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CHIKAKO HARADA AND EIICHI NAKAI

Received May 14, 2001; revised August 2, 2001

ABSTRACT. Pinsky, Stanton and Trapa [3] showed, for example, that the spherical par-
tial sum of the Fourier series or the Fourier transform of the characteristic function of
the n-dimensional ball |z| < 1 diverges at x = 0 when n > 3. We point out that, in
three dimensions, the square partial sum of it converges at z = 0. Let ¢ be a func-
tion of bounded variation with compact support. We show that, for the radial function
f(@) = ¢(|z]), = € R3, the square partial sum of the Fourier transform converges to
»(+0) at x = 0.

1. INTRODUCTION

In one dimension, the behavior of Fourier series at a point depends only on the behavior
of the function in a neighborhood of that point. In particular, if the function is zero on an
interval, then the Fourier series converges to zero on that interval. However, in two or more
dimensions, this localization property does not generally hold.

In two or more dimensions, there are many ways to add up the terms of the Fourier series;
spherical partial sum, rectangular partial sum, square partial sum, etc. Pinsky, Stanton and
Trapa [3] and Kuratsubo [1] and [2] investigated the convergence of the spherical partial
sums of radial functions. Pinsky, Stanton and Trapa [3] showed, for example, that the
spherical partial sum of the Fourier series or the Fourier transform of the characteristic
function of the n-dimensional ball |x| < 1 diverges at x = 0 when n > 3.

In this paper, we study the convergence of the square partial sums of radial functions
in three dimensions. Let ¢ be a function of bounded variation with compact support. We
show that, for the radial function f(x) = ¢(|x|), € R3, the square partial sum of the
Fourier transform converges to ¢(40) at x = 0. In the case that f is the characteristic
function of the 3-dimensional ball || < 1, this convergence is equivalent to the following:

sin 27 sin z9 sin z3

lim dz1dzodzs = 7T3,
A—+o0 |z] <A Z12223

where |z] = /212 + 222 + 232

Our result is for the Fourier transform. It is unknown whether the square partial sums
of the Fourier series converges, though the square partial sum of the Fourier series of the
characteristic function of the 3-dimensional ball seems to converge by a numerical data.
Our method is not valid for the case = # 0.

Goffman and Liu [5] showed that the square partial sums of the Fourier series of a function
f has the localization property for f € Wl | (T"™). However, the characteristic function of
the 3-dimensional ball |z| < 1 is not in W4 (T3).
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In the next section we state definitions and main results. We give a proof in the third
section. To prove the main result we use the measure of the intersection of the cube
{€ € R3: |&] < A\ k= 1,2,3} and the ball {¢ € R? : |¢] < r}. For convenience we give a
calculation of this measure in the fourth section.

2. DEFINITIONS AND MAIN RESULTS

Z"™ denotes the n-dimensional integer lattice, whose points are written m = (myq, ..., my,),
where my are any integers. T" denotes the n-dimensional torus, whose points are writ-
ten (x1,...,x,), where —m < xp < w. R"™ denotes the n-dimensional Euclidean space,
whose points are written x = (1, ..., %), and for z,y € R™, its inner product zy denotes
D khe1 ThYk-

The Fourier series of a function F' on T", its spherical partial sum Siph and its square
partial sum S}* are defined by

. 1 .
F _ F —i1mx Zn
(m) )" /Tn (x)e de, meZ",

S @)= 3 Flm)em,

[m|<X

S3(z) = >

|me|<A:k=1,2,---,n

The Fourier transform of a function f on R™ , its spherical partial sum fiph and its
square partial sum f3* are defined by

F —L —ix n
£ = oon [ fwe e ds, cem

sph _ ¢ ifzd _ S 2 R™
b () /Wf@e NI

S9(z) = / f©)es de, e R
|€p]<X:ik=1,2,--

-n

Pinsky, Stanton and Trapa [3] investigated the spherical partial sum of the Fourier series
of the radial functions.

Theorem A ([3]). If0 < a < 7, n > 3, then the spherical partial sum of the n-dimentional
Fourier series of the characteristic function of the ball |x| < a diverges at the center x = 0.

Theorem B ([3]). Let F(z) = ¢(|z|) for x € T3, where 0 < a < 7, ¢(r) is a smooth
function on the interval [0, a] and p(r) =0 for r > a. If o(a) = 0 then the spherical partial
sum of the Fourier series converges for all x € T3. Conversely, if the spherical partial sum
of the Fourier series converges at x = 0 then ¢(a) = 0.

