A STRUCTURE OF AN INCREASING SEQUENCE OF CLOSED SETS WHOSE UNION IS A MULTIDIMENSIONAL INTERVAL

Shizu Nakanishi

Received April 16, 2001

ABSTRACT. In order to study Fubini's theorem for multidimensional non-absolute integration, we introduced a lemma in the author's paper [1]. We found some errors in the proof of the lemma, but the lemma is still true. The purpose of this paper is to give a correction to the proof. In this paper, we will show a whole proof of the lemma to be easily understood.

There are some errors in the proof of Lemma 2 in [1] ([1, p.72]). The purpose of this paper is to give a correction to the proof of the lemma and to show that the lemma is true.

We denote the h-dimensional Euclidean space by E_h . For a set A in E_h , we denote the interior of A by A° , and the closure of A by \overline{A} . Given a system $a_1, b_1; a_2, b_2; \ldots; a_h, b_h$ of 2h real numbers such that $a_i < b_i$ for $i = 1, 2, \ldots, h$, the set $\{(x_1, x_2, \ldots, x_h) : a_i \le x_i \le b_i$ for $i = 1, 2, \ldots, h\}$ in E_h is called an interval in E_h . A collection of intervals $I_i(i = 1, 2, \ldots, n)$ such that $(I_i)^\circ \cap (I_j)^\circ = \emptyset$ for $i \ne j$ is said to be non-overlapping.

When we consider the space E_h as the product $E_h = E_{h_1} \times E_{h_2}$ of E_{h_1} and E_{h_2} such that $h = h_1 + h_2$, we denote the projection of a set $A \subset E_h$ on E_{h_1} by $\underset{E_{h_1}}{\operatorname{proj}}_x(A)$, and the projection of $A \subset E_h$ on E_{h_2} by $\underset{E_{h_2}}{\operatorname{proj}}_y(A)$. In particular, when h = 2 and $h_1 = h_2 = 1$, we denote $\underset{E_{h_1}}{\operatorname{proj}}_x(A)$ by $\underset{E_{h_2}}{\operatorname{proj}}_y(A)$ by $\underset{E_{h_2}}{\operatorname{proj}}_y(A)$ in short. For a set $A \subset E_h$, we denote for a point $q \in E_{h_2}$, the set $\{(p',q) : (p',q) \in A, p' \in E_{h_1}\}$ by A^q , similarly for a point $p \in E_{h_1}$, the set $\{(p,q') : (p,q') \in A, q' \in E_{h_2}\}$ by A^p .

We denote the Lebesgue measure of a set A in E_h which is measurable in the Lebesgue sense by $\mu_h(A)$. In particular, for an interval in E_1 we denote $\mu_1(I)$ by |I|.

For an interval in E_h , the least upper bound of the distances between a and b with $a, b \in I$ is called the diameter of I. For an interval $I = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_h, b_h]$, the point whose *i*-th coordinate is $(b_i - a_i)/2$ for $i = 1, 2, \ldots, h$ is called the center of I. A point whose coordinates are rational numbers is called a rational point.

Let J be an interval in the 1-dimensional Euclidean space $E_1, M_k (k = 1, 2, ...)$ a nondecreasing sequence of closed sets such that $\bigcup_{k=1}^{\infty} M_k \supset J$, and $\varepsilon_k (k = 1, 2, ...)$ a sequence of numbers with $\varepsilon_k \downarrow 0$. Let F be a non-empty closed set in E_1 and n and m two positive integers with n < m. Then, we say that the closed set F has the property (B_1) for n < m in J associated with the sequences $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$ if the following condition is satisfied:

- (B₁):(1) $F \subset J$ and $F \subset M_m$;
- (2) Let $J_j(j = 1, 2, ...)$ be the sequence of intervals contiguous to the set consisting of the set F and the end-points of the interval J. Then, the sequence can be classified

²⁰⁰⁰ Mathematics Subject Classification. 26A39.

Key words and phrases. closed set, intervals contiguous to a closed set.

into m - n + 1 parts: $J_{kj}(j = 1, 2, ...)$, possibly empty or finite, where k = n, n + 1, n + 2, ..., m, in such a way that:

For $k = n, n + 1, n + 2, \dots, m$, we have

- (i) $\sum_{j=1}^{\infty} |J_{kj}| < \varepsilon_k;$
- (ii) $(J_{kj})^{\circ} \cap M_k = \emptyset$ for $j = 1, 2, \ldots$; and
- (iii) one at least of the end-points of the interval J_{kj} belongs to M_k for j = 1, 2, ...

Lemma 1. Let J_0 be an interval in the 1-dimensional Euclidean space E_1 . Let $M_k(k = 1, 2, ...)$ be a non-decreasing sequence of closed sets such that $\bigcup_{k=1}^{\infty} M_k = J_0$. Then, for an arbitrary given sequence $\{\varepsilon_k\}_{k=1}^{\infty}$ with $\varepsilon_k \downarrow 0$, any sub-interval J of J_0 has the following property (A_1) in J associated with the sequences $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

- (A₁): There exist two increasing sequences of positive integers n(i) and m(i)(i = 1, 2, ...)such that n(i) < m(i) < n(i + 1) and a non-decreasing sequence of non-empty closed sets $F_{n(i)m(i)}(i = 1, 2, ...)$ in such a way that:
 - (1) each $F_{n(i)m(i)}$ has the property (B₁) for n(i) < m(i) in J associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$; and
 - (2) $\cup_{i=1}^{\infty} F_{n(i)m(i)} = J$ holds.

Lemma 2. Let R_0 be an interval in the h-dimensional Euclidean space $E_h(h > 1)$. Let $M_k(k = 1, 2, ...)$ be a non-decreasing sequence of closed sets such that $\bigcup_{k=1}^{\infty} M_k = R_0$. Then, for an arbitrary given sequence $\{\varepsilon_k\}_{k=1}^{\infty}$ with $\varepsilon_k \downarrow 0$, any sub-interval R of R_0 has the following property (A_h) in R associated with the sequences $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

- (A_h): There exist two increasing sequences of positive integers n(i) and m(i)(i = 1, 2, ...)such that n(i) < m(i) < n(i + 1) and a non-decreasing sequence of non-empty closed sets $F_{n(i)m(i)}(i = 1, 2, ...)$ such that
 - (1) $F_{n(i)m(i)} \subset R$ and $F_{n(i)m(i)} \subset M_{m(i)}$,

in such a way that:

- (2) Put $Y = \bigcup_{i=1}^{\infty} \underset{E_{h-1}}{\text{proj}} y(F_{n(i)m(i)})$ and $Z = \underset{E_{h-1}}{\text{proj}} y(R) Y$. Then, we have
 - (i) $\mu_{h-1}(Z) = 0;$
 - (ii) for each q ∈ Y and each i = 1, 2, ..., if (F_{n(i)m(i)})^q ≠ Ø, then the closed set (F_{n(i)m(i)})^q has the property (B₁) for n(i) < m(i) in R^q associated with {(M_k)^q}[∞]_{k=1} and {ε_k}[∞]_{k=1}; and
 (iii) +1∞ (E =)^q = R^q for each x ∈ V
 - (iii) $\cup_{i=1}^{\infty} (F_{n(i)m(i)})^q = R^q$ for each $q \in Y$.

