w_n$ and the closed disc D(0, r) is, precisely, the maximal ideal space of the Banach algebra $\ell^1(w_n)$.

 D^* is always one-to-one and so it is $(\lambda I - D^*)$ (D^* has not eigenvalues); then $\lambda \in$

spectrum D^* if and only if the space generated by $[(\lambda I - D^*) \ell^1(w_n)]$ is not $\ell^1(w_n)$. If T is a continuous linear operator commuting with D (given by the function f(t)) and

If T is a continuous linear operator commuting with D (given by the function f(t)) and λ is an eigenvalue of D, from $T(e^{\lambda x}) = f(\lambda)e^{\lambda x}$ it follows that $f(\lambda)$ is an eigenvalue of T; in fact, it is easy to see that the set $\{f(\lambda), \lambda \in D(0, r)\} \subset spectrum T$.

5 Invertible operators Linear translation-invariant operators on P are well-known; a family $(T_t)_{t>0}$ of linear translation-invariant operators is a semigroup if $T_{s+t} = T_s T_t$, for all s, t > 0. If $(T_t)_{t>0}$ is a semigroup on P, then T_t is invertible for all t > 0 and hence, $(T_t)_{t>0}$ can be extended to a group $(T_t)_{t\in R}[1]$. Besides as T_t can be expanded into powers of D (linear translation-invariant operators on P coincide with linear differentiation-invariant ones) the coefficients of these expansion are studied and the infinitesimal generator of the semigroup is determined. We mention theorem 2.5.4. of [1] for the sake of completeness:

Theorem 2.5.4. Let $(T_t)_{t>0}$ be a semigroup of linear translation-invariant operators on P and let the functions a_n $(n \in \mathbb{N})$ be defined by $T_t = \sum_{k=0}^{k=\infty} a_n(t)D^n$ for all t > 0 and all $n \in \mathbb{N}$. Then:

- a) The sequence $(a_n)_{n\in\mathbb{N}}$ is a sequence of functions of convolution type.
- b) If $(a_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions, then there exists a linear translationinvariant operator T on P such that $T_t = e^{tT}$ for all t > 0 and $(T_t)_{t>0}$ can be extended to a group $(T_t)_{t\in R}$.

Therefore, the question of all invertible linear differentiation-invariant operators being exponential ones in a "certain sense" seems to be natural. In [10] it was proved that on H(C)(space of entire functions) all differentiation-invariant isomorphism (translation-invariant too) are of the type e^{aD+b} , $a, b \in \mathbb{C}$ (in fact, this result had been found previously by Delsarte and Lions [2] and Nagnibida [9]; in [10] more general results are obtained including as a particular case the one mentioned); note that in this case $e^{aD+b} = e^b \sum_{k=0}^{k=\infty} \frac{a^n}{n!} D^n$ and the functions (a_n) are $(e^b \frac{a^n}{n!})$, for all $a, b \in \mathbb{C}$ (continuous which is not surprising considering theorem2.5.5. of [1]). We prove here that the conjecture is true for a large class of weighted spaces that includes Grabiner results for $\ell^1(r^n)$; for $\ell^1(w_n)$ being an algebra they come straightforwardly from theorem (3.3) of [5] as the next theorem shows.

Theorem 5.1. Let $T = \sum_{k=0}^{k=\infty} a_n D^n$ be a differentiation-invariant operator on $c_o(\frac{n!}{w_n})$. Then T is an isomorphism if and only if the following equivalent conditions are true:

a)
$$f(t) = \sum_{k=0}^{k=\infty} a_n t^n$$
 belongs to inv $\ell^1(w_n) = \exp \ell^1(w_n)$, that is, $f(t) = e^{g(t)}, g(t) \in \ell^1(w_n)$.

b) $f(t) = \sum_{k=0}^{k=\infty} a_n t^n$ belongs to $\ell^1(w_n)$ and $\sum_{k=0}^{k=\infty} a_n z^n \neq 0$, for all $|z| \le \rho$, $\rho = \lim(w_n)^{\frac{1}{n}}$.

c)
$$f(t) = \sum_{k=0}^{k=\infty} a_n t^n$$
 belongs to $\ell^1(w_n)$ and does not vanish on the spectrum of D.

