A STRUCTURE OF AN INCREASING SEQUENCE OF CLOSED SETS WHOSE UNION IS A MULTIDIMENSIONAL INTERVAL

Shizu NaKanishi

Received April 16, 2001

Abstract

In order to study Fubini's theorem for multidimensional non-absolute integration, we introduced a lemma in the author's paper [1]. We found some errors in the proof of the lemma, but the lemma is still true. The purpose of this paper is to give a correction to the proof. In this paper, we will show a whole proof of the lemma to be easily understood.

There are some errors in the proof of Lemma 2 in [1] ([1, p.72]). The purpose of this paper is to give a correction to the proof of the lemma and to show that the lemma is true.

We denote the h-dimensional Euclidean space by E_{h}. For a set A in E_{h}, we denote the interior of A by A°, and the closure of A by \bar{A}. Given a system $a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{h}, b_{h}$ of 2 h real numbers such that $a_{i}<b_{i}$ for $i=1,2, \ldots, h$, the set $\left\{\left(x_{1}, x_{2}, \ldots, x_{h}\right): a_{i} \leq x_{i} \leq b_{i}\right.$ for $i=1,2, \ldots, h\}$ in E_{h} is called an interval in E_{h}. A collection of intervals $I_{i}(i=1,2, \ldots, n)$ such that $\left(I_{i}\right)^{\circ} \cap\left(I_{j}\right)^{\circ}=\emptyset$ for $i \neq j$ is said to be non-overlapping.

When we consider the space E_{h} as the product $E_{h}=E_{h_{1}} \times E_{h_{2}}$ of $E_{h_{1}}$ and $E_{h_{2}}$ such that $h=h_{1}+h_{2}$, we denote the projection of a set $A \subset E_{h}$ on $E_{h_{1}}$ by proj${ }_{x}(A)$, and the
$E_{h_{1}}$
 denote $\operatorname{proj}_{E_{h_{1}}}(A)$ by $\operatorname{proj}_{x}(A)$ and $\operatorname{proj}_{E_{h_{2}}}(A)$ by $\operatorname{proj}_{y}(A)$ in short. For a set $A \subset E_{h}$, we denote for a point $q \in E_{h_{2}}$, the set $\left\{\left(p^{\prime}, q\right):\left(p^{\prime}, q\right) \in A, p^{\prime} \in E_{h_{1}}\right\}$ by A^{q}, similarly for a point $p \in E_{h_{1}}$, the set $\left\{\left(p, q^{\prime}\right):\left(p, q^{\prime}\right) \in A, q^{\prime} \in E_{h_{2}}\right\}$ by A^{p}.

We denote the Lebesgue measure of a set A in E_{h} which is measurable in the Lebesgue sense by $\mu_{h}(A)$. In particular, for an interval in E_{1} we denote $\mu_{1}(I)$ by $|I|$.

For an interval in E_{h}, the least upper bound of the distances between a and b with $a, b \in I$ is called the diameter of I. For an interval $I=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{h}, b_{h}\right]$, the point whose i-th coordinate is $\left(b_{i}-a_{i}\right) / 2$ for $i=1,2, \ldots, h$ is called the center of I. A point whose coordinates are rational numbers is called a rational point.

Let J be an interval in the 1-dimensional Euclidean space $E_{1}, M_{k}(k=1,2, \ldots)$ a nondecreasing sequence of closed sets such that $\cup_{k=1}^{\infty} M_{k} \supset J$, and $\varepsilon_{k}(k=1,2, \ldots)$ a sequence of numbers with $\varepsilon_{k} \downarrow 0$. Let F be a non-empty closed set in E_{1} and n and m two positive integers with $n<m$. Then, we say that the closed set F has the property $\left(B_{1}\right)$ for $n<m$ in J associated with the sequences $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ if the following condition is satisfied:
$\left(\mathrm{B}_{1}\right):(1) F \subset J$ and $F \subset M_{m}$;
(2) Let $J_{j}(j=1,2, \ldots)$ be the sequence of intervals contiguous to the set consisting of the set F and the end-points of the interval J. Then, the sequence can be classified

[^0]into $m-n+1$ parts: $J_{k j}(j=1,2, \ldots)$, possibly empty or finite, where $k=n, n+$ $1, n+2, \ldots, m$, in such a way that:

For $k=n, n+1, n+2, \ldots, m$, we have
(i) $\sum_{j=1}^{\infty}\left|J_{k j}\right|<\varepsilon_{k}$;
(ii) $\left(J_{k j}\right)^{\circ} \cap M_{k}=\emptyset$ for $j=1,2, \ldots$; and
(iii) one at least of the end-points of the interval $J_{k j}$ belongs to M_{k} for $j=1,2, \ldots$.

Lemma 1. Let J_{0} be an interval in the 1-dimensional Euclidean space E_{1}. Let $M_{k}(k=$ $1,2, \ldots$) be a non-decreasing sequence of closed sets such that $\cup_{k=1}^{\infty} M_{k}=J_{0}$. Then, for an arbitrary given sequence $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ with $\varepsilon_{k} \downarrow 0$, any sub-interval J of J_{0} has the following property $\left(\mathrm{A}_{1}\right)$ in J associated with the sequences $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
$\left(\mathrm{A}_{1}\right)$: There exist two increasing sequences of positive integers $n(i)$ and $m(i)(i=1,2, \ldots)$ such that $n(i)<m(i)<n(i+1)$ and a non-decreasing sequence of non-empty closed sets $F_{n(i) m(i)}(i=1,2, \ldots)$ in such a way that:
(1) each $F_{n(i) m(i)}$ has the property $\left(\mathrm{B}_{1}\right)$ for $n(i)<m(i)$ in J associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty} ;$ and
(2) $\cup_{i=1}^{\infty} F_{n(i) m(i)}=J$ holds.

Lemma 2. Let R_{0} be an interval in the h-dimensional Euclidean space $E_{h}(h>1)$. Let $M_{k}(k=1,2, \ldots)$ be a non-decreasing sequence of closed sets such that $\cup_{k=1}^{\infty} M_{k}=R_{0}$. Then, for an arbitrary given sequence $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ with $\varepsilon_{k} \downarrow 0$, any sub-interval R of R_{0} has the following property $\left(\mathrm{A}_{h}\right)$ in R assciated with the sequences $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
$\left(\mathrm{A}_{h}\right)$: There exist two increasing sequences of positive integers $n(i)$ and $m(i)(i=1,2, \ldots)$ such that $n(i)<m(i)<n(i+1)$ and a non-decreasing sequence of non-empty closed sets $F_{n(i) m(i)}(i=1,2, \ldots)$ such that
(1) $F_{n(i) m(i)} \subset R$ and $F_{n(i) m(i)} \subset M_{m(i)}$,
in such a way that:
(2) Put $Y=\cup_{i=1}^{\infty} \operatorname{proj}_{E_{h-1}}\left(F_{n(i) m(i)}\right)$ and $Z=\operatorname{proj}_{E_{h-1}}(R)-Y$. Then, we have
(i) $\mu_{h-1}(Z)=0$;
(ii) for each $q \in Y$ and each $i=1,2, \ldots$, if $\left(F_{n(i) m(i)}\right)^{q} \neq \emptyset$, then the closed $\operatorname{set}\left(F_{n(i) m(i)}\right)^{q}$ has the property $\left(B_{1}\right)$ for $n(i)<m(i)$ in R^{q} associated with $\left\{\left(M_{k}\right)^{q}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$; and
(iii) $\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}\right)^{q}=R^{q}$ for each $q \in Y$.