In the property (A_h) , $F_{n(i)m(i)}$ is sometimes denoted by $F_{n(i)m(i)}(R)$, standing for that (A_h) is considered in R. Since $F_{n(i)m(i)} \uparrow$, (i) and (iii) imply that

(iv) $\mu_h(F_{n(i)m(i)}) \uparrow \mu_h(R)$ holds as $i \to \infty$.

Remark. In (A_h) of Lemma 2, we can replace the conditions (ii) and (iii) by the following conditions (ii') and (iii'):

- (ii') For almost all $q \in Y$ and all i = 1, 2, ..., if $(F_{n(i)m(i)})^q \neq \emptyset$, then the closed set $(F_{n(i)m(i)})^q$ has the property (B₁) for n(i) < m(i) in \mathbb{R}^q associated with $\{(M_k)^q\}_{k=1}^\infty$ and $\{\varepsilon_k\}_{k=1}^\infty$;
- (iii') $\cup_{i=1}^{\infty} (F_{n(i)m(i)})^q = R^q$ for almost all $q \in Y$.

Proof. We prove only for the case when h = 2. By (ii') and (iii') there exists a set $K \subset Y$ with $\mu_1(K) = 0$ and such that for all $q \in Y - K$, the statements of (ii') and (iii') which correspond to q are true. Take a decreasing sequence of open sets G(i)(i = 1, 2, ...) such that $G(i) \supset K$ and so $\bigcap_{i=1}^{\infty} G(i) \supset K$, and $\mu_1(\bigcap_{i=1}^{\infty} G(i)) = 0$. Set $F_{n(i)m(i)}^* = F_{n(i)m(i)} \cap (\operatorname{proj}_x(R) \times (\operatorname{proj}_y(R) - G(i)))$. Then, the sequence $F_{n(i)m(i)}^*(i = 1, 2, ...)$ satisfies the conditions (1) and (2) required in (A₂).

Next, we prove Lemma 2.

Proof of Lemma 2. The proof of the lemma requires four steps. We prove only for the case of h = 2.

The first step. If an interval R has the property (A_2) in R associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$, then any sub-interval R' of R has the property (A_2) in R' associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Proof. Let n(i) and m(i)(i = 1, 2, ...) be the sequences of positive integers and $F_{n(i)m(i)}(R)$ (i = 1, 2, ...) the sequence of closed sets chosen to satisfy (A_2) in R associated with $\{M_k\}$ and $\{\varepsilon_k\}$. Let B' and B" be two sides of R' which are parallel to the y-axis. Put $Y_k = \operatorname{proj}_y(B' \cap M_k) \cap \operatorname{proj}_y(B'' \cap M_k)$ and $Y_k^* = \operatorname{proj}_x(R') \times Y_k$. Then, $F_{n(i)m(i)}^*(R') = F_{n(i)m(i)}(R) \cap Y_{n(i)}^*(i = 1, 2, ...)$ is a sequence of closed sets satisfying all of the conditions required in (A_2) in R' associated with $\{M_k\}$ and $\{\varepsilon_k\}$.

The second step. Let R be an interval, F a closed set (empty or non-empty), and Q(j)(j = 1, 2, ...) a sequence of intervals. Suppose that

- (a) $R^{\circ} \subset (\bigcup_{j=1}^{\infty} Q(j) \cup F);$
- (b) $F \subset M_k$ for some k; and
- (c) each Q(j)(j = 1, 2, ...) has the property (A_2) in Q(j) associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Then, the interval R has the property (A₂) in R associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

As easily seen, by use of the first step to show that the second step is true, it is sufficient to prove the following statement.

The third step. Let R be an interval in R_0 . Suppose that there are a sequence Q(j)(j = 1, 2, ...) of non-overlapping intervals and a closed set F (empty or non-empty) such that

- (a) $F \subset R$, $F \cap Q(j) = \emptyset$ for $j = 1, 2, ..., and R^{\circ} \subset (\cup_{j=1}^{\infty} Q(j) \cup F) \subset R$;
- (b) $F \subset M_k$ for some k; and
- (c) each Q(j)(j = 1, 2, ...) has the property (A_2) in Q(j) associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

SHIZU NAKANISHI

Then, R has the property (A₂) in R associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Proof. We shall show that there exist two increasing sequences of positive integers $\{n(i)\}_{i=1}^{\infty}$ and $\{m(i)\}_{i=1}^{\infty}$, and a non-decreasing sequence of closed sets $\{F_{n(i)m(i)}\}_{i=1}^{\infty}$ which satisfy all of the conditions required in (A₂) in *R* associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. By the assumption (c), for each Q(j) there are two increasing sequences of positive integers $\{n(j,t)\}_{t=1}^{\infty}$ and $\{m(j,t)\}_{t=1}^{\infty}$ such that n(j,t) < m(j,t) < n(j,t+1) for $t = 1, 2, \ldots$ and a sequence of closed sets $\{F_{n(j,t)m(j,t)}(Q(j))\}_{t=1}^{\infty}$ which satisfies the conditions (1) and (2) required in (A₂) in Q(j) associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. In particular, we have

$$\operatorname{proj}_{y}(F_{n(j,t)m(j,t)}(Q(j))) \subset \operatorname{proj}_{y}(Q(j)) \text{ for } j = 1, 2, \dots \text{ and } t = 1, 2, \dots$$
(1°)

By (iii) of (2) we can suppose that for every $y \in \operatorname{proj}_{y}(F_{n(j,t),m(j,t)}(Q(j)))$ we have

$$(F_{n(j,t)m(j,t)}(Q(j)))^{y} \cap B'(j) \neq \emptyset \text{ and } (F_{n(j,t)m(j,t)}(Q(j)))^{y} \cap B''(j) \neq \emptyset$$

for $j = 1, 2, \dots$ and $t = 1, 2, \dots$, (2°)

where B'(j) and B''(j) are the sides of Q(j) which are parallel to the y-axis.

