COMPLEMENTED COPIES OF c_{0} IN $L_{w^{*}}^{\infty}(\mu, Z)$

J.C. FERRANDO

Received June 1, 2001

Abstract

Let (Ω, Σ, μ) be a complete finite measure space, X a separable Banach space and Z a proper closed linear subspace of X^{*}. If the subspace of $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ (the Banach space of all [classes of] essentially bounded X^{*}-valued weak* measurable functions defined on Ω equipped with its usual norm) consisting of all those Z-valued functions contains a complemented copy of c_{0}, we show in this note that Z contains a copy of c_{0}.

1. Preliminaries

Throughout this paper (Ω, Σ, μ) will be a complete finite measure space and X a real or complex Banach space. Our notation is standard in this field [2]. We denote by $\mathcal{L}_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ the linear space over \mathbb{K} of all weak* measurable functions $f: \Omega \rightarrow X^{*}$ for which there exists a scalar function $g \in \mathcal{L}_{\infty}(\mu)$ such that $\|f(\omega)\| \leq g(\omega)$ for μ-almost all $\omega \in \Omega$, whereas $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ stands for the quotient space of $\mathcal{L}_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ via the equivalence relation \sim^{*} defined by $f_{1} \sim^{*} f_{2}$ whenever $f_{1}() x \sim f_{2}() x$ for each $x \in X$ (where \sim designs the usual equivalence relation in $\left.\mathcal{L}_{p}(\mu)\right)$. The space $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ is a Banach space when equipped with the norm $\|\widehat{f}\|=\inf \|g\|_{\mathcal{L}_{\infty}(\mu)}$, the infimum taken over all those functions $g \in \mathcal{L}_{\infty}(\mu)$ for which there is some $f \in \widehat{f}$ such that $\|f(\omega)\| \leq g(\omega)$ for μ-almost all $\omega \in \Omega$. It can be shown that there is always some $h \in \widehat{f}$ such that $\|h()\| \in \mathcal{L}_{\infty}(\mu)$ and $\|\hat{f}\|=\| \| h()\| \| \|_{\mathcal{L}_{\infty}(\mu)}$. As it is well known, $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ identifies isometrically with $L_{1}(\mu, X)^{*}$ by means of the linear $\operatorname{map} T: L_{w^{*}}^{\infty}\left(\mu, X^{*}\right) \rightarrow L_{1}(\mu, X)^{*}$ defined by $(T \widehat{f}) \widehat{g}=\int_{\Omega}\langle f(\omega), g(\omega)\rangle d \mu(\omega)$ for each $f \in \widehat{f}$ and each $g \in \widehat{g} \in L_{1}(\mu, X)$. A study of $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ can be found in [2, Section 1.5] and [6, Section 3]. When X is separable, $\mathcal{L}_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ coincides with the space of all weak* measurable functions $f: \Omega \rightarrow X^{*}$ such that $\|f()\| \in \mathcal{L}_{\infty}(\mu)$. In this case $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ is the quotient of $\mathcal{L}_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ via the usual equivalence relation and $\|\hat{f}\|=\| \| f()\| \|_{\mathcal{L}_{\infty}(\mu)}$ for each $f \in \widehat{f}$. As usual, we represent by $L_{\infty}(\mu, X)$ the Banach space of all [classes of] essentially bounded μ-measurable functions equipped with the norm

$$
\|\widehat{f}\|_{\mathrm{ess}}=\|f\|_{\mathcal{L}_{\infty}(\mu)}=\inf \left\{\sup _{\omega \in \Omega-E}\|f(\omega)\|: E \in \Sigma, \mu(E)=0\right\}
$$

where f is any member of the class \hat{f}. According to [3], if $L_{\infty}(\mu, X)$ contains a complemented copy of c_{0} then X contains a copy of c_{0}. Consequently, if Z is a proper closed linear subspace of X^{*} and $L_{w^{*}}^{\infty}(\mu, Z)$ stands for the (closed) linear subspace of $L_{w^{*}}^{\infty}\left(\mu, X^{*}\right)$ consisting of all those Z-valued functions, it is natural to ask whether or not Z contains a copy of c_{0} whenever $L_{w^{*}}^{\infty}(\mu, Z)$ contains a complemented copy of c_{0}. In this note, we adapt the technique of [5,

[^0]Section 2] to answer in the affirmative this question whenever X is a separable Banach space.