In the property $\left(\mathrm{A}_{h}\right), F_{n(i) m(i)}$ is sometimes denoted by $F_{n(i) m(i)}(R)$, standing for that $\left(\mathrm{A}_{h}\right)$ is considered in R. Since $F_{n(i) m(i)} \uparrow$, (i) and (iii) imply that
(iv) $\mu_{h}\left(F_{n(i) m(i)}\right) \uparrow \mu_{h}(R)$ holds as $i \rightarrow \infty$.

Remark. In $\left(\mathrm{A}_{h}\right)$ of Lemma 2, we can replace the conditions (ii) and (iii) by the following conditions (ii') and (iii'):
(ii') For almost all $q \in Y$ and all $i=1,2, \ldots$, if $\left(F_{n(i) m(i)}\right)^{q} \neq \emptyset$, then the closed set $\left(F_{n(i) m(i)}\right)^{q}$ has the property $\left(\mathrm{B}_{1}\right)$ for $n(i)<m(i)$ in R^{q} associated with $\left\{\left(M_{k}\right)^{q}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$;
$($ iii' $) \cup_{i=1}^{\infty}\left(F_{n(i) m(i)}\right)^{q}=R^{q}$ for almost all $q \in Y$.

Proof. We prove only for the case when $h=2$. By (ii') and (iii') there exists a set $K \subset Y$ with $\mu_{1}(K)=0$ and such that for all $q \in Y-K$, the statements of (ii') and (iii') which correspond to q are true. Take a decreasing sequence of open sets $G(i)(i=1,2, \ldots)$ such that $G(i) \supset K$ and so $\cap_{i=1}^{\infty} G(i) \supset K$, and $\mu_{1}\left(\cap_{i=1}^{\infty} G(i)\right)=0$. Set $F_{n(i) m(i)}^{*}=F_{n(i) m(i)} \cap$ $\left(\operatorname{proj}_{x}(R) \times\left(\operatorname{proj}_{y}(R)-G(i)\right)\right)$. Then, the sequence $F_{n(i) m(i)}^{*}(i=1,2, \ldots)$ satisfies the conditions (1) and (2) required in (A_{2}).

Next, we prove Lemma 2.
Proof of Lemma 2. The proof of the lemma requires four steps. We prove only for the case of $h=2$.

The first step. If an interval R has the property $\left(A_{2}\right)$ in R associsted with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$, then any sub-interval R^{\prime} of R has the property $\left(\mathrm{A}_{2}\right)$ in R^{\prime} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
Proof. Let $n(i)$ and $m(i)(i=1,2, \ldots)$ be the sequences of positive integers and $F_{n(i) m(i)}(R)$ $(i=1,2, \ldots)$ the sequence of closed sets chosen to satisfy $\left(A_{2}\right)$ in R associated with $\left\{M_{k}\right\}$ and $\left\{\varepsilon_{k}\right\}$. Let B^{\prime} and $\mathrm{B}^{\prime \prime}$ be two sides of R^{\prime} which are parallel to the y -axis. Put $Y_{k}=\operatorname{proj}_{y}\left(B^{\prime} \cap M_{k}\right) \cap \operatorname{proj}_{y}\left(B^{\prime \prime} \cap M_{k}\right)$ and $Y_{k}^{*}=\operatorname{proj}_{x}\left(R^{\prime}\right) \times Y_{k}$. Then, $F_{n(i) m(i)}^{*}\left(R^{\prime}\right)=$ $F_{n(i) m(i)}(R) \cap Y_{n(i)}^{*}(i=1,2, \ldots)$ is a sequence of closed sets satisfying all of the conditions required in $\left(\mathrm{A}_{2}\right)$ in R^{\prime} associated with $\left\{M_{k}\right\}$ and $\left\{\varepsilon_{k}\right\}$.

The second step. Let R be an interval, F a closed set (empty or non-empty), and $Q(j)(j=1,2, \ldots)$ a sequence of intervals. Suppose that
(a) $R^{\circ} \subset\left(\cup_{j=1}^{\infty} Q(j) \cup F\right)$;
(b) $F \subset M_{k}$ for some k; and
(c) each $Q(j)(j=1,2, \ldots)$ has the property $\left(\mathrm{A}_{2}\right)$ in $Q(j)$ associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.

Then, the interval R has the property $\left(\mathrm{A}_{2}\right)$ in R associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
As easily seen, by use of the first step to show that the second step is true, it is sufficient to prove the following statement.

The third step. Let R be an interval in R_{0}. Suppose that there are a sequence $Q(j)(j=$ $1,2, \ldots$) of non-overlapping intervals and a closed set F (empty or non-empty) such that
(a) $F \subset R, F \cap Q(j)=\emptyset$ for $j=1,2, \ldots$, and $R^{\circ} \subset\left(\cup_{j=1}^{\infty} Q(j) \cup F\right) \subset R$;
(b) $F \subset M_{k}$ for some k; and
(c) each $Q(j)(j=1,2, \ldots)$ has the property $\left(\mathrm{A}_{2}\right)$ in $Q(j)$ associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.

Then, R has the property $\left(\mathrm{A}_{2}\right)$ in R associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
Proof. We shall show that there exist two increasing sequences of positive integers $\{n(i)\}_{i=1}^{\infty}$ and $\{m(i)\}_{i=1}^{\infty}$, and a non-decreasing sequence of closed sets $\left\{F_{n(i) m(i)}\right\}_{i=1}^{\infty}$ which satisfy all of the conditions required in $\left(\mathrm{A}_{2}\right)$ in R associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. By the assumption (c), for each $Q(j)$ there are two increasing sequences of positive integers $\{n(j, t)\}_{t=1}^{\infty}$ and $\{m(j, t)\}_{t=1}^{\infty}$ such that $n(j, t)<m(j, t)<n(j, t+1)$ for $t=1,2, \ldots$ and a sequence of closed sets $\left\{F_{n(j, t) m(j, t)}(Q(j))\right\}_{t=1}^{\infty}$ which satisfies the conditions (1) and (2) required in $\left(\mathrm{A}_{2}\right)$ in $Q(j)$ associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. In particular, we have

$$
\operatorname{proj}_{y}\left(F_{n(j, t) m(j, t)}(Q(j))\right) \subset \operatorname{proj}_{y}(Q(j)) \text { for } j=1,2, \ldots \text { and } t=1,2, \ldots
$$