Theorem C ([3]). Let f(z) = ¢(|x|) for x € R®, where ¢(r) has a continuous derivative
on the interval [0, a] and ¢(r) = 0 for r > a. Then the spherical partial sum of the Fourier
transform converges at x = 0 if and only if p(a) = 0.
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Pinsky, Stanton and Trapa [3] also stated a example with graphs as follows:

1 f <
F(JZ): Or|$|_aa xETB, O<a§7r,
0 for |z| > a,
3
- a
A 1 acosalm|  sina|lm|
Flm) — _ 0 = (0,0,0).
(m) 27T2|m| ( |m| + |m|2 ’ m# ( » Yy )

The spherical partial sum of this series for a = 7, A = V134 and (z1, x2, z3) = (z,0,0) has
been graphed using Mathematica and is depicted in Fig. 1. The partial sum for A = /155
is depicted in Fig. 2.

2 2
1.75 1.75
1. 1.5
1.2 1.25
| JAEAY
VTV \VARSS \V4
0.75 0.7
0.5 0.
0.25 0.25
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
Fig. 1: S5°"(2,0,0), A = /134 Fig. 2: S (2,0,0), A = /155

On the other hand, the square partial sums for A = 10 and for A = 20 are depicted in
Fig. 3 and 4, respectively. We point out that the square partial sum seems to converge at
z=0.

2 2
1.75 1.75
1.5 1.5
1.25 1.25
0.75 0.75
0.5 0.5
0.25 0.25

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
Fig. 3: 55%(z,0,0), A = 10 Fig. 4: 55%(z,0,0), A = 20

Our main results are as follows:

Theorem 2.1. Let f(z) = p(|z|) for x € R3, where ¢ is a function of bounded variation
with compact support. Then

HY0) = o(+0) as X — +oo.
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Since

*(0) = F(€)d
A ( ) ‘/lfk|<)\:k‘—1,2,3 f(§) E

_ 1 —iy
B (27r)3 /Rs 1) </|5k|<,\:k_1,2,3 ¢ df) dy

1 sin Ay; sin Ays sin Ays

™ JRr3 Y1Y2Y3

dy,

we have the following:
Corollary 2.2. Let ¢ be a function of bounded variation. Then, for all a > 0,
sin Ayp sin Ays sin Ays

o(lyl) dy — o(4+0) as X\ — +oo.

3 lyl<a Y1y2y3
Let ¢o(r) =1 and a = 1 in Corollary 2.2. Then we have the following:
Corollary 2.3.

sin 2z sin zs sin z3
/ dz1dzodzs — 7 as A — +oo.
|z|<A Z1R2%3

3. PROOF

We prove the theorem in this section.

Lemma 3.1 (Kuratsubo [2]). Suppose a > 0 and ¢ is a function of bounded variation. Let
fy = ol forlel <a
0 for|z| > a.
Then we have

F(6) = w(a)a() / ") dg(t),

where

0 for|x| > t,
and dp is the Lebesque-Stieltjes measure generated by .
In the case n = 3, by Lemma([3], P123), we have

1 <t
w):{ Jorlel St e,

tcostr  sintr

xt(&) = H(t,|£]), where H(t,r)= ~ %22 T 5

Let supp ¢ C [0, a]. Then, by Lemma 3.1, we have
F(&) = A(l¢]), where A(r) = p(a)H(a,r) —/0 H(t,r)dp(t).

Let V(r) be the measure of the intersection of the cube {£ € R3 : |&]| < A\, k= 1,2,3} and
the ball {¢ € R?: |¢| < 7}. Then V'(r) = 0 for r > v/3)\ and

A o
59(0) = /lgkw_m 7€) de = / AV () dr

V32 V32
0

=p(a) H(a,r)V'(r)dr — / ( /0 “H dgp(t)) V' (r) dr.
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Let
V3
I(t,\) = H(t,r)V'(r)dr.
0

Since V'(r) is continuous and V'(r) = 4nr? for small r > 0, H(t,7)V’(r) is continuous on
[0, a] x [0, v/3)\]. By Fubini’s theorem we have

0 = pl)(a )~ [ 163 dote)
If we show that
(3.1) I(t,\) is bounded and I(£,\) — {(1) g z - 8 as A — +oc,
then we have
59(0) = p(a) — (9(a) — 9(+0) = p(+0) a5 A — +oo.

It remains only to prove (3.1). By elementary calculations (see Section 4 for example),
we have

Vi(r) for 0 <r <A,
Vi(r)=q Va(r) for A <r < V2),
Va(r) = Va1 (r) + Vaa(r)  for v2X\ <7 < /3,
where
4
Vi(r) =§7rr3,
8
Va(r) = ﬂ; + 672N — 273,
8 3
Vai(r) = — " 6mria— 23,
3 r? 2 3 r2
Vaa(r) =8N/ —2 + ﬁ — 24r“Xarctan \/ —2 + ﬁ + 8\ arctan {/ —2 + ¥
2 2
3 r T r
+ 8r” arctan (—1 + e + X -2+ ﬁ)
2 2
3 r T r
— 8r” arctan (—1—|— SV )\\/ -2+ )\2>
and
V] (r) =4mr?,  Vy(r) = 12mrA — 8mr?, V4 (r) = 1270\ — 8772,
V3o (r) = — 48rX arctan | —
+ 2472 arctan | —1 + — + f\/ T—Q
r<arctan 3 )\
7“2
— 2472 arctan | —1 + — —24+ — )\
Let