2. The main theorem

Let Z be a proper closed linear subspace of X^{*} and let us denote by $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ the linear space over \mathbb{K} of all those bounded functions $f: \Omega \rightarrow Z$ such that $f() x$ is a scalar Σ-measurable function for each $x \in X$, provided with the supremum norm $\|f\|_{\infty}=$ $\sup \{\|f(\omega)\|: \omega \in \Omega\}$.

Lemma 2.1. If $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ contains a complemented copy of c_{0}, then Z contains a copy of c_{0}.

Proof. Let $\left\{f_{n}\right\}$ denote a basic sequence in $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ that is equivalent to the unit vector basis of c_{0} and let P be a bounded linear projection operator from $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ onto $\left[f_{n}\right]$. Since the series $\sum_{n=1}^{\infty} f_{n}$ is wuC in $\ell_{w^{*}}^{\infty}(\Sigma, Z)$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \xi_{i} f_{i}\right\|_{\infty} \leq C\|\xi\|_{\infty} \tag{1}
\end{equation*}
$$

for each $\xi \in \ell_{\infty}$. On the other hand, given $x^{* *} \in Z^{*}$ and $\omega \in \Omega$, the linear functional u on $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ defined by $u(f)=x^{* *} f(\omega)$ belongs to $\ell_{w^{*}}^{\infty}(\Sigma, Z)^{*}$, since $|u(f)|=\left|x^{* *} f(\omega)\right| \leq$ $\left\|x^{* *}\right\|\|f\|_{\infty}$. Hence the series $\sum_{n=1}^{\infty} f_{n}(\omega)$ is wuC in Z for each $\omega \in \Omega$. Assume by contradiction that Z does not contain a copy of c_{0}. Then, according to the classical Bessaga and Pełczyński's criterion [1], the series $\sum_{n=1}^{\infty} f_{n}(\omega)$ is (BM)-convergent in Z for each $\omega \in \Omega$. This allows us to define a linear operator φ from ℓ_{∞} into $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ by $(\varphi \xi)(\omega)=$ $\sum_{i=1}^{\infty} \xi_{i} f_{i}(\omega)$ for each $\omega \in \Omega$. By virtue of (1) we have $\|\varphi \xi\|_{\infty} \leq C\|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$, and clearly $(\varphi \xi)$ () x is Σ-measurable since $(\varphi \xi)(\omega) x=\sum_{i=1}^{\infty} \xi_{i} f_{i}(\omega) x$ for each $\omega \in \Omega$ and $x \in X$. Hence φ is a bounded linear operator from ℓ_{∞} into $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ such that $\varphi\left(e_{n}\right)=f_{n}$ for each $n \in \mathbb{N}$.

If J is an isomorphism from $\left[f_{n}\right]$ onto c_{0} such that $J f_{n}=e_{n}$ for each $n \in \mathbb{N}$, the mapping $S=J \circ P \circ \varphi$ is a bounded linear operator from ℓ_{∞} onto c_{0} such that $S e_{n}=e_{n}$ for each $n \in \mathbb{N}$. Thus S is a bounded projection from ℓ_{∞} onto c_{0}, a contradiction.

Theorem 2.2. Assume that X is a separable Banach space. If $L_{w^{*}}^{\infty}(\mu, Z)$ contains a complemented copy of c_{0}, then Z contains a copy of c_{0}.