By (iii) of (2) we can suppose that for every $y \in \operatorname{proj}_{y}\left(F_{n(j, t) m(j, t)}(Q(j))\right)$ we have

$$
\begin{gather*}
\left(F_{n(j, t) m(j, t)}(Q(j))\right)^{y} \cap B^{\prime}(j) \neq \emptyset \text { and }\left(F_{n(j, t) m(j, t)}(Q(j))\right)^{y} \cap B^{\prime \prime}(j) \neq \emptyset \\
\text { for } j=1,2, \ldots \text { and } t=1,2, \ldots,
\end{gather*}
$$

where $B^{\prime}(j)$ and $B^{\prime \prime}(j)$ are the sides of $Q(j)$ which are parallel to the y -axis.
Now

1. Set $k(0)=0, n(0)=0$ and $m(0)=k^{\prime}$, where k^{\prime} is an integer such that $F \subset M_{k^{\prime}}\left(k^{\prime} \geq 1\right)$. There exsists such a k^{\prime} by (b).
2. Supposing $k(i-1), n(i-1)$ and $m(i-1)$ are defined for an $i \in\{1,2, \ldots\}$, we shall define $k(i), n(i)$ and $m(i)$ as follows. Let us take an integer $k(i)$ so that

$$
\begin{gather*}
k(i-1)<k(i), \text { and } \\
\mu_{2}\left(R-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)\right)<\left(\varepsilon_{m(i-1)+1} / 2^{i}\right)^{2}
\end{gather*}
$$

This is possible by (a). Next, choose two indices $n(j, t(j, i))$ and $m(j, t(j, i))$ for $j=$ $1,2, \ldots, k(i)$ so that

$$
\begin{array}{r}
m(i-1)+1<n(1, t(1, i))<m(1, t(1, i))<n(2, t(2, i))<m(2, t(2, i)) \\
<\ldots<n(k(i), t(k(i), i))<m(k(i), t(k(i), i)) ; \text { and } \\
\mu_{1}\left(\operatorname{proj}_{y}(Q(j))-\operatorname{proj}_{y}\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)\right)<\varepsilon_{m(i-1)+1} / N(i) 2^{i}
\end{array}
$$

where $N(i)=\sum_{r=1}^{k(i)} r\left({ }_{k(i)} C_{r}\right)$. This is possible by (iv). Put

$$
n(i)=m(i-1)+1 \text { and } m(i)=m(k(i), t(k(i), i)) .
$$

Since, for $i \geq 1, k(i)>k(0)$ and so $k(i) \geq 1$, we have $n(i)=m(i-1)+1<m(1, t(1, i)) \leq$ $m(k(i), t(k(i), i))=m(i)$. Therefore

$$
i<n(i)<m(i)<n(i+1) \text { for } i=1,2, \ldots
$$

Repeating this process, we obtain $k(i), n(i)$ and $m(i)(i=1,2, \ldots)$. Since $n(j, t(j, i)) \leq$ $m(k(i), t(k(i), i))=m(i)<m(i)+1(=n(i+1))<n(j, t(j, i+1))$ for $1 \leq j \leq k(i)$, we have

$$
t(j, i)<t(j, i+1) \text { for } i=1,2, \ldots \text { and } j=1,2, \ldots k(i)
$$

Fix an $i \in\{1,2, \ldots\}$. Corresponding to $y \in \operatorname{proj}_{y}(R)$ we consider a system consisting of all of the intervals $Q(j)$ belonging to $\{Q(1), Q(2), \ldots, Q(k(i))\}$ and such that $\left((Q(j))^{\circ}\right)^{y} \neq$ \emptyset. We denote the sysytem by $P(y)$ (possible empty). We denote by $\triangle(i)$ the class of nonempty systems P consisiting of intervals chosen from $\{Q(1), Q(2), \ldots, Q(k(i))\}$ for which there exists a $y \in \operatorname{proj}_{y}(R)$ such that $P=P(y)$. We denote P belonging to $\triangle(i)$ by $P: Q(j(1, P)), Q(j(2, P)), \ldots, Q(j(h(P), P))$. For $P \in \triangle(i)$, we have

$$
\{y: P(y)=P\}=\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))^{\circ}-\cup_{Q(j) \notin P, 1 \leq j \leq k(i)}\left(\operatorname{proj}_{y}(Q(j))\right)^{\circ}
$$

Put

$$
J(P)=\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))^{\circ}-\cup_{Q(j) \notin P, 1 \leq j \leq k(i)} \operatorname{proj}_{y}(Q(j))
$$

Then, $J(P)$ consists of finite non-empty open intervals on y-axis. We have

$$
J(P) \cap J\left(P^{\prime}\right)=\emptyset \text { if } P \neq P^{\prime} \text { for } P, P^{\prime} \in \triangle(i)
$$

Since $\cup_{P \in \triangle(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))\right) \supset \cup_{P \in \triangle(i)} \overline{J(P)} \supset \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))$, we have

$$
\cup_{P \in \Delta(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))\right)=\cup_{P \in \Delta(i)} \overline{J(P)}=\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))
$$

The number of systems belonging to $\triangle(i)$ is $\sum_{r=1}^{k(i)}{ }_{k(i)} C_{r}$ at most.
We set

$$
E(i)=\left\{y: y \in \operatorname{proj}_{y}\left(R^{\circ}\right), \quad \mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right)<\varepsilon_{n(i)} / 2^{i}\right\} .
$$

Take a closed set $H(i)$ so that

$$
H(i) \subset E(i), \quad \mu_{1}(E(i)-H(i))<\varepsilon_{n(i)} / 2^{i+1}
$$

Take a closed set $S^{*}(i)$ so that

$$
\begin{gather*}
S^{*}(i) \subset H(i)-\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)), \text { and } \\
\mu_{1}\left(\left(H(i)-\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right)-S^{*}(i)\right)<\varepsilon_{n(i)} / 2^{i+1} .
\end{gather*}
$$

Put

$$
S(i)=\left(H(i) \cap \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right) \cup S^{*}(i)
$$

Since $H(i)=\left(H(i) \cap \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right) \cup\left(H(i)-\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right), S(i)$ is a closed set contained in $E(i)$ such that

$$
\mu_{1}(E(i)-S(i))=\mu_{1}(E(i)-H(i))+\mu_{1}\left(\left(H(i)-\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right)-S^{*}(i)\right)<\varepsilon_{n(i)} / 2^{i}
$$

We have

$$
S(i)-S^{*}(i)=H(i) \cap \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)) \subset \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)) .
$$