I(t, )\) = Il(t, )\) + Ig(t, )\) + I31 (t, )\) + Igg(t, )\)7
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and
A V2ZA
BN = [ HEOV@d,  BeN= [ e
0 A
V3A V3A
I3 (t, ) = H(t,r)Vs(r)dr, Isa(t,\) = H(t,r)Vsy(r)dr.
V2X V2

Then we have

A . i
(3.2) ILi(t,\) = / (—M + M) 4 dr
0

2m2p2 2723

A 2tcostr  2sintr 2sintA 2 [P sinz
= — + dr = — + — dz,
0 T r T T Jo z

Ve L
(3.3) Do(t,\) + In (£, \) = / (—M + ﬂ) (1277 A — 8r2) dr
A

and

2m2p2 2723

VA 6Atcostr GAsintr  4tcostr  4sintr
= - + + dr
by

5 —

r r ™ r

dz

[ 6 sin tr] VA /\/EA 4t costr 4 /\/EM sin z
A ¢

mr ™ T Jix z

. \/gt)\ .
4 2 2s 4 3
_ (_ - \/—> \/_t/\ sint\ _ _/ sin 2 ds.
t

s s T Jix z

A

By the change of variables, u = \/—2 + 72 /\2, we have
_ 2 2
132(t,A)_/0 (t )\\/2+u)\/§32 ()\\/2+u) Noaam i
/ Ei(u tcos t)\\/2—|—u2) du—|—/ Es(u) sin t)\\/2—|—u2) du

= I321(t, A) + Isna(t, A), say,

where
1
El(u) = - 271'27"2‘/23/2(7‘)
Zﬁ arctanu
U
12
- = (arctan (1 +u?+uv2+ u2) — arctan (1 +u?—uv2+ u2)) ,

T

1 AU U
Bo () =———Viy (r) ——— = — B (1) ——.

Q(u) 2723 BQ(T) \/2—|-—’U,2 1(U)2 42

Since Fy(1) = 2v/3/m — 4/ and E1(0) = 0, we have

Ig01(t,A) = (% - é) sin V/3tA — / Ei'(u sm t)\\/2 + u2)

48(2 + u?) — 24(u + u3) arctan u
m2V2 Fu2(2+ 3u? +ut)

where Ey'(u) =
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Let
1
G(t,\) = / E(u) sin (t)\\/2 + u2) du and E = —FE + Es.
0
Then
2 4
(34) Igg(t, )\) = <$ - ;) sin \/gt/\ +G (t, )\) .

By (3.2), (3.3) and (3.4) we have

tA : 4 V3t x
I(t,)\)zz/ “nzdz——/ Qe+ Gt
0 t

T z T Jo z
/ 02 g+ sup |E(u)| = C < +o0,
0 z 0<u<1

(2 T f
/ smzdz_) 5 ort >0, as A oo,
0 z 0 fort=0,

We note that

6
I < —
(6.3 < 2

NED W
/ bmzclz—>0 as A — +oo.
tA z

For all € > 0 there exists § > 0 such that

0
/ E(u) sin (t)\\/ 2+ u2) du
0

€
<4é sup |E(uw)]< =.
0<u<1 2

By the change of variables v = v/2 4 1?2, and using the Riemann-Lebesgue theorem, we have

1 V3 v
/5 E(u) sin (t)\\/ 24 u2) du / - E (\/ v2 — 2) T sin tAv dv

for large X\. Hence G(t,\) — 0 as A\ — 4o00. Therefore we heve (3.1). The proof is complete.

3
<§,

4. THE MEASURE OF THE INTERSECTION OF THE CUBE AND THE BALL
For a measurable set €2, we denote its measure by |€2|. Let
Ox={(z,y,2) € R®: |z < X, [yl < A, [z <A,
B, = {(z,y,2) € R® : 2% +- ¢y + 2% <r?},
and
V(r)=V(Ar)=Q@xNB,[, g(t)=V(1,t)=[Q1N By
Then
V(r)=V(Ar) =NV r/A) = Ng(r/X), V'(r) =X (/).
In this section we calculate g(t) to get V(r). Let
g(t) 0<t<1,
(1) = g(t) 1<t<V2,
T =Y gat) V2<t <3,
ga(t) V3<t.
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We show that