Now

- 1. Set k(0) = 0, n(0) = 0 and m(0) = k', where k' is an integer such that $F \subset M_{k'}(k' \ge 1)$. There exists such a k' by (b).
- 2. Supposing k(i-1), n(i-1) and m(i-1) are defined for an $i \in \{1, 2, ...\}$, we shall define k(i), n(i) and m(i) as follows. Let us take an integer k(i) so that

$$k(i-1) < k(i), \quad \text{and} \tag{3^\circ}$$

$$\mu_2(R - (\bigcup_{j=1}^{k(i)} Q(j) \cup F)) < (\varepsilon_{m(i-1)+1}/2^i)^2.$$
(4°)

This is possible by (a). Next, choose two indices n(j, t(j, i)) and m(j, t(j, i)) for $j = 1, 2, \ldots, k(i)$ so that

$$m(i-1) + 1 < n(1, t(1, i)) < m(1, t(1, i)) < n(2, t(2, i)) < m(2, t(2, i))$$

$$< \dots < n(k(i), t(k(i), i)) < m(k(i), t(k(i), i)); \text{ and}$$
(5°)

$$\mu_1(\operatorname{proj}_y(Q(j)) - \operatorname{proj}_y(F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)))) < \varepsilon_{m(i-1)+1}/N(i)2^i, \tag{6^\circ}$$

where $N(i) = \sum_{r=1}^{k(i)} r(_{k(i)}C_r)$. This is possible by (iv). Put

$$n(i) = m(i-1) + 1 \text{ and } m(i) = m(k(i), t(k(i), i)).$$
(7°)

Since, for $i \ge 1$, k(i) > k(0) and so $k(i) \ge 1$, we have $n(i) = m(i-1) + 1 < m(1, t(1, i)) \le m(k(i), t(k(i), i)) = m(i)$. Therefore

$$i < n(i) < m(i) < n(i+1)$$
 for $i = 1, 2, \dots$ (8°)

Repeating this process, we obtain k(i), n(i) and m(i)(i = 1, 2, ...). Since $n(j, t(j, i)) \le m(k(i), t(k(i), i)) = m(i) < m(i) + 1(= n(i + 1)) < n(j, t(j, i + 1))$ for $1 \le j \le k(i)$, we have

$$t(j,i) < t(j,i+1)$$
 for $i = 1, 2, \dots$ and $j = 1, 2, \dots k(i)$. (9°)

Fix an $i \in \{1, 2, ...\}$. Corresponding to $y \in \operatorname{proj}_y(R)$ we consider a system consisting of all of the intervals Q(j) belonging to $\{Q(1), Q(2), \ldots, Q(k(i))\}$ and such that $((Q(j))^\circ)^y \neq \emptyset$. We denote the system by P(y)(possible empty). We denote by $\Delta(i)$ the class of non-empty systems P consisting of intervals chosen from $\{Q(1), Q(2), \ldots, Q(k(i))\}$ for which there exists a $y \in \operatorname{proj}_y(R)$ such that P = P(y). We denote P belonging to $\Delta(i)$ by $P: Q(j(1, P)), Q(j(2, P)), \ldots, Q(j(h(P), P))$. For $P \in \Delta(i)$, we have

$$\{y: P(y) = P\} = \cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))^{\circ} - \cup_{Q(j) \notin P, 1 \le j \le k(i)} (\operatorname{proj}_{y}(Q(j)))^{\circ}.$$

 Put

$$J(P) = \bigcap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P)))^{\circ} - \bigcup_{Q(j) \notin P, 1 \le j \le k(i)} \operatorname{proj}_{y}(Q(j)).$$
(10°)

Then, J(P) consists of finite non-empty open intervals on y-axis. We have

$$J(P) \cap J(P') = \emptyset \quad \text{if} \quad P \neq P' \quad \text{for} \quad P, P' \in \Delta(i).$$
(11°)

Since $\cup_{P \in \Delta(i)} (\cap_{h=1}^{h(P)} \operatorname{proj}_y(Q(j(h, P)))) \supset \cup_{P \in \Delta(i)} \overline{J(P)} \supset \cup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j))$, we have

$$\cup_{P\in\Delta(i)}(\cap_{h=1}^{h(P)}\operatorname{proj}_{y}(Q(j(h,P)))) = \cup_{P\in\Delta(i)}\overline{J(P)} = \cup_{j=1}^{k(i)}\operatorname{proj}_{y}(Q(j)).$$
(12°)

The number of systems belonging to $\triangle(i)$ is $\sum_{r=1}^{k(i)} C_r$ at most.

We set

$$E(i) = \{ y : y \in \operatorname{proj}_{y}(R^{\circ}), \ \mu_{1}((R)^{y} - (\bigcup_{j=1}^{k(i)} Q(j) \cup F)^{y}) < \varepsilon_{n(i)}/2^{i} \}.$$
(13°)

Take a closed set H(i) so that

$$H(i) \subset E(i), \ \mu_1(E(i) - H(i)) < \varepsilon_{n(i)}/2^{i+1}.$$

Take a closed set $S^*(i)$ so that

$$S^{*}(i) \subset H(i) - \bigcup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)), \text{ and}$$
$$\mu_{1}((H(i) - \bigcup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))) - S^{*}(i)) < \varepsilon_{n(i)}/2^{i+1}.$$
(14°)

Put

$$S(i) = (H(i) \cap \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))) \cup S^{*}(i).$$

Since $H(i) = (H(i) \cap \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))) \cup (H(i) - \cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j))), S(i)$ is a closed set contained in E(i) such that

$$\mu_1(E(i) - S(i)) = \mu_1(E(i) - H(i)) + \mu_1((H(i) - \bigcup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j))) - S^*(i)) < \varepsilon_{n(i)}/2^i.$$
(15°)

We have

$$S(i) - S^*(i) = H(i) \cap \bigcup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j)) \subset \bigcup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j)).$$
(16°)

 Put

$$T(i) = \bigcup_{P \in \Delta(i)} \left(\bigcap_{h=1}^{h(P)} \operatorname{proj}_{y} (F_{n(j(h,P),t(j(h,P),i)) m(j(h,P),t(j(h,P),i))} (Q(j(h,P)))) \cap \overline{J(P)} \right), \ (17^{\circ})$$

$$U(i) = S(i) \cap (S^*(i) \cup T(i)) = S^*(i) \cup (S(i) \cap T(i)),$$
(18°)