Put
$T(i)=\cup_{P \in \Delta(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap \overline{J(P)}\right)$,
$U(i)=S(i) \cap\left(S^{*}(i) \cup T(i)\right)=S^{*}(i) \cup(S(i) \cap T(i))$,
$V(i)=Y(i) \cap\left(\cap_{i^{\prime}=i}^{\infty} U\left(i^{\prime}\right)\right)$,
where $Y(i)=\operatorname{proj}_{y}\left(B^{\prime} \cap M_{1}\right) \cap \operatorname{proj}_{y}\left(B^{\prime \prime} \cap M_{1}\right)$ and B^{\prime} and $B^{\prime \prime}$ are the two sides of R which are parallel to y -axis.
We have

$$
Y(i) \subset \operatorname{proj}_{y}(R), Y(i) \uparrow \text { as } i \rightarrow \infty, \quad \lim _{i \rightarrow \infty} \mu_{1}(Y(i))=\mu_{1}\left(\operatorname{proj}_{y}(R)\right)
$$

Hence, $V(i) \uparrow$ as $i \rightarrow \infty$, and since $V(i) \subset E(i), V(i) \subset \operatorname{proj}_{y}\left(R^{\circ}\right)$ holds.
Put $V^{*}(i)=\operatorname{proj}_{x}(R) \times V(i)$, then $V^{*}(i)$ is a closed set such that

$$
V^{*}(i) \uparrow \text { as } i \rightarrow \infty \text { and } V^{*}(i) \subset \operatorname{proj}_{x}(R) \times \operatorname{proj}_{y}\left(R^{\circ}\right) \subset R .
$$

We now define $F_{n(i) m(i)}(R)$ for $i=1,2, \ldots$ as follows:

$$
F_{n(i) m(i)}(R)=V^{*}(i) \cap\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j)) \cup M_{n(i)}\right) .
$$

We next prove that this is a sequence of non-empty closed sets satisfying the conditions (1) and (2) required in (A_{2}) in R associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. It is clear taht $F_{n(i) m(i)}(R)$ is a non-empty closed set. Now, put

$$
M^{*}(i)=\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j)) .
$$

Since by $\left(9^{\circ}\right) F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j)) \subset F_{n(j, t(j, i+1)) m(j, t(j, i+1))}(Q(j))$ for $j=1,2, \ldots, k(i)$ and $k(i)<k(i+1)$, we have $M^{*}(i) \uparrow$. Further, $V^{*}(i) \uparrow$ and $M_{n(i)} \uparrow$ by $n(i)<n(i+1)$. Hence

$$
F_{n(i) m(i)}(R) \uparrow \quad \text { as } \quad i \rightarrow \infty .
$$

Since $V^{*}(i) \subset R$ by $\left(20^{\circ}\right)$, we have

$$
F_{n(i) m(i)}(R) \subset R
$$

By (1) of the property (A_{2}) in $Q(j)$ associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty},\left(5^{\circ}\right)$ and $\left(7^{\circ}\right)$, we have $F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j)) \subset M_{m(j, t(j, i))} \subset M_{m(k(i), t(k(i), i))}=M_{m(i)}$ for $j=$ $1,2, \ldots, k(i)$. Further $m(i)>n(i)$. Hence

$$
F_{n(i) m(i)}(R) \subset M_{m(i)} .
$$

Next, we prove that $\lim _{i \rightarrow \infty} \mu_{2}\left(F_{n(i) m(i)}(R)\right)=\mu_{2}(R)$. We first have $M_{n(i)}-M^{*}(i) \supset F$. Because, we have $M_{n(i)} \supset M_{m(0)} \supset F$ for $i \geq 1$, and since $Q(j) \cap F=\emptyset$ for $j=$ $1,2, \ldots, k(i)$, we have $M^{*}(i) \cap F=\emptyset$. Therefore

$$
\begin{align*}
\lim _{i \rightarrow \infty} \mu_{2}\left(F_{n(i) m(i)}(R)\right) & =\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap\left(M_{n(i)} \cup M^{*}(i)\right)\right) \\
& =\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap\left(M_{n(i)}-M^{*}(i)\right)\right)+\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right) \\
& \geq \lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap F\right)+\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right)
\end{align*}
$$

By $\left(13^{\circ}\right)$, if $y \in \operatorname{proj}_{y}\left(R^{\circ}\right)-E(i)$, then $\mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right) \geq \varepsilon_{n(i)} / 2^{i}$. Hence

$$
\begin{aligned}
\mu_{1}\left(\operatorname{proj}_{y}(R)-E(i)\right) \cdot\left(\varepsilon_{n(i)} / 2^{i}\right) & \leq \int_{\operatorname{proj}_{y}(R)-E(i)} \mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right) d y \\
& \leq \int_{\operatorname{proj}_{y}(R)} \mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right) d y \\
& \leq \mu_{2}\left(R-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)\right)<\left(\varepsilon_{n(i)} / 2^{i}\right)^{2} \quad\left(\operatorname{by}\left(4^{\circ}\right) \text { and }\left(7^{\circ}\right)\right)
\end{aligned}
$$

Hence

$$
\mu_{1}\left(\operatorname{proj}_{y}(R)-E(i)\right)<\varepsilon_{n(i)} / 2^{i}
$$

We have, by $\left(10^{\circ}\right)$ and $\left(12^{\circ}\right)$,

$$
\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))=\cup_{P \in \triangle(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P))) \cap \overline{J(P)}\right)
$$

We further have

$$
Q(j(h, P)) \supset\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P))) \text { for } h=1,2, \ldots, h(P)\right.
$$

Therefore, by $\left(18^{\circ}\right),\left(16^{\circ}\right)$ and $\left(17^{\circ}\right)$ we have

$$
\begin{aligned}
& \mu_{1}(S(i)-U(i))=\mu_{1}\left(\left(S(i)-S^{*}(i)\right)-T(i)\right) \leq \mu_{1}\left(\left(\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))\right)-T(i)\right) \\
& \quad=\mu_{1}\left(\cup_{P \in \Delta(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P))) \cap \overline{J(P)}\right)\right. \\
& - \\
& \left.=\cup_{P \in \Delta(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap \overline{J(P)}\right)\right) \\
& =\sum_{P \in \triangle(i)} \mu_{1}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P))) \cap J(P)\right. \\
& \left.\quad-\cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{P \in \triangle(i)} \sum_{h=1}^{h(P)}\left(\mu _ { 1 } \left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P))) \cap J(P)\right.\right. \\
& \left.\left.-\operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)\right)\right) \\
& \leq \sum_{P \in \Delta(i)} \sum_{h=1}^{h(P)}\left(\mu _ { 1 } \left(\operatorname{proj}_{y}(Q(j(h, P))) \cap J(P)\right.\right. \\
& \left.\left.-\operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)\right)\right) \\
& =\sum_{r=1}^{k(i)} \sum_{P \in \triangle(i), h(P)=r} \sum_{h=1}^{h(P)}\left(\mu _ { 1 } \left(\operatorname{proj}_{y}(Q(j(h, P))) \cap J(P)\right.\right. \\
& \left.\left.-\operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)\right)\right) \\
& <\sum_{r=1}^{k(i)}\left(\sum_{P \in \triangle(i), h(P)=r}\left\{r\left(\varepsilon_{n(i)} / N(i) 2^{i}\right)\right\}\right) \quad\left(\text { by }\left(6^{\circ}\right) \operatorname{and}\left(7^{\circ}\right)\right) \\
& \leq \sum_{r=1}^{k(i)}\left({ }_{k(i)} C_{r}\left\{r\left(\varepsilon_{n(i)} /\left(\sum_{r=1}^{k(i)} r\left({ }_{k(i)} C_{r}\right) 2^{i}\right)\right\}\right)=\varepsilon_{n(i)} / 2^{i} .\right.
\end{align*}
$$