Proof. The maximal ideal space of the Banach algebra $\ell^1(w_n)$ is the closed disc $\overline{D(0,\rho)}$ ([3], Section 19, pp. 116-120). As T is a multiplication operator on $\ell^1(w_n)$, then f(t) and $\frac{1}{f(t)}$ are elements of $l^1(w_n)$ and the result follows ([1], Chapter 4, Section 4.2, p.88).

When $\ell^1(w_n)$ is not an algebra the result is still true, at least, for a large class of weighted spaces; it is our conjecture that the result is valid for a larger class still. We assume (w_n) to satisfy a condition that includes all sequences (w_n) such that $\frac{w_{n+1}}{w_n}$ is increasing (as $\frac{w_{n+1}}{w_n}$ is bounded, then $\lim_{n\to\infty} \frac{w_{n+1}}{w_n} = A$). Explicitly

Theorem 5.2. Suppose that the sequence (w_n) satisfies the condition:

$$\forall n, \forall \varepsilon, \exists k_n(\varepsilon) \text{ such that } \frac{w_{1+k_n}}{w_{k_n}}, \frac{w_{2+k_n}}{w_{1+k_n}}, \dots \frac{w_{n+k_n}}{w_{n-1+k_n}} \geq A - \varepsilon$$

where $A = \sup_{n} \frac{w_{n+1}}{w_n}$. Then $T = \sum_{k=0}^{k=\infty} a_n D^n$ is a differentiation-invariant isomorphism on $c_o(\frac{n!}{w_n})$ if and only if the following equivalent conditions are true:

a)
$$f(t) = \sum_{k=0}^{k=\infty} a_n t^n$$
 belongs to inv $\ell^1(A^n) = \exp \ell^1(A^n)$, that is, $f(t) = e^{g(t)}, g(t) \in \ell^1(A^n)$.

b)
$$f(t) = \sum_{k=0}^{k=\infty} a_n t^n$$
 belongs to $\ell^1(A^n)$ and $\sum_{k=0}^{k=\infty} a_n z^n \neq 0$ for all $|z| \le A$.

c)
$$f(t) = \sum_{k=0}^{k=\infty} a_n t^n$$
 belongs to $\ell^1(A^n)$ and does not vanish on the spectrum of D.

Proof. To prove (a) we will see that T is continuous if and only if $f(t) = \sum_{k=0}^{k=\infty} a_n t^n$ belongs to $\ell^1(A^n)$. Therefore if T is an isomorphism f(t) and $\frac{1}{f(t)}$ are elements of $\ell^1(A^n)$ and a) follows. As $\ell^1(A^n)$ is an algebra, a) and b) are equivalent. Noting that $\sup_k \frac{w_{n+k}}{w_k} = A^n$ we have c).

Assume that T is continuous; so

$$\sum_{k=0}^{k=\infty} |a_n| \, \frac{w_{n+k}}{w_k} \le C, \text{ for all } k$$

Taking ε and $k_1(\varepsilon)$

$$|a_1|(A-\varepsilon) \le |a_1| \frac{w_{1+k_1}}{w_{k_1}} \le C$$

For the same ε and $k_2(\varepsilon)$

$$(A - \varepsilon) |a_1| + (A - \varepsilon)^2 |a_2| \le |a_1| \frac{w_{1+k_2}}{w_{k_2}} + |a_2| \frac{w_{2+k_2}}{w_{k_2}} \le C$$