 $V(i) = Y(i) \cap (\cap_{i'=i}^{\infty} U(i')),$

where $Y(i) = \operatorname{proj}_{y}(B' \cap M_{1}) \cap \operatorname{proj}_{y}(B'' \cap M_{1})$ and B' and B'' are the two sides of R which are parallel to y-axis. We have

$$Y(i) \subset \operatorname{proj}_{y}(R), \ Y(i) \uparrow \quad \text{as} \quad i \to \infty, \quad \lim_{i \to \infty} \mu_{1}(Y(i)) = \mu_{1}(\operatorname{proj}_{y}(R)). \tag{19^{\circ}}$$

Hence, $V(i) \uparrow as i \to \infty$, and since $V(i) \subset E(i)$, $V(i) \subset \operatorname{proj}_{y}(\mathbb{R}^{\circ})$ holds. Put $V^{*}(i) = \operatorname{proj}_{x}(\mathbb{R}) \times V(i)$, then $V^{*}(i)$ is a closed set such that

$$V^*(i) \uparrow \quad \text{as} \quad i \to \infty \quad \text{and} \quad V^*(i) \subset \operatorname{proj}_x(R) \times \operatorname{proj}_y(R^\circ) \subset R. \tag{20°}$$

We now define $F_{n(i)m(i)}(R)$ for i = 1, 2, ... as follows:

$$F_{n(i)m(i)}(R) = V^*(i) \cap \left(\bigcup_{j=1}^{k(i)} F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)) \cup M_{n(i)}\right).$$
(21°)

We next prove that this is a sequence of non-empty closed sets satisfying the conditions (1) and (2) required in (A₂) in R associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. It is clear that $F_{n(i)m(i)}(R)$ is a non-empty closed set. Now, put

$$M^*(i) = \cup_{j=1}^{k(i)} F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j)).$$

Since by (9°) $F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j)) \subset F_{n(j,t(j,i+1)) m(j,t(j,i+1))}(Q(j))$ for j = 1, 2, ..., k(i)and k(i) < k(i+1), we have $M^*(i) \uparrow$. Further, $V^*(i) \uparrow$ and $M_{n(i)} \uparrow$ by n(i) < n(i+1). Hence

$$F_{n(i)m(i)}(R)$$
 \uparrow as $i \to \infty$.

Since $V^*(i) \subset R$ by (20°), we have

$$F_{n(i)\,m(i)}(R) \subset R. \tag{22^{\circ}}$$

By (1) of the property (A₂) in Q(j) associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$, (5°) and (7°), we have $F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)) \subset M_{m(j,t(j,i))} \subset M_{m(k(i),t(k(i),i))} = M_{m(i)}$ for $j = 1, 2, \ldots, k(i)$. Further m(i) > n(i). Hence

$$F_{n(i)m(i)}(R) \subset M_{m(i)}.$$

308

Next, we prove that $\lim_{i\to\infty} \mu_2(F_{n(i)m(i)}(R)) = \mu_2(R)$. We first have $M_{n(i)} - M^*(i) \supset F$. Because, we have $M_{n(i)} \supset M_{m(0)} \supset F$ for $i \ge 1$, and since $Q(j) \cap F = \emptyset$ for $j = 1, 2, \ldots, k(i)$, we have $M^*(i) \cap F = \emptyset$. Therefore

$$\lim_{i \to \infty} \mu_2(F_{n(i)m(i)}(R)) = \lim_{i \to \infty} \mu_2(V^*(i) \cap (M_{n(i)} \cup M^*(i)))$$
$$= \lim_{i \to \infty} \mu_2(V^*(i) \cap (M_{n(i)} - M^*(i))) + \lim_{i \to \infty} \mu_2(V^*(i) \cap M^*(i))$$
$$\geq \lim_{i \to \infty} \mu_2(V^*(i) \cap F) + \lim_{i \to \infty} \mu_2(V^*(i) \cap M^*(i)).$$
(23°)

By (13°), if $y \in \operatorname{proj}_y(R^\circ) - E(i)$, then $\mu_1((R)^y - (\bigcup_{j=1}^{k(i)} Q(j) \cup F)^y) \ge \varepsilon_{n(i)}/2^i$. Hence

$$\begin{split} \mu_1(\operatorname{proj}_y(R) - E(i)) \cdot (\varepsilon_{n(i)}/2^i) &\leq \int_{\operatorname{proj}_y(R) - E(i)} \mu_1((R)^y - (\cup_{j=1}^{k(i)} Q(j) \cup F)^y) dy \\ &\leq \int_{\operatorname{proj}_y(R)} \mu_1((R)^y - (\cup_{j=1}^{k(i)} Q(j) \cup F)^y) dy \\ &\leq \mu_2(R - (\cup_{j=1}^{k(i)} Q(j) \cup F)) < (\varepsilon_{n(i)}/2^i)^2 \quad (\operatorname{by}(4^\circ) \text{ and } (7^\circ)). \end{split}$$

Hence

$$\mu_1(\operatorname{proj}_y(R) - E(i)) < \varepsilon_{n(i)}/2^i.$$
(24°)

We have, by (10°) and (12°) ,

$$\cup_{j=1}^{k(i)} \operatorname{proj}_{y}(Q(j)) = \cup_{P \in \Delta(i)} (\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h, P))) \cap \overline{J(P)}).$$

We further have

$$Q(j(h,P)) \supset (F_{n(j(h,P),t(j(h,P),i)) m(j(h,P),t(j(h,P),i))}(Q(j(h,P))) \text{ for } h = 1, 2, \dots, h(P).$$

Therefore, by (18°) , (16°) and (17°) we have

$$\begin{aligned} \mu_1(S(i) - U(i)) &= \mu_1((S(i) - S^*(i)) - T(i)) \le \mu_1((\cup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j))) - T(i)) \\ &= \mu_1(\cup_{P \in \Delta(i)} (\cap_{h=1}^{h(P)} \operatorname{proj}_y(Q(j(h, P))) \cap \overline{J(P)}) \end{aligned}$$

$$\begin{split} &- \cup_{P \in \Delta(i)} \left(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(F_{n(j(h,P),t(j(h,P),i)) \, m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap \overline{J(P)}) \right) \\ &= \sum_{P \in \Delta(i)} \mu_{1}(\cap_{h=1}^{h(P)} \operatorname{proj}_{y}(Q(j(h,P))) \cap J(P) \\ &- \cap_{h=1}^{h(P)} \operatorname{proj}_{y}(F_{n(j(h,P),t(j(h,P),i)) \, m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P)) \end{split}$$

$$\leq \sum_{P \in \Delta(i)} \sum_{h=1}^{h(P)} (\mu_1(\cap_{h=1}^{h(P)} \operatorname{proj}_y(Q(j(h, P))) \cap J(P))$$