Hence, by $\left(24^{\circ}\right),\left(15^{\circ}\right)$ and $\left(25^{\circ}\right)$,

$$
\begin{aligned}
& \mu_{1}\left(\operatorname{proj}_{y}(R)-U(i)\right) \\
& \quad \leq \mu_{1}\left(\operatorname{proj}_{y}(R)-E(i)\right)+\mu_{1}(E(i)-S(i))+\mu_{1}(S(i)-U(i))<3\left(\varepsilon_{n(i)} / 2^{i}\right)
\end{aligned}
$$

Therefore, for $i=1,2, \ldots$ we have

$$
\begin{aligned}
\mu_{1}\left(\operatorname{proj}_{y}(R)-V(i)\right) & =\mu_{1}\left(\operatorname{proj}_{y}(R)-\left(Y(i) \cap\left(\cap_{i^{\prime}=i}^{\infty} U\left(i^{\prime}\right)\right)\right)\right. \\
& \leq \mu_{1}\left(\operatorname{proj}_{y}(R)-Y(i)\right)+\sum_{i^{\prime}=i}^{\infty} \mu_{1}\left(\operatorname{proj}_{y}(R)-U\left(i^{\prime}\right)\right) \\
& <\mu_{1}\left(\operatorname{proj}_{y}(R)-Y(i)\right)+\sum_{i^{\prime}=i}^{\infty} 3\left(\varepsilon_{n\left(i^{\prime}\right)} / 2^{i^{\prime}}\right) \\
& <\mu_{1}\left(\operatorname{proj}_{y}(R)-Y(i)\right)+3 \varepsilon_{n(i)}
\end{aligned}
$$

Thus, by $\left(19^{\circ}\right) \lim _{i \rightarrow \infty} \mu_{1}(V(i))=\mu_{1}\left(\operatorname{proj}_{y}(R)\right)$, and so

$$
\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i)\right)=\mu_{2}(R)
$$

By (20 $)$

$$
\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap F\right)=\mu_{2}(F)
$$

Next, for any positive integer j^{*}, take an i^{*} with $k\left(i^{*}\right)>j^{*}$. This is possible by $\left(3^{\circ}\right)$. Then

$$
\begin{aligned}
\lim _{i \rightarrow \infty, i \geq i^{*}} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right) & =\lim _{i \rightarrow \infty, i \geq i^{*}} \mu_{2}\left(V^{*}(i) \cap\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)\right) \\
& \geq \lim _{i \rightarrow \infty, i \geq i^{*}} \sum_{j=1}^{j^{*}} \mu_{2}\left(V^{*}(i) \cap F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right) \\
& =\sum_{j=1}^{j^{*}} \lim _{i \rightarrow \infty, i \geq i^{*}} \mu_{2}\left(V^{*}(i) \cap F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right) \\
& =\sum_{j=1}^{j^{*}} \mu_{2}(Q(j))
\end{aligned}
$$

by $\left(20^{\circ}\right),\left(26^{\circ}\right)$, the fact that $t(j, i) \uparrow \infty$ as $i \rightarrow \infty$ for $j=1,2, \ldots j^{*}$, and (iv) in $Q(j)$.
Therefore, $\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right)=\lim _{i \rightarrow \infty, j \geq i^{*}} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right) \geq \sum_{j=1}^{j^{*}} \mu_{2}(Q(j))$ and so

$$
\lim _{i \rightarrow \infty} \mu_{2}\left(V^{*}(i) \cap M^{*}(i)\right) \geq \sum_{j=1}^{\infty} \mu_{2}(Q(j))
$$

By $\left(23^{\circ}\right),\left(27^{\circ}\right),\left(28^{\circ}\right),\left(22^{\circ}\right)$ and (a), we obtain $\lim _{i \rightarrow \infty} \mu_{2}\left(F_{n(i) m(i)}(R)\right)=\mu_{2}(R)$.
Consequently, when we put

$$
Y=\cup_{i=1}^{\infty} \operatorname{proj}_{y}\left(F_{n(i) m(i)}(R)\right) \text { and } Z=\operatorname{proj}_{y}(R)-Y
$$

we have $\mu_{1}(Z)=0$. We set

$$
Y^{*}=Y-\cup_{i=1}^{\infty} \cup_{P \in \Delta(i)}(\overline{J(P)}-J(P))
$$

Then. $Y^{*} \subset Y$ and $\mu_{1}\left(Y-Y^{*}\right)=0$.
Next, we prove (ii') and (iii') of Remark. To prove them, we prepare the following statement (*).
$(*):$ Let $y \in Y^{*}, y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)$ for some i, and $\left(Q\left(j_{s}\right)\right)^{y} \neq \emptyset$ for $s=1,2, \ldots, r$. Let

$$
i^{*}=\min \left\{i: y \in \operatorname{proj}_{y}\left(V^{*}(i)\right) \text { and } k(i) \geq j_{s} \quad(s=1,2, \ldots, r)\right\}
$$

Then, for each $i \geq i^{*}$ we have $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)$ and there exists a $P \in \triangle(i)$ such that
(d) $Q\left(j_{s}\right)$ is $Q\left(j\left(h_{s}, P\right)\right)$ for some h_{s} with $1 \leq h_{s} \leq h(P)(s=1,2, \ldots, r)$, and
(e) $y \in \cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)$.