4

(4.1) a(t) = gmﬁg,
87t3

(4.2) ga(t) = — WT 1 6mt? — 2,
87t3

(4.3) g3(t) = — WT 16t — 2m

+ 8\/7? - (24252 - 8) arctan v/t2 — 2
+ 8t% arctan (t2 -1+ t\/tQTZ) — &t arctan (t2 —1—tVt2 - 2) ,
(44)  gulr) =8
If we can show this, then we have that
g1'(t) = 4nt?,
g2 (t) = — 8mt? + 12nt,
g3’ (t) = — 8mt? 4 127t — 48t arctan \/t2 — 2
+ 24t2 arctan (t2 -1+ t\/tQTZ) — 24¢? arctan (t2 — 11—tV — 2) ,

94'(r) = 0.
Actually, since (arctanv)’ =1/ (1+v?), we have
’ 16t*
8v/t2 — 2 — (24t? — 8) arctan /2 — 2) =—————— —48tarctan /12 — 2,
( ( ) (t2 — 1)m

and
(8253 arctan (t2 -1+ t\/tQTZ) — 8t3 arctan (t2 —1—tVt2 — 2))/
= W—igi—tgﬁm + 24¢% arctan (t2 -1+ t\/tQTZ)
— 24t2 arctan (t2 —-1- tﬁ) .
Fig. 5 and Fig. 6 are the graphs of ¢g(t) and ¢'(t), respectively.
8

12

10

Fig. 5: g(t) Fig. 6: ¢'(t)

(4.1) and (4.4) are clear. In the following we show (4.2) and (4.3).
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For the case t > 1 (see Fig. 7), let
Ky ={(z,y,2) € By : v > 1}.
For the case t > v/2 (see Fig. 8 and Fig. 9), let
Ly ={(z,y,2) € By :x>1,z2>1}.

Then
g2(t) = |Bi| — 6|Ky| and  g3(t) = |Bi| — 6| K| + 12|Ly|.
Fig. 7: Q, and By, 1 <t < V2 Fig. 8: Q, and By, V2 <t < /3
Fig. 10: £(y), —V12 -2 <y < V12 -2,
V2<t<V3
Fig. 9: Ly, V2 <t <3
Let
k(x) ={(y,2) € R? . (x,y,2) € Kt}
Then

k ¢ 2 1
IKt|=/k($)dﬂf=/W(t2—x2) dx:w(§t3—t2+§> for ¢> 1.
1 1

Hence we have (4.2).

337
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Let (see Fig. 10)
Uy) = {(z,2) € R?: (z,y,2) € Le}.

Then
V22 ViZ—2
|Lt|:/ K(y)dyzZ/ (y)dy for V2 <t<3,
VT 0
and
VeE—1-y?
é(y)z/ (\/tQ—yQ—xQ—l) dx
1
for V2<t<v3 and —V2-2<y<Vi2-2.
Let

R(u) = % (uﬂ+ arctan (%)) .

)

Then we have R'(u) = v/1 — u2. Hence
VE—1-y2 /[Py

N
[N VR A= | (2~ ) VT~
! NG
t2 1= 2 1
_ (t2 —y2) R Yyl R
/t2 _y2 /t2 _y2
1 1
— S (22 VI —1—q2 - .
2 ( ) ) (arctan t Y arctan ( . y2>>
Let
y® 1
T(y) = (to - —> arctan \/t2 — 1 — y2 — arctan | ——
3 /12 — 1 — y2
1
—g\/tQ—l—yQ— 24 =) arctan | —2
3 3 /12 -1 — o2
2t° 2 -1+t 21—t
+ —— | arctan it /N — arctan LW .
3 t2—1—y2 t2—1—y2
Then

1
T@:@awaGMw¢ﬁ?:?;anQ7___ﬁ>,

and
1
y) = §T’(y) —Vt2—1—9y2+1.

Now we have

Vs
/ T (y)dy =T (\/ 2 — 2) —T(0)
0
1
- _g,/t2 —9_ (t2 + %) arctan \/t2 — 2

3

2t
+ 5 (arctan (t2 — 1+ttt — 2) — arctan (t2 —1—t\/t?2 - 2)) ,
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and
Vt2—2 Vt2—2/v/t2-1
2/) \H2—1—ﬁdy=2/‘ (> =1) V1 —u?du
0 0
2 t2 -2 2
=(t*-1)|R T — R(0) | = Vt? =2+ (t* — 1) arctan /2 — 2.
Hence
ViZ—2
Li=2 [ tway
0
ViZ—2 ViT=3 Vo
:/ T (y) dy — 2 \/t2—1—y2dy—|—2/ dy
0 0 0
2 2
=3 2 — 2 — 2t arctan V12 — 2 + 3 arctan /t2 — 2

2t3 2t3
—|—?arctan(t2—1—|—t\/t2—2) —?arctan(tZ—l—t t2—2).

Then we have (4.3).
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