 $-\mathrm{proj}_{y}\big(F_{n(j(h,P),t(j(h,P),i))\,m(j(h,P),t(j(h,P),i))}\big(Q(j(h,P))\big)\big) \cap J(P))\big)$

$$\leq \sum_{P \in \triangle(i)} \sum_{h=1}^{h(P)} (\mu_1(\operatorname{proj}_y(Q(j(h,P))) \cap J(P)$$

 $-\mathrm{proj}_y(F_{n(j(h,P),t(j(h,P),i))\,m(j(h,P),t(j(h,P),i))}(Q(j(h,P))))\cap J(P)))$

$$= \sum_{r=1}^{k(i)} \sum_{P \in \triangle(i), h(P) = r} \sum_{h=1}^{h(P)} (\mu_1(\operatorname{proj}_y(Q(j(h, P))) \cap J(P)$$

 $-\mathrm{proj}_y(F_{n(j(h,P),t(j(h,P),i))\,m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P)))$

$$<\sum_{r=1}^{k(i)} \left(\sum_{P \in \Delta(i), h(P)=r} \{r(\varepsilon_{n(i)}/N(i)2^{i})\} \right) \quad (by \ (6^{\circ}) and (7^{\circ}))$$
$$\leq \sum_{r=1}^{k(i)} \left(k(i)C_{r} \left\{ r(\varepsilon_{n(i)}/\left(\sum_{r=1}^{k(i)} r(k(i)C_{r})2^{i}\right)\right\} \right) = \varepsilon_{n(i)}/2^{i}. \tag{25^{\circ}}$$

Hence, by (24°) , (15°) and (25°) ,

$$\begin{split} & \mu_1(\operatorname{proj}_y(R) - U(i)) \\ & \leq \mu_1(\operatorname{proj}_y(R) - E(i)) + \mu_1(E(i) - S(i)) + \mu_1(S(i) - U(i)) < 3(\varepsilon_{n(i)}/2^i). \end{split}$$

Therefore, for $i = 1, 2, \ldots$ we have

$$\begin{split} \mu_1(\mathrm{proj}_y(R) - V(i)) &= \mu_1(\mathrm{proj}_y(R) - (Y(i) \cap (\cap_{i'=i}^{\infty} U(i'))) \\ &\leq \mu_1(\mathrm{proj}_y(R) - Y(i)) + \sum_{i'=i}^{\infty} \mu_1(\mathrm{proj}_y(R) - U(i')) \\ &< \mu_1(\mathrm{proj}_y(R) - Y(i)) + \sum_{i'=i}^{\infty} 3(\varepsilon_{n(i')}/2^{i'}) \\ &< \mu_1(\mathrm{proj}_y(R) - Y(i)) + 3\varepsilon_{n(i)}. \end{split}$$

Thus, by (19°) $\lim_{i\to\infty}\mu_1(V(i))=\mu_1(\operatorname{proj}_y(R)),$ and so

$$\lim_{i \to \infty} \mu_2(V^*(i)) = \mu_2(R).$$
 (26°)

By (20°)

$$\lim_{i \to \infty} \mu_2(V^*(i) \cap F) = \mu_2(F).$$
(27°)

Next, for any positive integer j^* , take an i^* with $k(i^*) > j^*$. This is possible by (3°). Then

$$\lim_{i \to \infty, i \ge i^*} \mu_2(V^*(i) \cap M^*(i)) = \lim_{i \to \infty, i \ge i^*} \mu_2(V^*(i) \cap (\bigcup_{j=1}^{k(i)} F_{n(j,t(j,i))} m(j,t(j,i))(Q(j))))$$

$$\geq \lim_{i \to \infty, i \ge i^*} \sum_{j=1}^{j^*} \mu_2(V^*(i) \cap F_{n(j,t(j,i))} m(j,t(j,i))(Q(j)))$$

$$= \sum_{j=1}^{j^*} \lim_{i \to \infty, i \ge i^*} \mu_2(V^*(i) \cap F_{n(j,t(j,i))} m(j,t(j,i))(Q(j)))$$

$$= \sum_{j=1}^{j^*} \mu_2(Q(j))$$

by (20°), (26°), the fact that $t(j,i) \uparrow \infty$ as $i \to \infty$ for $j = 1, 2, \ldots j^*$, and (iv) in Q(j). Therefore, $\lim_{i\to\infty} \mu_2(V^*(i) \cap M^*(i)) = \lim_{i\to\infty, j \ge i^*} \mu_2(V^*(i) \cap M^*(i)) \ge \sum_{j=1}^{j^*} \mu_2(Q(j))$ and so

$$\lim_{i \to \infty} \mu_2(V^*(i) \cap M^*(i)) \ge \sum_{j=1}^{\infty} \mu_2(Q(j)).$$
(28°)

By (23°), (27°), (28°), (22°) and (a), we obtain $\lim_{i\to\infty} \mu_2(F_{n(i)m(i)}(R)) = \mu_2(R)$. Consequently, when we put

$$Y = \cup_{i=1}^{\infty} \operatorname{proj}_{y}(F_{n(i)m(i)}(R)) \text{ and } Z = \operatorname{proj}_{y}(R) - Y_{i}$$

we have $\mu_1(Z) = 0$. We set

$$Y^* = Y - \bigcup_{i=1}^{\infty} \bigcup_{P \in \Delta(i)} \left(\overline{J(P)} - J(P) \right).$$
(29°)

Then. $Y^* \subset Y$ and $\mu_1(Y - Y^*) = 0$.

Next, we prove (ii') and (iii') of Remark. To prove them, we prepare the following statement(*).

(*): Let $y \in Y^*$, $y \in \operatorname{proj}_y(V^*(i))$ for some *i*, and $(Q(j_s))^y \neq \emptyset$ for $s = 1, 2, \ldots, r$. Let

$$i^* = \min\{i : y \in \operatorname{proj}_{y}(V^*(i)) \text{ and } k(i) \ge j_s \ (s = 1, 2, \dots, r)\}.$$

Then, for each $i \geq i^*$ we have $y \in \operatorname{proj}_y(V^*(i))$ and there exists a $P \in \Delta(i)$ such that (d) $Q(j_s)$ is $Q(j(h_s, P))$ for some h_s with $1 \leq h_s \leq h(P)(s = 1, 2, \dots, r)$, and (e) $y \in \bigcap_{h=1}^{h(P)} \operatorname{proj}_y(F_{n(j(h,P),t(j(h,P),i))m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P)$.