Indeed, let $i \geq i^{*}$. Then, we have $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)$ by $\left(20^{\circ}\right)$. Since then $y \in V(i), y \in$ $U(i)$. Hence, by (18°)

$$
y \in S^{*}(i) \text { or } y \in T(i)
$$

By the first part of $\left(14^{\circ}\right)$,

$$
\text { if } y \in S^{*}(i), \text { then } y \notin \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)) \text {. }
$$

Since $k(i) \geq j_{s}$ and $\left(Q\left(j_{s}\right)\right)^{y} \neq \emptyset$ for $s=1,2, \ldots, r$, we have $y \in \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))$. Hence, $y \in T(i)$ by $\left(30^{\circ}\right)$ and $\left(31^{\circ}\right)$. Since moreover $y \in Y^{*}$, by $\left(17^{\circ}\right)$ and $\left(29^{\circ}\right)$

$$
y \in \cup_{P \in \Delta(i)}\left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)\right)
$$

Hence, there exists a $P \in \triangle(i)$ such that

$$
y \in \cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P)
$$

Further, this fact implies $y \in J(P)$. Hence, by $\left(10^{\circ}\right) y \notin \cup \operatorname{proj}_{y}(Q(j))$, where the union is over all j such that $Q(j) \notin P$ with $1 \leq j \leq k(i)$. Hence, $Q\left(j_{s}\right)$ must be $Q\left(j\left(h_{s}, P\right)\right)$ for some h_{s} with $1 \leq h_{s} \leq h(P)$ for $s=1,2, \ldots, r$, The proof of $(*)$ is complete.

As a corollary of $(*)$, the following statement $(* *)$ holds.
$(* *):$ Let $y \in Y^{*}$ and $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right) \cap \operatorname{proj}_{y}\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)$ for an i. Then, there exists a $P \in \triangle(i)$ such that

$$
y \in \cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P) .
$$

Because, by the assumption of $(* *)$ and $\left(1^{\circ}\right), P \in \triangle(i)$ chosen in $(*)$ is the desired one. Now, we prove (ii') of Remark. Let $y \in \operatorname{proj}_{y}\left(F_{n(i) m(i)}(R)\right) \cap Y^{*}$. Then, by (21$)$
(i) $y \in \operatorname{proj}_{y}\left(V^{*}(i) \cap \cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)$, or
(ii) $y \in \operatorname{proj}_{y}\left(V^{*}(i) \cap M_{n(i)}\right)-\operatorname{proj}_{y}\left(V^{*}(i) \cap \cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)$.

First of all, we remark that, since $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)=V(i)$, we have $y \in E(i)$, and so by (13 ${ }^{\circ}$)

$$
\mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right)<\varepsilon_{n(i)} / 2^{i}
$$

For the case of (i): By $(* *)$ there exists a $P \in \triangle(i)$ such that

$$
y \in \cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \cap J(P) .
$$

In this case, we can suppose that $j(1, P)<j(2, P)<\ldots<j(h(P), P)$. Hence, by (5°) we have

$$
\begin{aligned}
& n(i)<n(j(1, P), t(j(1, P), i))<m(j(1, P), t(j(1, P), i)) \\
& <n(j(2, P), t(j(2, P), i))<m(j(2, P), t(j(2, P), i)) \\
& <\ldots . \\
& <n(j(h(P), P), t(j(h(P), P), i))<m(j(h(P), P), t(j(h(P), P), i)) \\
& \leq m(k(i), t(k(i), i))=m(i) .
\end{aligned}
$$

And by the assumption (c) for $Q(j),\left(F_{n(j(h, P), t(j(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right)^{y}$ has the property $\left(\mathrm{B}_{1}\right)$ in $(Q(j(h, P)))^{y}$ associated with $\left\{\left(M_{k}\right)^{y}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ for $h=$ $1,2, \ldots, h(P)$.

Further, since

$$
\begin{align*}
& \left(F_{n(j(h, P), t) m(j(h, P), t)}(Q(j(h, P)))\right)^{y} \cap B^{\prime}(j(h, P)) \neq \emptyset \text { and } \\
& \quad\left(F_{n(j(h, P), t) m(j(h, P), t)}(Q(j(h, P)))\right)^{y} \cap B^{\prime \prime}(j(h, P)) \neq \emptyset \\
& \quad \text { for } h=1,2, \ldots, h(P) \text { and } t=1,2, \ldots \text { by }\left(2^{\circ}\right) ; \\
& \left(M_{i}\right)^{y} \cap B^{\prime} \neq \emptyset \text { and }\left(M_{i}\right)^{y} \cap B^{\prime \prime} \neq \emptyset, \text { because } y \in V(i) \subset Y(i) ; \text { and } \\
& M_{i} \subset M_{n(i)} \text { by } n(i)>i
\end{align*}
$$

the set $(R)^{y}-\left(\cup_{h=1}^{h(P)} Q(j(h, P)) \cup M_{n(i)}\right)^{y}$ consisits of a sequence of non-overlapping intervals such that one at least of the end-points of each interval belongs to $M_{n(i)}$. Furthermore, since $y \in J(P)$, we have, by $\left(10^{\circ}\right), y \notin \cup \operatorname{proj}_{y}(Q(j))$, where the union is over all $Q(j) \notin P$ with $1 \leq j \leq k(i)$. Hence

$$
\left(\cup_{j=1}^{k(i)} Q(j)\right)^{y}=\left(\cup_{h=1}^{h(P)} Q(j(h, P))\right)^{y}
$$

Therefore, by $\left(32^{\circ}\right)$ and the fact that $F \subset M_{n(i)}$,

$$
\mu_{1}\left((R)^{y}-\left(\cup_{h=1}^{h(P)} Q(j(h, P)) \cup M_{n(i)}\right)^{y}\right)<\varepsilon_{n(i)} / 2^{i}<\varepsilon_{n(i)}
$$

Thus, for the case (i) the property (ii') of Remark holds.
For the case of (ii): Since $V^{*}(i)=\operatorname{proj}_{x}(R) \times V(i)$, we have

$$
\begin{aligned}
& \left.\operatorname{proj}_{y}\left(V^{*}(i)\right) \cap \cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right) \\
& \quad=\operatorname{proj}_{y}\left(V^{*}(i)\right) \cap \operatorname{proj}_{y}\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)
\end{aligned}
$$

Hence, in the case (ii) $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)$, but $y \notin \operatorname{proj}_{y}\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)$. Hence, if $(Q(j))^{y} \neq \emptyset$ for some j with $1 \leq j \leq k(j)$, by $(*)$ we must have

$$
y \in \cap_{h=1}^{h(P)} \operatorname{proj}_{y}\left(F_{n(j(h, P), t(j,(h, P), i)) m(j(h, P), t(j(h, P), i))}(Q(j(h, P)))\right) \text { for some } P \in \triangle(i)
$$

and so

$$
y \in \operatorname{proj}_{y}\left(\cup_{j=1}^{k(i)} F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)
$$

Hence, $(Q(j))^{y}=\emptyset$ for $j=1,2, \ldots, k(i)$. Therefore, by $\left(32^{\circ}\right)$

$$
\mu_{1}\left((R)^{y}-(F)^{y}\right)=\mu_{1}\left((R)^{y}-\left(\cup_{j=1}^{k(i)} Q(j) \cup F\right)^{y}\right)<\varepsilon_{n(i)} / 2^{i}
$$

Hence, by $F \subset M_{n(i)}$, we have $\mu_{1}\left((R)^{y}-\left(M_{n(i)}\right)^{y}\right)<\varepsilon_{n(i)}$. By $\left(33^{\circ}\right)$, the set $(R)^{y}-\left(M_{n(i)}\right)^{y}$ consists of a sequence of non-overlapping intervals such that one at least of the end-points of each interval belongs to $M_{n(i)}$. Hence, for the case (ii) the property (ii') of Remark is true.

