COMPLEMENTED COPIES OF c_0 IN $L^{\infty}_{w^*}(\mu, Z)$

J.C. FERRANDO

Received June 1, 2001

ABSTRACT. Let (Ω, Σ, μ) be a complete finite measure space, X a separable Banach space and Z a proper closed linear subspace of X^* . If the subspace of $L^{\infty}_{w^*}(\mu, X^*)$ (the Banach space of all [classes of] essentially bounded X^* -valued weak* measurable functions defined on Ω equipped with its usual norm) consisting of all those Z-valued functions contains a complemented copy of c_0 , we show in this note that Z contains a copy of c_0 .

1. Preliminaries

Throughout this paper (Ω, Σ, μ) will be a complete finite measure space and X a real or complex Banach space. Our notation is standard in this field [2]. We denote by $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ the linear space over \mathbb{K} of all weak* measurable functions $f: \Omega \to X^*$ for which there exists a scalar function $g \in \mathcal{L}_{\infty}(\mu)$ such that $||f(\omega)|| \leq g(\omega)$ for μ -almost all $\omega \in \Omega$, whereas $L_{w^*}^{\infty}(\mu, X^*)$ stands for the quotient space of $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ via the equivalence relation \sim^* defined by $f_1 \sim^* f_2$ whenever $f_1()x \sim f_2()x$ for each $x \in X$ (where \sim designs the usual equivalence relation in $\mathcal{L}_p(\mu)$). The space $L_{w^*}^{\infty}(\mu, X^*)$ is a Banach space when equipped with the norm $\left\| \widehat{f} \right\| = \inf \|g\|_{\mathcal{L}_{\infty}(\mu)}$, the infimum taken over all those functions $g \in \mathcal{L}_{\infty}(\mu)$ for which there is some $f \in \widehat{f}$ such that $\|f(\omega)\| \leq g(\omega)$ for μ -almost all $\omega \in \Omega$. It can be shown that there is always some $h \in \widehat{f}$ such that $\|h()\| \in \mathcal{L}_{\infty}(\mu)$ and $\|\widehat{f}\| = \|\|h()\|\|_{\mathcal{L}_{\infty}(\mu)}$. As it is well known, $L_{w^*}^{\infty}(\mu, X^*)$ identifies isometrically with $L_1(\mu, X)^*$ by means of the linear map $T: L_{w^*}^{\infty}(\mu, X^*) \to L_1(\mu, X)^*$ defined by $(T\widehat{f})\widehat{g} = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu(\omega)$ for each $f \in \widehat{f}$ and each $g \in \widehat{g} \in L_1(\mu, X)$. A study of $L_{w^*}^{\infty}(\mu, X^*)$ can be found in [2, Section 1.5] and [6, Section 3]. When X is separable, $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ coincides with the space of all weak* measurable functions $f: \Omega \to X^*$ such that $||f()|| \in \mathcal{L}_{\infty}(\mu)$. In this case $L_{w^*}^{\infty}(\mu, X^*)$ is the quotient of $\mathcal{L}_{w^*}^{\infty}(\mu, X^*)$ via the usual equivalence relation and $\|\widehat{f}\| = ||||f()||||_{\mathcal{L}_{\infty}(\mu)}$ for each $f \in \widehat{f}$. As usual, we represent by $L_{\infty}(\mu, X)$ the Banach space of all [classes of] essentially bounded μ -measurable functions equipped with the norm

$$\left\| \widehat{f} \right\|_{\mathrm{ess}} = \left\| f \right\|_{\mathcal{L}_{\infty}(\mu)} = \inf \left\{ \sup_{\omega \in \Omega - E} \left\| f(\omega) \right\| : E \in \Sigma, \mu(E) = 0 \right\}$$

where f is any member of the class \hat{f} . According to [3], if $L_{\infty}(\mu, X)$ contains a complemented copy of c_0 then X contains a copy of c_0 . Consequently, if Z is a proper closed linear subspace of X^* and $L^{\infty}_{w^*}(\mu, Z)$ stands for the (closed) linear subspace of $L^{\infty}_{w^*}(\mu, X^*)$ consisting of all those Z-valued functions, it is natural to ask whether or not Z contains a copy of c_0 whenever $L^{\infty}_{w^*}(\mu, Z)$ contains a complemented copy of c_0 . In this note, we adapt the technique of [5,

²⁰⁰⁰ Mathematics Subject Classification. 46G10, 46E40.