Proof. Since X is separable, $L_{w^{*}}^{\infty}(\mu, Z)$ is linearly isometric to the quotient of $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ via the usual equivalence relation ' \sim ' that identifies functions which differ in a μ-null set. In fact, given $\widehat{f} \in L_{w^{*}}^{\infty}(\mu, Z)$ and choosing any $g \in \widehat{f}$, there exists a μ-null set $N_{g} \in \Sigma$ such that

$$
\sup \left\{\|g(\omega)\|: \omega \in \Omega-N_{g}\right\}=\|\widehat{f}\|
$$

Hence, if $f: \Omega \rightarrow Z$ verifies that $f(\omega)=g(\omega)$ for each $\omega \in \Omega-N_{g}$ and $f(\omega)=0$ for each $\omega \in N_{g}$, then $f \in \widehat{f} \cap \ell_{w^{*}}^{\infty}(\Sigma, Z)$ and $\|\hat{f}\|=\|f\|_{\infty}$. Consequently, if \widetilde{f} denotes the class of all those $h \in \ell_{w^{*}}^{\infty}(\Sigma, Z)$ such that $h \sim f$, the linear map T from $L_{w^{*}}^{\infty}(\mu, Z)$ onto $\ell_{w^{*}}^{\infty}(\Sigma, Z) / \sim$ defined by $T \widehat{f}=\widetilde{f}$ satisfies that

$$
\|T \widehat{f}\|=\|\widetilde{f}\|=\inf \left\{\|h\|_{\infty}: h \in \ell_{w^{*}}^{\infty}(\Sigma, Z), h \sim f\right\} \leq\|f\|_{\infty}=\|\widehat{f}\|
$$

On the other hand, if $h \in \ell_{w^{*}}^{\infty}(\Sigma, Z)$ is such that $h \sim f$, then $\|h\|_{\infty} \geq\| \| h()\| \|_{\mathcal{L}_{\infty}(\mu)}=\|\hat{f}\|$ and hence $\|\hat{f}\| \leq\|\tilde{f}\|$. Therefore $\|T \hat{f}\|=\|\hat{f}\|$.

Let $\left\{\widehat{h}_{n}\right\}$ be a normalized basic sequence in $L_{w^{*}}^{\infty}(\mu, Z)$ equivalent to the unit vector basis of c_{0} such that $\left[\widehat{h}_{n}\right]$ is a complemented subspace of $L_{w^{*}}^{\infty}(\mu, Z)$. Since $\sum_{n=1}^{\infty} \widehat{h}_{n}$ is wuC in $L_{w^{*}}^{\infty}(\mu, Z)$, denoting by h_{n} a particular function in $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ belonging to the class \widehat{h}_{n},

$$
\text { there is }\left\|_{i=1}^{C} \varepsilon_{i} \hat{h}_{i}\right\|=\| \|\left\|_{i=1}^{n} \varepsilon_{i} h_{i}()\right\|\left\|_{\mathcal{L}_{\infty}(\mu)}=\inf _{E \in \Sigma, \mu(E)=0} \sup _{\omega \in \Omega-E}\right\| \sum_{i=1}^{n} \varepsilon_{i} h_{i}(\omega) \|<C
$$

for each $\varepsilon_{i} \in\{-1,1\}$ with $1 \leq i \leq n$ and each $n \in \mathbb{N}$ [4, Chapter 5, Thm. 6]. For each fixed positive integer n choose $E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \Sigma$, with $\mu\left(E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)=0$, such that $\left\|\sum_{i=1}^{n} \varepsilon_{i} h_{i}(\omega)\right\| \leq C$ for each $\omega \in \Omega-E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, set

$$
E:=\bigcup_{n=1}^{\infty} \bigcup\left\{E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right): \varepsilon_{i} \in\{-1,1\}, 1 \leq i \leq n\right\}
$$