Next, we prove (iii') of Remark in the following form:

$$
R^{y}=\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y} \text { for every } y \in Y^{*}
$$

Let $y \in Y^{*}$. By (a) we first have

$$
R^{y}=\cup_{j=1}^{\infty}(Q(j))^{y} \cup F^{y} \cup\left(B^{\prime}\right)^{y} \cup\left(B^{\prime \prime}\right)^{y}
$$

Since then $y \in Y$, there exists an i^{\prime} such that $y \in \operatorname{proj}_{y}\left(F_{n\left(i^{\prime}\right) m\left(i^{\prime}\right)}(R)\right)$. Then, $y \in$ $\operatorname{proj}_{y}\left(V^{*}\left(i^{\prime}\right)\right)$.

Now, suppose that $(Q(j))^{y} \neq \emptyset$ for some j. Then, by $(*)$ there exists an i^{*} with $i^{*} \geq i^{\prime}$ and $k\left(i^{*}\right) \geq j$ such that

$$
y \in \operatorname{proj}_{y}\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right) \text { for all } i \geq i^{*}
$$

Hence, since $t(j, i) \uparrow \infty$ as $i \rightarrow \infty$ by $\left(9^{\circ}\right)$, we have, by (iii) of (2) in the property $\left(\mathrm{A}_{2}\right)$ for $Q(j)$,

$$
\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)^{y} \uparrow(Q(j))^{y} \quad \text { as } \quad i \rightarrow \infty
$$

and so

$$
(Q(j))^{y}=\cup_{i=1}^{\infty}\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)^{y}
$$

On the other hand, by $\left(21^{\circ}\right)$ for all i

$$
\left(F_{n(i) m(i)}(R)\right)^{y} \supset\left(V^{*}(i) \cap\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)^{y}\right.
$$

Further, since $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right)$ for $i \geq i^{*}$ and $V^{*}(i)=\operatorname{proj}_{x}(R) \times V(i)$,

$$
\left(F_{n(i) m(i)}(R)\right)^{y} \supset\left(F_{n(j, t(j, i)) m(j, t(j, i))}(Q(j))\right)^{y} \text { for all } i \geq i^{*}
$$

Thus, by $\left(34^{\circ}\right)$ and $\left(35^{\circ}\right)$

$$
\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y} \supset(Q(j))^{y}
$$

Thus

$$
\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y} \supset \cup_{j=1}^{\infty}(Q(j))^{y}
$$

Similarly, by $\left(21^{\circ}\right),\left(F_{n(i) m(i)}(R)\right)^{y} \supset\left(V^{*}(i) \cap M_{n(i)}\right)^{y} \supset F^{y}$ for all $i \geq i^{\prime}$, and so

$$
\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y} \supset F^{y}
$$

Further, since $y \in \operatorname{proj}_{y}\left(V^{*}(i)\right) \subset Y(i)$ for all $i \geq i^{\prime}$,

$$
\left(B^{\prime} \cap M_{n(i)}\right)^{y} \neq \emptyset \text { and }\left(B^{\prime \prime} \cap M_{n(i)}\right)^{y} \neq \emptyset
$$

Therefore

$$
\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y} \supset \cup_{i=1}^{\infty}\left(V^{*}(i) \cap M_{n(i)}\right)^{y}
$$

$$
\supset \cup_{i=1}^{\infty}\left(M_{n(i)}\right)^{y} \supset\left(B^{\prime}\right)^{y} \cup\left(B^{\prime \prime}\right)^{y}
$$

Consequently, by $\left(36^{\circ}\right),\left(37^{\circ}\right)$ and $\left(38^{\circ}\right)$ we have $\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}(R)\right)^{y}=R^{y}$.
The fourth step. Under the assumption of Lemma 2, R_{0} has the property $\left(A_{2}\right)$ in R_{0} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
Proof. We prove the statement above by use of the method of transfinite induction. We denote the smallest ordinal number of the third class by Ω.

1. For the case of $\nu=1$: Since $R_{0}=\cup_{k=1}^{\infty} M_{k}$, by Baire's theorem (see [2, p.54] for example) there exists a k^{\prime} and a square R_{1} such that the center is a rational point and the diameter is a rational number, in such a way that

$$
R_{1} \subset R_{0}, \quad \text { and } R_{1} \cap M_{k^{\prime}}=R_{1} \text { and so } M_{k^{\prime}} \supset R_{1}
$$

Putting, for $i=1,2, \ldots$,

$$
n(i)=k^{\prime}+2 i \text { and } m(i)=k^{\prime}+2 i+1 ; \text { and } F_{n(i) m(i)}\left(R_{1}\right)=R_{1}
$$

R_{1} has the property $\left(\mathrm{A}_{2}\right)$ in R_{1} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.
2. For the case of $\nu<\Omega$: Suppose that an interval R_{μ} such that the center is a rational point and the diameter is a rational number is defined for every $0<\mu<\nu$ in such a way that:
(a) $R_{\mu} \subset R_{0}$ for every $0<\mu<\nu$;
(b) if $\mu \neq \mu^{\prime}, 0<\mu<\nu$ and $0<\mu^{\prime}<\nu$, then $R_{\mu} \neq R_{\mu^{\prime}}$; and
(c) each $R_{\mu}(0<\mu<\nu)$ has the property $\left(\mathrm{A}_{2}\right)$ in R_{μ} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.

Now suppose that $R_{0}-\cup_{0<\mu<\nu} R_{\mu} \neq \emptyset$. Put $A=R_{0}-\cup_{0<\mu<\nu} R_{\mu}$. Since then A is a non-empty G_{δ}-set and $A \subset \cup_{k=1}^{\infty} M_{k}$, by Baire's theorem there exist a point $z \in A$ and a square R of center z such that for some $k^{\prime \prime}$ the set $A \cap M_{k^{\prime \prime}}$ is everywhere dense in $A \cap R^{\circ}$ and so we have
(d) $\overline{A \cap M_{k^{\prime \prime}}} \supset A \cap R^{\circ}$.

Then, taking a rational point $r \in R_{0}$ which is sufficiently near to the point z, we can find an interval R^{\prime} so that:
(e) $z \in R^{\prime}$;
(f) $R^{\prime} \subset R^{\circ}$ and $R^{\prime} \subset R_{0}$; and
(g) the center of R^{\prime} is r and the diameter of R^{\prime} is a rational number.