Key words and phrases. Weak* measurable function, copy of c_0 .

Supported by DGESIC PB97-0342 and Presidencia de la Generalitat Valenciana.

Section 2] to answer in the affirmative this question whenever X is a separable Banach space.

2. The main theorem

Let Z be a proper closed linear subspace of X^* and let us denote by $\ell_{w^*}^{\infty}(\Sigma, Z)$ the linear space over K of all those bounded functions $f : \Omega \to Z$ such that f()x is a scalar Σ -measurable function for each $x \in X$, provided with the supremum norm $||f||_{\infty} = \sup \{||f(\omega)|| : \omega \in \Omega\}$.

Lemma 2.1. If $\ell_{w^*}^{\infty}(\Sigma, Z)$ contains a complemented copy of c_0 , then Z contains a copy of c_0 .

Proof. Let $\{f_n\}$ denote a basic sequence in $\ell_{w^*}^{\infty}(\Sigma, Z)$ that is equivalent to the unit vector basis of c_0 and let P be a bounded linear projection operator from $\ell_{w^*}^{\infty}(\Sigma, Z)$ onto $[f_n]$. Since the series $\sum_{n=1}^{\infty} f_n$ is wuC in $\ell_{w^*}^{\infty}(\Sigma, Z)$, there exists a constant C > 0 such that

(1)
$$\sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^{n} \xi_{i} f_{i} \right\|_{\infty} \leq C \left\| \xi \right\|_{\infty}$$

for each $\xi \in \ell_{\infty}$. On the other hand, given $x^{**} \in Z^*$ and $\omega \in \Omega$, the linear functional u on $\ell_{w^*}^{\infty}(\Sigma, Z)$ defined by $u(f) = x^{**}f(\omega)$ belongs to $\ell_{w^*}^{\infty}(\Sigma, Z)^*$, since $|u(f)| = |x^{**}f(\omega)| \leq ||x^{**}|| ||f||_{\infty}$. Hence the series $\sum_{n=1}^{\infty} f_n(\omega)$ is wuC in Z for each $\omega \in \Omega$. Assume by contradiction that Z does not contain a copy of c_0 . Then, according to the classical Bessaga and Pełczyński's criterion [1], the series $\sum_{n=1}^{\infty} f_n(\omega)$ is (BM)-convergent in Z for each $\omega \in \Omega$. This allows us to define a linear operator φ from ℓ_{∞} into $\ell_{w^*}^{\infty}(\Sigma, Z)$ by $(\varphi\xi)(\omega) = \sum_{i=1}^{\infty} \xi_i f_i(\omega)$ for each $\omega \in \Omega$. By virtue of (1) we have $\|\varphi\xi\|_{\infty} \leq C \|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$, and clearly $(\varphi\xi)(\cdot) x$ is Σ -measurable since $(\varphi\xi)(\omega) x = \sum_{i=1}^{\infty} \xi_i f_i(\omega) x$ for each $\omega \in \Omega$ and $x \in X$. Hence φ is a bounded linear operator from ℓ_{∞} into $\ell_{w^*}^{\infty}(\Sigma, Z)$ such that $\varphi(e_n) = f_n$ for each $n \in \mathbb{N}$.

If J is an isomorphism from $[f_n]$ onto c_0 such that $Jf_n = e_n$ for each $n \in \mathbb{N}$, the mapping $S = J \circ P \circ \varphi$ is a bounded linear operator from ℓ_{∞} onto c_0 such that $Se_n = e_n$ for each $n \in \mathbb{N}$. Thus S is a bounded projection from ℓ_{∞} onto c_0 , a contradiction.

Theorem 2.2. Assume that X is a separable Banach space. If $L_{w^*}^{\infty}(\mu, Z)$ contains a complemented copy of c_0 , then Z contains a copy of c_0 .