and note that $\mu(E)=0$. For each $n \in \mathbb{N}$ define $f_{n} \in \ell_{w^{*}}^{\infty}(\Sigma, Z)$ such that $f_{n}(\omega)=h_{n}(\omega)$ if $\omega \in \Omega-E$ and $f_{n}(\omega)=0$ otherwise. Since $\left\|f_{n}(\omega)\right\|=\left\|h_{n}(\omega)\right\| \leq 2 C$ for each $\omega \in \Omega-E$, then f_{n} is bounded and $f_{n} \sim h_{n}$ for each $n \in \mathbb{N}$. On the other hand, since $f_{n}(\omega) x=h_{n}(\omega) x$ or $f_{n}(\omega) x=0$ depending on $\omega \in \Omega-E$ or $\omega \in E$, respectively, then $f_{n}() x$ is μ-measurable and, actually, $f_{n}() x \in \mathcal{L}_{\infty}(\mu)$ for each $x \in X$. Besides, given that $\left\|\sum_{i=1}^{n} \varepsilon_{i} f_{i}(\omega)\right\| \leq C$ for $\varepsilon_{i} \in\{-1,1\}, 1 \leq i \leq n, \omega \in \Omega$ and $n \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} f_{n}$ is wuC in $\ell_{w^{*}}^{\infty}(\Sigma, Z)$.

Considering that $C \geq\left\|f_{n}\right\|_{\infty} \geq\left\|\widehat{h}_{n}\right\|=1$ for each $n \in \mathbb{N}$, an application of the BessagaPełczyński selection principle guarantees that $\left\{f_{n}\right\}$ contains a c_{0}-subsequence $\left\{f_{n_{i}}\right\}$ [4, Chapter 5, Corollary 7]. Since the closed linear span of any subsequence of the unit vector basis of c_{0} is a copy of c_{0} complemented in c_{0}, it follows that $\left[\widehat{h}_{n_{i}}\right]$ embeds complementably into $L_{w^{*}}^{\infty}(\mu, Z)$. Hence, there is a bounded linear projection operator P from $L_{w^{*}}^{\infty}(\mu, Z)$ onto $\left[\widehat{h}_{n_{i}}\right]$. Let Q be the quotient map from $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ onto $\ell_{w^{*}}^{\infty}(\Sigma, Z) / \sim$, let J denote an isomorphism from c_{0} onto $\left[f_{n_{i}}\right]$ such that $J e_{i}=f_{n_{i}}$ and let K be an isomorphism from $\left[\widehat{h}_{n_{i}}\right]$ onto c_{0} with $K \widehat{h}_{n_{i}}=e_{i}$ for each $i \in \mathbb{N}$. Since $Q f_{n_{i}}=T \widehat{h}_{n_{i}}$ for each $i \in \mathbb{N}$, the linear operator $S: \ell_{w^{*}}^{\infty}(\Sigma, Z) \rightarrow\left[f_{n_{i}}\right]$ defined by $S=J \circ K \circ P \circ T^{-1} \circ Q$ is bounded and verifies $S f_{n_{i}}=f_{n_{i}}$ for each $i \in \mathbb{N}$. Consequently, $\left[f_{n_{i}}\right]$ is a complemented copy of c_{0} in $\ell_{w^{*}}^{\infty}(\Sigma, Z)$ and the previous lemma applies.

Open problem. Assuming that X is a nonseparable Banach space and Z a proper closed linear subspace of X^{*}, is it true that c_{0} embeds into Z whenever $L_{w^{*}}^{\infty}(\mu, Z)$ contains a complemented copy of c_{0} ?

References

[1] Bessaga, C. and Petczyński, A. On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164.
[2] Cembranos, P. and Mendoza, J. Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997.
[3] Díaz, S. Complemented copies of c_{0} in $L_{\infty}(\mu, E)$. Proc. Amer. Math. Soc. 120 (1994), 1167-1172.
[4] Diestel, J. Sequences and Series in Banach Spaces. GTM 92. Springer-Verlag, 1984.
[5] Ferrando, J.C. Complemented copies of c_{0} in the vector-valued bounded function space. J. Math. Anal. Appl. 239 (1999), 419-426.
[6] Hu, Z. and Lin, B.-L. Extremal structure of the unit ball of $L^{p}(\mu, X)$. J. Math. Anal. Appl. 200 (1996), 567-590.

Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante). Spain.

E-mail address: jc.ferrando@umh.es

[^0]: 2000 Mathematics Subject Classification. 46G10, 46E40.
 Key words and phrases. Weak* measurable function, copy of c_{0}.
 Supported by DGESIC PB97-0342 and Presidencia de la Generalitat Valenciana.