and so for the same ε and $k_n(\varepsilon)$

$$|a_1| (A - \varepsilon) + |a_2| (A - \varepsilon)^2 + \dots + |a_n| (A - \varepsilon)^n \le |a_1| \frac{w_{1+k_n}}{w_{k_n}} + |a_2| \frac{w_{2+k_n}}{w_{k_n}} + \dots + |a_n| \frac{w_{n+k_n}}{w_{k_n}} \le C$$

which implies

$$\sum_{k=0}^{k=n} (A-\varepsilon)^k |a_k| \le C, \text{ for all } n \text{ and all } \varepsilon$$

and therefore

$$\sum_{k=0}^{k=\infty} A^n \left| a_n \right| \le C$$

Conversely, if $(a_n) \in \ell^1(A^n)$ it is obvious that T is a continuous operator.

Remark. Note that $\ell^1(A^n) \subset \ell^1(w_n)$; besides, calling $\alpha_n = \sup_k \frac{w_{n+k}}{w_k}$, it is clear that $\ell^1(\alpha_n) \subset \ell^1(w_n)$ and that all elements of $\ell^1(\alpha_n)$ give differentiation-invariant continuous operators. The question is to know if $\ell^1(\alpha_n)$ is, precisely, the algebra that solves the problem in all cases as it seems.

Note, too, that all elements of $\ell^1(w_n)$ (when it is an algebra) are generators of a semigroup of differentiation-invariant isomorphisms. When it is not an algebra but (w_n) satisfies the above condition the roll is assumed by all elements of $\ell^1(A^n)$.

Finally we give some examples of sequences (w_n) that satisfy the hypothesis of theorem 5,2; as it was said before all (w_n) such that $(\frac{w_{n+1}}{w_n})$ is increasing are included. Take, for instance, $w_n = \frac{1}{n}$, $\frac{w_{n+1}}{w_n} = \frac{n}{n+1}$; then $\ell^1(A^n) = \ell^1$. The following sequence (w_n) is such that $\frac{w_{n+1}}{w_n}$ is not increasing but the above condition is true:

is true;

$$\frac{w_1}{w_0} = 1, \frac{w_2}{w_1} = 2, \frac{w_3}{w_2} = 1, \frac{w_4}{w_3} = 2, \frac{w_5}{w_4} = 2, \frac{w_6}{w_5} = 1, \frac{w_7}{w_6} = 2, \frac{w_8}{w_7} = 2, \frac{w_9}{w_8} = 2, \frac{w_{10}}{w_9} = 1...$$

In this case $\ell^1(A^n) = \ell^1(2^n)$.

References

- A. Di Bucchianico, Probabilistic and analytical aspects of the umbral calculus, CW/TRACT, 119, 1996.
- [2] J.Delsarte et J.L.Lions, Transmutations d'opérateurs différentiels, Comment.Math.Helv.32 (1957), 113-128.
- [3] I. Gelfand, D.Raikov, and G. Shilov, Commutative Normed Rings, Chelsea, New York, (1964).
- [4] S.Grabiner, Dense subspaces of entire functions, Michigan Math.J. 33 (1986), 417-422...
- [5] S. Grabiner, Convergent expansions and bounded operators in the Umbral Calculus, Advances in Mathematics. 72, (1988), 132-167.
- [6] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Providence, RI, 1957.
- [7] L.Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Mathematica. 104, (1960), 93-140.
- [8] I. I. Ibragimov and N. I. Nagnibida, The matrix method and quasi-power bases in the space of analytic functions in a disc, Russian Math. Surveys 30:6 (1975), 107-154.
- N. I. Nagnibida, Isomorphisms of analytic spaces that commute with differentiation, Math. Sbornik. Tom 72 (114) (1967). No. 2.
- [10] J. Prada, Operators commuting with differentiation, Math. Japonica. 38, No.3 (1993), 461-467.
- [11] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
- [12] S.Roman and G.-R. Rota, The Umbral Calculus, Advances in Mathematics. 27 (1978), 95-188.
- [13] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.

Sección de Matemáticas Universidad de Salamanca. 37008, Salamanca. Spain E-mail: prada@gugu.usal.es