Proof. Since X is separable, $L_{w^*}^{\infty}(\mu, Z)$ is linearly isometric to the quotient of $\ell_{w^*}^{\infty}(\Sigma, Z)$ via the usual equivalence relation ' \sim ' that identifies functions which differ in a μ -null set. In fact, given $\hat{f} \in L_{w^*}^{\infty}(\mu, Z)$ and choosing any $g \in \hat{f}$, there exists a μ -null set $N_g \in \Sigma$ such that

$$\sup \left\{ \left\| g\left(\omega\right) \right\| : \omega \in \Omega - N_g \right\} = \left\| \widehat{f} \right\|.$$

Hence, if $f: \Omega \to Z$ verifies that $f(\omega) = g(\omega)$ for each $\omega \in \Omega - N_g$ and $f(\omega) = 0$ for each $\omega \in N_g$, then $f \in \widehat{f} \cap \ell_{w^*}^{\infty}(\Sigma, Z)$ and $\left\|\widehat{f}\right\| = \|f\|_{\infty}$. Consequently, if \widetilde{f} denotes the class of all those $h \in \ell_{w^*}^{\infty}(\Sigma, Z)$ such that $h \sim f$, the linear map T from $L_{w^*}^{\infty}(\mu, Z)$ onto $\ell_{w^*}^{\infty}(\Sigma, Z) / \sim$ defined by $T\widehat{f} = \widetilde{f}$ satisfies that

$$\left\|T\widehat{f}\right\| = \left\|\widetilde{f}\right\| = \inf\left\{\left\|h\right\|_{\infty} : h \in \ell_{w^*}^{\infty}\left(\Sigma, Z\right), h \sim f\right\} \le \left\|f\right\|_{\infty} = \left\|\widehat{f}\right\|.$$

On the other hand, if $h \in \ell_{w^*}^{\infty}(\Sigma, Z)$ is such that $h \sim f$, then $\|h\|_{\infty} \ge \|\|h(\cdot)\|\|_{\mathcal{L}_{\infty}(\mu)} = \|\widehat{f}\|$ and hence $\|\widehat{f}\| \le \|\widetilde{f}\|$. Therefore $\|T\widehat{f}\| = \|\widehat{f}\|$. Let $\{\hat{h}_n\}$ be a normalized basic sequence in $L_{w^*}^{\infty}(\mu, Z)$ equivalent to the unit vector basis of c_0 such that $[\hat{h}_n]$ is a complemented subspace of $L_{w^*}^{\infty}(\mu, Z)$. Since $\sum_{n=1}^{\infty} \hat{h}_n$ is wuC in $L_{w^*}^{\infty}(\mu, Z)$, denoting by h_n a particular function in $\ell_{w^*}^{\infty}(\Sigma, Z)$ belonging to the class \hat{h}_n , there is a $C_n > 0$ such that $\|\mu\|$ $\|\mu\|$

$$\left\|\sum_{i=1}^{n} \varepsilon_{i} \widehat{h}_{i}\right\| = \left\|\left\|\sum_{i=1}^{n} \varepsilon_{i} h_{i}\left(\cdot\right)\right\|\right\|_{\mathcal{L}_{\infty}(\mu)} = \inf_{E \in \Sigma, \mu(E)=0} \sup_{\omega \in \Omega - E} \left\|\sum_{i=1}^{n} \varepsilon_{i} h_{i}\left(\omega\right)\right\| < C$$

for each $\varepsilon_i \in \{-1, 1\}$ with $1 \leq i \leq n$ and each $n \in \mathbb{N}$ [4, Chapter 5, Thm. 6]. For each fixed positive integer n choose $E(\varepsilon_1, \ldots, \varepsilon_n) \in \Sigma$, with $\mu(E(\varepsilon_1, \ldots, \varepsilon_n)) = 0$, such that $\|\sum_{i=1}^n \varepsilon_i h_i(\omega)\| \leq C$ for each $\omega \in \Omega - E(\varepsilon_1, \ldots, \varepsilon_n)$, set

$$E := \bigcup_{n=1}^{\infty} \bigcup \left\{ E \left(\varepsilon_1, \dots, \varepsilon_n \right) : \varepsilon_i \in \{-1, 1\}, 1 \le i \le n \right\}$$