Indeed, let $i \ge i^*$. Then, we have $y \in \text{proj}_y(V^*(i))$ by (20°). Since then $y \in V(i), y \in U(i)$. Hence, by (18°)

$$y \in S^*(i)$$
 or $y \in T(i)$. (30°)

By the first part of (14°) ,

if
$$y \in S^*(i)$$
, then $y \notin \bigcup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j))$. (31°)

Since $k(i) \geq j_s$ and $(Q(j_s))^y \neq \emptyset$ for $s = 1, 2, \ldots, r$, we have $y \in \bigcup_{j=1}^{k(i)} \operatorname{proj}_y(Q(j))$. Hence, $y \in T(i)$ by (30°) and (31°). Since moreover $y \in Y^*$, by (17°) and (29°)

$$y \in \bigcup_{P \in \Delta(i)} (\cap_{h=1}^{h(P)} \operatorname{proj}_{y} (F_{n(j(h,P),t(j(h,P),i)) m(j(h,P),t(j(h,P),i))} (Q(j(h,P)))) \cap J(P)).$$

Hence, there exists a $P \in \triangle(i)$ such that

$$y \in \bigcap_{h=1}^{h(P)} \operatorname{proj}_{y} (F_{n(j(h,P),t(j(h,P),i))m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P).$$

Further, this fact implies $y \in J(P)$. Hence, by $(10^{\circ}) \ y \notin \cup \operatorname{proj}_{y}(Q(j))$, where the union is over all j such that $Q(j) \notin P$ with $1 \leq j \leq k(i)$. Hence, $Q(j_s)$ must be $Q(j(h_s, P))$ for some h_s with $1 \leq h_s \leq h(P)$ for $s = 1, 2, \ldots, r$, The proof of (*) is complete. As a corollary of (*), the following statement (**) holds.

(**): Let $y \in Y^*$ and $y \in \operatorname{proj}_y(V^*(i)) \cap \operatorname{proj}_y(\bigcup_{j=1}^{k(i)} F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j)))$ for an *i*. Then, there exists a $P \in \Delta(i)$ such that

$$y \in \cap_{h=1}^{h(P)} \mathrm{proj}_{y}(F_{n(j(h,P),t(j(h,P),i))m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P).$$

Because, by the assumption of (**) and (1°), $P \in \triangle(i)$ chosen in (*) is the desired one. Now, we prove (ii') of Remark. Let $y \in \operatorname{proj}_{y}(F_{n(i)m(i)}(R)) \cap Y^{*}$. Then, by (21°)

(i) $y \in \operatorname{proj}_{y}(V^{*}(i) \cap \bigcup_{j=1}^{k(i)} F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)))$, or (ii) $y \in \operatorname{proj}_{y}(V^{*}(i) \cap M_{n(i)}) - \operatorname{proj}_{y}(V^{*}(i) \cap \bigcup_{j=1}^{k(i)} F_{n(j,t(j,i))m(j,t(j,i))}(Q(j))).$

First of all, we remark that, since $y \in \operatorname{proj}_y(V^*(i)) = V(i)$, we have $y \in E(i)$, and so by (13°)

$$\mu_1((R)^y - (\bigcup_{j=1}^{k(i)} Q(j) \cup F)^y) < \varepsilon_{n(i)}/2^i.$$
(32°)

For the case of (i): By (**) there exists a $P \in \triangle(i)$ such that

 $y \in \cap_{h=1}^{h(P)} \mathrm{proj}_y(F_{n(j(h,P),t(j(h,P),i))m(j(h,P),t(j(h,P),i))}(Q(j(h,P)))) \cap J(P).$

In this case, we can suppose that $j(1, P) < j(2, P) < \ldots < j(h(P), P)$. Hence, by (5°) we have

And by the assumption (c) for $Q(j), (F_{n(j(h,P),t(j(h,P),i))m(j(h,P),t(j(h,P),i))}(Q(j(h,P))))^y$ has the property (B₁) in $(Q(j(h,P)))^y$ associated with $\{(M_k)^y\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$ for $h = 1, 2, \ldots, h(P)$.

Further, since

$$(F_{n(j(h,P),t) m(j(h,P),t)}(Q(j(h,P))))^{y} \cap B'(j(h,P)) \neq \emptyset \text{ and} (F_{n(j(h,P),t) m(j(h,P),t)}(Q(j(h,P))))^{y} \cap B''(j(h,P)) \neq \emptyset for h = 1, 2, ..., h(P) and t = 1, 2, ... by (2°); (M_{i})^{y} \cap B' \neq \emptyset \text{ and } (M_{i})^{y} \cap B'' \neq \emptyset, \text{ because } y \in V(i) \subset Y(i); \text{ and}$$
(33°)
$$M_{i} \subset M_{n(i)} \text{ by } n(i) > i,$$

the set $(R)^y - (\bigcup_{h=1}^{h(P)} Q(j(h, P)) \cup M_{n(i)})^y$ consists of a sequence of non-overlapping intervals such that one at least of the end-points of each interval belongs to $M_{n(i)}$. Furthermore, since $y \in J(P)$, we have, by (10°), $y \notin \cup \operatorname{proj}_y(Q(j))$, where the union is over all $Q(j) \notin P$ with $1 \leq j \leq k(i)$. Hence

$$(\cup_{j=1}^{k(i)}Q(j))^y = (\cup_{h=1}^{h(P)}Q(j(h,P)))^y.$$

Therefore, by (32°) and the fact that $F \subset M_{n(i)}$,

$$\mu_1((R)^y - (\bigcup_{h=1}^{h(P)} Q(j(h, P)) \cup M_{n(i)})^y) < \varepsilon_{n(i)}/2^i < \varepsilon_{n(i)}$$

Thus, for the case (i) the property (ii') of Remark holds.