We remark that (e) contains that
(h) $R^{\prime} \cap A \neq \emptyset$.

Next, we show that the interval R^{\prime} has the property $\left(\mathrm{A}_{2}\right)$ in R^{\prime} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. Put

$$
A^{*}=\bar{A} \cap R^{\prime} .
$$

Then, A^{*} is a non-empty closed set by (h). By (d), we have $M_{k^{\prime \prime}}=\overline{M_{k^{\prime \prime}}} \supset \overline{A \cap M_{k^{\prime \prime}}} \supset$ $\overline{A \cap R^{\circ}}$. Further, we have $\overline{A \cap R^{\circ}} \supset \bar{A} \cap R^{\circ}$. Because, let $x \in \bar{A} \cap R^{\circ}$, then there exists a sequence $\left\{x_{i}\right\}$ such that $x_{i} \in A$ and $\lim _{i \rightarrow \infty} x_{i}=x$. Since $x \in R^{\circ}$, there exists an i^{\prime} such that $x_{i} \in R^{\circ}$ for all $i \geq i^{\prime}$. Hence, $x_{i} \in A \cap R^{\circ}$ for all $i \geq i^{\prime}$. Therefore, $x \in \overline{A \cap R^{\circ}}$. By (f) $\bar{A} \cap R^{\circ} \supset \bar{A} \cap R^{\prime}=A^{*}$. Hence, we have $A^{*} \subset M_{k^{\prime \prime}}$.

Put $G=\left(R^{\prime}\right)^{\circ}-A^{*}$. Since then G is an open set, there is a sequence of nonoverlapping intervals $J_{i}(i=1,2, \ldots)$ whose union is G, and for $i=1,2, \ldots$ we have

$$
\begin{aligned}
& J_{i} \subset\left(R^{\prime}\right)^{\circ}-A^{*} \subset R^{\prime}-A^{*}=R^{\prime}-\bar{A} \subset R^{\prime}-A=R^{\prime} \cap\left(R_{0}-A\right) \\
&=R^{\prime} \cap\left(\cup_{0<\mu<\nu} R_{\mu}\right)=\cup_{0<\mu<\nu}\left(R_{\mu} \cap R^{\prime}\right)
\end{aligned}
$$

Hence, by (c) and the first and second steps each J_{i} has the property $\left(\mathrm{A}_{2}\right)$ in J_{i} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$, and we have $\left(R^{\prime}\right)^{\circ}=A^{*} \cup\left(\cup_{i=1}^{\infty} J_{i}\right)$. Consequently, by the second step the interval R^{\prime} has the property $\left(\mathrm{A}_{2}\right)$ in R^{\prime} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.

Now put $R^{\prime}=R_{\nu}$. Then, $\left\{R_{\mu}(0<\mu \leq \nu)\right\}$ has the following three properties.
(i) $R_{\mu} \subset R_{0}$ for $0<\mu \leq \nu$ by (a) and (f).
(j) If $\mu \neq \mu^{\prime}, 0<\mu \leq \nu$ and $0<\mu^{\prime} \leq \nu$, then $R_{\mu} \neq R_{\mu^{\prime}}$. This follows from (b) and the fact that we have $R_{\nu} \neq R_{\mu}$ for $0<\mu<\nu$, because $R_{\nu} \cap A \neq \emptyset$ by (h).
(k) Each $R_{\mu}(0<\mu \leq \nu)$ has the property $\left(\mathrm{A}_{2}\right)$ in R_{μ} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. This follows from (c) and the result for R^{\prime} mentioned in the above.

We should thus obtain a transfinite sequence of type Ω of distinct intervals such that each interval has the center that is a rational point and its diameter is a rational number. This is impossible. Consequently, there exists a $\kappa<\Omega$ such that $\cup_{0<\mu<\kappa} R_{\mu}=R_{0}$. Thus, by the second step R_{0} has the property $\left(\mathrm{A}_{2}\right)$ in R_{0} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$.

By the first and fourth steps, the proof of Lemma 2 is complete.
Lemma 1 is obtained as a corollary of Lemma 2 as follows.
Proof of Lemma 1. Let I_{0} be an interval on y-axis. Put $R_{0}=J_{0} \times I_{0}$, and $M_{k}^{*}=$ $M_{k} \times I_{0}$ for $k=1,2, \ldots$. Then, $\left\{M_{k}^{*}\right\}_{k=1}^{\infty}$ is a non-decreasing sequence of closed sets such that $\cup_{k=1}^{\infty} M_{k}^{*}=R_{0}$. Let J be any sub-interval of J_{0}. Put $R=J \times I_{0}$. By Lemma 2 there exist two increasing sequences of positive integers $n(i)$ and $m(i)(i=1,2, \ldots)$ such that $n(i)<m(i)<n(i+1)$ and a non-decreasing sequence of non-empty closed sets $F_{n(i) m(i)}(i=$ $1,2, \ldots$) satisfying the conditions (1) and (2) of (A_{2}) in R associated with $\left\{M_{k}^{*}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$. Hence, there exists a $y \in I_{0}$ such that $\left(F_{n(i) m(i)}\right)^{y} \subset R^{y}$ and $\left(F_{n(i) m(i)}\right)^{y} \subset\left(M_{k}^{*}\right)^{y}$ and such that for $i=1,2, \ldots$, the closed set $\left(F_{n(i) m(i)}\right)^{y}$ has the property $\left(\mathrm{B}_{1}\right)$ for $n(i)<$ $m(i)$ in R^{y} associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$, and $\cup_{i=1}^{\infty}\left(F_{n(i) m(i)}\right)^{y}=R^{y}$.

Put $F_{n(i) m(i)}^{*}=\operatorname{proj}_{x}\left(\left(F_{n(i) m(i)}\right)^{y}\right)$. Then $F_{n(i) m(i)}^{*}(i=1,2, \ldots)$ is a non-decreasing sequence of closed sets in J such that: (1) for $i=1,2, \ldots$, the closed set $F_{n(i) m(i)}^{*}$ has the property $\left(\mathrm{B}_{1}\right)$ for $n(i)<m(i)$ in J associated with $\left\{M_{k}\right\}_{k=1}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$; and (2) $\cup_{i=1}^{\infty} F_{n(i) m(i)}^{*}=J$ holds. Thus, the proof of Lemma 1 is complete.

References

[1] S. Nakanishi (formerly S. Enomoto), Sur une Totalisation dans les Espaces de Plusieurs Dimensions, I, II, Osaka Math. J. 7(1955), 69-102, 157-178.
[2] S. Saks, Theory of the Integral, Warsaw (1937).
4-15 Jonanteramachi tennoji-ku, Osaka 543-0017, JAPAN.
E-mail address; shizu.nakanishi@nifty.ne.jp

[^0]: 2000 Mathematics Subject Classification. 26A39.
 Key words and phrases. closed set, intervals contiguous to a closed set.