and note that $\mu(E) = 0$. For each $n \in \mathbb{N}$ define $f_n \in \ell_{w^*}^{\infty}(\Sigma, Z)$ such that $f_n(\omega) = h_n(\omega)$ if $\omega \in \Omega - E$ and $f_n(\omega) = 0$ otherwise. Since $||f_n(\omega)|| = ||h_n(\omega)|| \le 2C$ for each $\omega \in \Omega - E$, then f_n is bounded and $f_n \sim h_n$ for each $n \in \mathbb{N}$. On the other hand, since $f_n(\omega) x = h_n(\omega) x$ or $f_n(\omega) x = 0$ depending on $\omega \in \Omega - E$ or $\omega \in E$, respectively, then $f_n() x$ is μ -measurable and, actually, $f_n() x \in \mathcal{L}_{\infty}(\mu)$ for each $x \in X$. Besides, given that $||\sum_{i=1}^n \varepsilon_i f_i(\omega)|| \le C$ for $\varepsilon_i \in \{-1,1\}, 1 \le i \le n, \omega \in \Omega$ and $n \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} f_n$ is wuC in $\ell_{w^*}^{\infty}(\Sigma, Z)$.

Considering that $C \ge ||f_n||_{\infty} \ge ||\hat{h}_n|| = 1$ for each $n \in \mathbb{N}$, an application of the Bessaga-Pełczyński selection principle guarantees that $\{f_n\}$ contains a c_0 -subsequence $\{f_{n_i}\}$ [4, Chapter 5, Corollary 7]. Since the closed linear span of any subsequence of the unit vector basis of c_0 is a copy of c_0 complemented in c_0 , it follows that $[\hat{h}_{n_i}]$ embeds complementably into $L^{\infty}_{w^*}(\mu, Z)$. Hence, there is a bounded linear projection operator P from $L^{\infty}_{w^*}(\mu, Z)$ onto $[\hat{h}_{n_i}]$. Let Q be the quotient map from $\ell^{\infty}_{w^*}(\Sigma, Z)$ onto $\ell^{\infty}_{w^*}(\Sigma, Z) / \sim$, let J denote an isomorphism from c_0 onto $[f_{n_i}]$ such that $Je_i = f_{n_i}$ and let K be an isomorphism from $[\hat{h}_{n_i}]$ onto c_0 with $K\hat{h}_{n_i} = e_i$ for each $i \in \mathbb{N}$. Since $Qf_{n_i} = T\hat{h}_{n_i}$ for each $i \in \mathbb{N}$, the linear operator $S: \ell^{\infty}_{w^*}(\Sigma, Z) \to [f_{n_i}]$ defined by $S = J \circ K \circ P \circ T^{-1} \circ Q$ is bounded and verifies $Sf_{n_i} = f_{n_i}$ for each $i \in \mathbb{N}$. Consequently, $[f_{n_i}]$ is a complemented copy of c_0 in $\ell^{\infty}_{w^*}(\Sigma, Z)$ and the previous lemma applies.

Open problem. Assuming that X is a nonseparable Banach space and Z a proper closed linear subspace of X^* , is it true that c_0 embeds into Z whenever $L^{\infty}_{w^*}(\mu, Z)$ contains a complemented copy of c_0 ?

References

- Bessaga, C. and Pełczyński, A. On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164.
- [2] Cembranos, P. and Mendoza, J. Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997.
- 3] Díaz, S. Complemented copies of c_0 in $L_{\infty}(\mu, E)$. Proc. Amer. Math. Soc. **120** (1994), 1167-1172.
- [4] Diestel, J. Sequences and Series in Banach Spaces. GTM 92. Springer-Verlag, 1984.
- [5] Ferrando, J.C. Complemented copies of c_0 in the vector-valued bounded function space. J. Math. Anal. Appl. 239 (1999), 419-426.
- [6] Hu, Z. and Lin, B.-L. Extremal structure of the unit ball of $L^{p}(\mu, X)$. J. Math. Anal. Appl. 200 (1996), 567-590.

Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante). Spain.

 $E\text{-}mail \ address: \ \texttt{jc.ferrandoQumh.es}$