For the case of (ii): Since $V^*(i) = \operatorname{proj}_x(R) \times V(i)$, we have

$$proj_{y}(V^{*}(i)) \cap \bigcup_{j=1}^{k(i)} F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j)))$$

= $proj_{y}(V^{*}(i)) \cap proj_{y}(\bigcup_{j=1}^{k(i)} F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j))).$

Hence, in the case (ii) $y \in \operatorname{proj}_y(V^*(i))$, but $y \notin \operatorname{proj}_y(\bigcup_{j=1}^{k(i)} F_{n(j,t(j,i)),m(j,t(j,i))}(Q(j)))$. Hence, if $(Q(j))^y \neq \emptyset$ for some j with $1 \leq j \leq k(j)$, by (*) we must have

$$y \in \bigcap_{h=1}^{h(P)} \operatorname{proj}_{y} \left(F_{n(j(h,P),t(j,(h,P),i))m(j(h,P),t(j(h,P),i))} \left(Q(j(h,P)) \right) \right) \text{ for some } P \in \Delta(i)$$

and so

$$y \in \operatorname{proj}_{y}(\cup_{j=1}^{k(i)} F_{n(j,t(j,i))m(j,t(j,i))}(Q(j))).$$

Hence, $(Q(j))^y = \emptyset$ for $j = 1, 2, \dots, k(i)$. Therefore, by (32°)

$$\mu_1((R)^y - (F)^y) = \mu_1((R)^y - (\bigcup_{j=1}^{k(i)} Q(j) \cup F)^y) < \varepsilon_{n(i)}/2^i.$$

Hence, by $F \subset M_{n(i)}$, we have $\mu_1((R)^y - (M_{n(i)})^y) < \varepsilon_{n(i)}$. By (33°), the set $(R)^y - (M_{n(i)})^y$ consists of a sequence of non-overlapping intervals such that one at least of the end-points of each interval belongs to $M_{n(i)}$. Hence, for the case (ii) the property (ii') of Remark is true.

Next, we prove (iii') of Remark in the following form:

$$R^y = \cup_{i=1}^{\infty} (F_{n(i)\,m(i)}(R))^y \quad \text{for every} \ y \in Y^*.$$

Let $y \in Y^*$. By (a) we first have

$$R^{y} = \bigcup_{i=1}^{\infty} (Q(j))^{y} \cup F^{y} \cup (B')^{y} \cup (B'')^{y}$$

Since then $y \in Y$, there exists an i' such that $y \in \operatorname{proj}_y(F_{n(i')m(i')}(R))$. Then, $y \in \operatorname{proj}_y(V^*(i'))$.

Now, suppose that $(Q(j))^y \neq \emptyset$ for some j. Then, by (*) there exists an i^* with $i^* \geq i'$ and $k(i^*) \geq j$ such that

$$y \in \operatorname{proj}_{y}(F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)))$$
 for all $i \ge i^{*}$.

Hence, since $t(j,i) \uparrow \infty$ as $i \to \infty$ by (9°), we have, by (iii) of (2) in the property (A₂) for Q(j),

$$(F_{n(j,t(j,i)) m(j,t(j,i))}(Q(j)))^y \uparrow (Q(j))^y$$
 as $i \to \infty$,

and so

$$(Q(j))^{y} = \bigcup_{i=1}^{\infty} (F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)))^{y}.$$
(34°)

On the other hand, by (21°) for all i

$$(F_{n(i)\,m(i)}(R))^y \supset (V^*(i) \cap (F_{n(j,t(j,i))\,m(j,t(j,i))}(Q(j)))^y.$$

Further, since $y \in \operatorname{proj}_y(V^*(i))$ for $i \ge i^*$ and $V^*(i) = \operatorname{proj}_x(R) \times V(i)$,

$$(F_{n(i)m(i)}(R))^{y} \supset (F_{n(j,t(j,i))m(j,t(j,i))}(Q(j)))^{y} \text{ for all } i \ge i^{*}.$$
(35°)

Thus, by (34°) and (35°)

$$\cup_{i=1}^{\infty} (F_{n(i)m(i)}(R))^y \supset (Q(j))^y.$$

Thus

$$\cup_{i=1}^{\infty} (F_{n(i)\,m(i)}(R))^y \supset \cup_{j=1}^{\infty} (Q(j))^y.$$
(36°)

Similarly, by (21°), $(F_{n(i)m(i)}(R))^y \supset (V^*(i) \cap M_{n(i)})^y \supset F^y$ for all $i \ge i'$, and so

$$\cup_{i=1}^{\infty} (F_{n(i)\,m(i)}(R))^y \supset F^y. \tag{37^\circ}$$

Further, since $y \in \operatorname{proj}_{y}(V^{*}(i)) \subset Y(i)$ for all $i \geq i'$,

$$(B' \cap M_{n(i)})^y \neq \emptyset$$
 and $(B'' \cap M_{n(i)})^y \neq \emptyset$

Therefore

$$\cup_{i=1}^{\infty} (F_{n(i)\,m(i)}(R))^y \supset \cup_{i=1}^{\infty} (V^*(i) \cap M_{n(i)})^y$$

$$\supset \cup_{i=1}^{\infty} (M_{n(i)})^{y} \supset (B')^{y} \cup (B'')^{y}.$$
(38°)

Consequently, by (36°), (37°) and (38°) we have $\bigcup_{i=1}^{\infty} (F_{n(i)m(i)}(R))^y = R^y$.

The fourth step. Under the assumption of Lemma 2, R_0 has the property (A_2) in R_0 associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Proof. We prove the statement above by use of the method of transfinite induction. We denote the smallest ordinal number of the third class by Ω .

1. For the case of $\nu = 1$: Since $R_0 = \bigcup_{k=1}^{\infty} M_k$, by Baire's theorem (see [2, p.54] for example) there exists a k' and a square R_1 such that the center is a rational point and the diameter is a rational number, in such a way that

$$R_1 \subset R_0, ext{ and } R_1 \cap M_{k'} = R_1 ext{ and so } M_{k'} \supset R_1.$$

Putting, for $i = 1, 2, \ldots$,

$$n(i) = k' + 2i$$
 and $m(i) = k' + 2i + 1$; and $F_{n(i)m(i)}(R_1) = R_1$

 R_1 has the property (A₂) in R_1 associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

- 2. For the case of $\nu < \Omega$: Suppose that an interval R_{μ} such that the center is a rational point and the diameter is a rational number is defined for every $0 < \mu < \nu$ in such a way that:
 - (a) $R_{\mu} \subset R_0$ for every $0 < \mu < \nu$;
 - (b) if $\mu \neq \mu'$, $0 < \mu < \nu$ and $0 < \mu' < \nu$, then $R_{\mu} \neq R_{\mu'}$; and
 - (c) each $R_{\mu}(0 < \mu < \nu)$ has the property (A₂) in R_{μ} associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Now suppose that $R_0 - \bigcup_{0 \le \mu \le \nu} R_\mu \ne \emptyset$. Put $A = R_0 - \bigcup_{0 \le \mu \le \nu} R_\mu$. Since then A is a non-empty G_{δ} -set and $A \subset \bigcup_{k=1}^{\infty} M_k$, by Baire's theorem there exist a point $z \in A$ and a square R of center z such that for some k'' the set $A \cap M_{k''}$ is everywhere dense in $A \cap R^\circ$ and so we have

(d) $\overline{A \cap M_{k''}} \supset A \cap R^{\circ}$.

Then, taking a rational point $r \in R_0$ which is sufficiently near to the point z, we can find an interval R' so that:

- (e) $z \in R'$;
- (f) $R' \subset R^{\circ}$ and $R' \subset R_0$; and
- (g) the center of R' is r and the diameter of R' is a rational number.

We remark that (e) contains that

(h) $R' \cap A \neq \emptyset$.

Next, we show that the interval R' has the property (A_2) in R' associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. Put

$$A^* = \overline{A} \cap R'.$$

Then, A^* is a non-empty closed set by (h). By (d), we have $M_{k''} = \overline{M_{k''}} \supset \overline{A \cap M_{k''}} \supset \overline{A \cap R^\circ}$. Further, we have $\overline{A \cap R^\circ} \supset \overline{A \cap R^\circ}$. Because, let $x \in \overline{A \cap R^\circ}$, then there exists a sequence $\{x_i\}$ such that $x_i \in A$ and $\lim_{i\to\infty} x_i = x$. Since $x \in R^\circ$, there exists an i' such that $x_i \in R^\circ$ for all $i \ge i'$. Hence, $x_i \in A \cap R^\circ$ for all $i \ge i'$. Therefore, $x \in \overline{A \cap R^\circ}$. By (f) $\overline{A \cap R^\circ} \supset \overline{A \cap R'} = A^*$. Hence, we have $A^* \subset M_{k''}$.

Put $G = (R')^{\circ} - A^*$. Since then G is an open set, there is a sequence of nonoverlapping intervals $J_i(i = 1, 2, ...)$ whose union is G, and for i = 1, 2, ... we have

$$J_i \subset (R')^{\circ} - A^* \subset R' - A^* = R' - \overline{A} \subset R' - A = R' \cap (R_0 - A)$$
$$= R' \cap (\bigcup_{0 < \mu < \nu} R_{\mu}) = \bigcup_{0 < \mu < \nu} (R_{\mu} \cap R').$$

Hence, by (c) and the first and second steps each J_i has the property (A₂) in J_i associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$, and we have $(R')^{\circ} = A^* \cup (\bigcup_{i=1}^{\infty} J_i)$. Consequently, by the second step the interval R' has the property (A₂) in R' associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

Now put $R' = R_{\nu}$. Then, $\{R_{\mu}(0 < \mu \leq \nu)\}$ has the following three properties.

- (i) $R_{\mu} \subset R_0$ for $0 < \mu \le \nu$ by (a) and (f).
- (j) If $\mu \neq \mu'$, $0 < \mu \le \nu$ and $0 < \mu' \le \nu$, then $R_{\mu} \neq R_{\mu'}$. This follows from (b) and the fact that we have $R_{\nu} \neq R_{\mu}$ for $0 < \mu < \nu$, because $R_{\nu} \cap A \neq \emptyset$ by (h).
- (k) Each R_{μ} ($0 < \mu \le \nu$) has the property (A₂) in R_{μ} associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. This follows from (c) and the result for R' mentioned in the above.

We should thus obtain a transfinite sequence of type Ω of distinct intervals such that each interval has the center that is a rational point and its diameter is a rational number. This is impossible. Consequently, there exists a $\kappa < \Omega$ such that $\bigcup_{0 < \mu < \kappa} R_{\mu} = R_0$. Thus, by the second step R_0 has the property (A₂) in R_0 associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$.

By the first and fourth steps, the proof of Lemma 2 is complete.

Lemma 1 is obtained as a corollary of Lemma 2 as follows.

Proof of Lemma 1. Let I_0 be an interval on y-axis. Put $R_0 = J_0 \times I_0$, and $M_k^* = M_k \times I_0$ for $k = 1, 2, \ldots$. Then, $\{M_k^*\}_{k=1}^{\infty}$ is a non-decreasing sequence of closed sets such that $\bigcup_{k=1}^{\infty} M_k^* = R_0$. Let J be any sub-interval of J_0 . Put $R = J \times I_0$. By Lemma 2 there exist two increasing sequences of positive integers n(i) and m(i) $(i = 1, 2, \ldots)$ such that n(i) < m(i) < n(i+1) and a non-decreasing sequence of non-empty closed sets $F_{n(i)m(i)}$ $(i = 1, 2, \ldots)$ satisfying the conditions (1) and (2) of (A₂) in R associated with $\{M_k^*\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$. Hence, there exists a $y \in I_0$ such that $(F_{n(i)m(i)})^y \subset R^y$ and $(F_{n(i)m(i)})^y \subset (M_k^*)^y$ and such that for $i = 1, 2, \ldots$, the closed set $(F_{n(i)m(i)})^y$ has the property (B₁) for n(i) < m(i) in R^y associated with $\{M_k\}_{k=1}^{\infty}$ and $\{\varepsilon_k\}_{k=1}^{\infty}$, and $\bigcup_{i=1}^{\infty} (F_{n(i)m(i)})^y = R^y$.

Put $F_{n(i)m(i)}^* = \operatorname{proj}_x((F_{n(i)m(i)})^y)$. Then $F_{n(i)m(i)}^*(i = 1, 2, ...)$ is a non-decreasing sequence of closed sets in J such that: (1) for i = 1, 2, ..., the closed set $F_{n(i)m(i)}^*$ has the property (B₁) for n(i) < m(i) in J associated with $\{M_k\}_{k=1}^\infty$ and $\{\varepsilon_k\}_{k=1}^\infty$; and (2) $\bigcup_{i=1}^\infty F_{n(i)m(i)}^* = J$ holds. Thus, the proof of Lemma 1 is complete.

$\operatorname{References}$

- S. Nakanishi (formerly S. Enomoto), Sur une Totalisation dans les Espaces de Plusieurs Dimensions, I, II, Osaka Math. J. 7(1955), 69–102, 157–178.
- [2] S. Saks, Theory of the Integral, Warsaw (1937).

4-15 JONANTERAMACHI TENNOJI-KU, OSAKA 543-0017, JAPAN. E-mail address ; shizu.nakanishi@nifty.ne.jp