INVARIANCE PRINCIPLES FOR A LINEAR COMBINATION OF U-STATISTICS

Masao KONDO and Hajime YaMato

Received July 13 2001; August 28, 2001

Abstract

Invariance principles or functional limit theorems are well-known for Ustatistic and V-statistic. In the case that the kernel is non-degenerate, we show invariance principles for a linear combination of U-statistics which includes V-statistic and LB-statistic.

1 Introduction Let $\theta(F)$ be an estimable parameter or a regular functional of a distribution F and $g\left(x_{1}, \ldots, x_{k}\right)$ be its kernel of degree k. We assume that the kernel $g\left(x_{1}, \ldots, x_{k}\right)$ is symmetric and not degenerate. Let X_{1}, \ldots, X_{n} be a random sample of size n from the distribution F. U-statistic U_{n} and V-statistic V_{n} are well-known as estimators of $\theta(F)$, which are given by the followings.

$$
\begin{equation*}
U_{n}=\binom{n}{k}^{-1} \sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right), \tag{1.1}
\end{equation*}
$$

where $\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n}$ denotes the summation over all integers j_{1}, \ldots, j_{k} satisfying $1 \leq j_{1}<$ $\cdots<j_{k} \leq n$. V-statistic V_{n} is given by

$$
\begin{equation*}
V_{n}=\frac{1}{n^{k}} \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} g\left(X_{j_{1}}, \ldots, X_{j_{k}}\right) \tag{1.2}
\end{equation*}
$$

(see, for example, Lee(1990)).
As an estimator of $\theta(F)$, Toda and Yamato (2001) introduce a linear combination Y_{n} of U-statistics as follows: Let $w\left(r_{1}, \ldots, r_{j} ; k\right)$ be a nonnegative and symmetric function of positive integers r_{1}, \ldots, r_{j} such that $j=1, \ldots, k$ and $r_{1}+\cdots+r_{j}=k$, where k is the degree of the kernel g and fixed. We assume that at least one of $w\left(r_{1}, \ldots, r_{j} ; k\right)$'s is positive. We put

$$
d(k, j)=\sum_{r_{1}+\cdots+r_{j}=k}^{+} w\left(r_{1}, \ldots, r_{j} ; k\right)
$$

for $j=1,2, \ldots, k$, where the summation $\sum_{r_{1}+\cdots+r_{j}=k}^{+}$is taken over all positive integers r_{1}, \ldots, r_{j} satisfying $r_{1}+\cdots+r_{j}=k$ with j and k fixed. For $j=1, \ldots, k$, let $g_{(j)}\left(x_{1}, \ldots, x_{j}\right)$ be the kernel given by

$$
g_{(j)}\left(x_{1}, \ldots, x_{j}\right)=\frac{1}{d(k, j)} \sum_{r_{1}+\cdots+r_{j}=k}^{+} w\left(r_{1}, \ldots, r_{j} ; k\right) g(\underbrace{x_{1}, \ldots, x_{1}}_{r_{1}}, \ldots, \underbrace{x_{j}, \ldots, x_{j}}_{r_{j}}) .
$$

Let $U_{n}^{(j)}$ be the U-statistic associated with this kernel $g_{(j)}\left(x_{1}, \ldots, x_{j}\right)$ for $j=1, \ldots, k$. The kernel $g_{(j)}\left(x_{1}, \ldots, x_{j}\right)$ is symmetric because of the symmetry of $w\left(r_{1}, \ldots, r_{j} ; k\right)$. If $d(k, j)$

[^0]is equal to zero for some j, then the associated $w\left(r_{1}, \ldots, r_{j} ; k\right)$'s are equal to zero. In this case, we let the corresponding statistic $U_{n}^{(j)}$ be zero. Then the linear combination Y_{n} of U -statistics is given by
\[

$$
\begin{equation*}
Y_{n}=\frac{1}{D(n, k)} \sum_{j=1}^{k} d(k, j)\binom{n}{j} U_{n}^{(j)} \tag{1.3}
\end{equation*}
$$

\]

where $D(n, k)=\sum_{j=1}^{k} d(k, j)\binom{n}{j}$. Since w 's are nonnegative and at least one of them is positive, $D(n, k)$ is positive.

If $w(1,1, \ldots, 1 ; k)=1$ and $w\left(r_{1}, \ldots, r_{j} ; k\right)=0$ for positive integers r_{1}, \ldots, r_{j} such that $j=1, \ldots, k-1$ and $r_{1}+\cdots+r_{j}=k$, then $d(k, k)=1, d(k, j)=0(j=1, \ldots, k-1)$ and $D(n, k)=\binom{n}{k}$. The corresponding statistic Y_{n} is equal to U-statistic U_{n} given by (1.1).

If w is the function given by $w\left(r_{1}, \ldots, r_{j} ; k\right)=k!/\left(r_{1}!\cdots r_{j}!\right)$ for positive integers r_{1}, \ldots, r_{j} such that $j=1, \ldots, k$ and $r_{1}+\cdots+r_{j}=k$, then $d(k, j)=j!\mathcal{S}(k, j)(j=1, \ldots, k)$ and $D(n, k)=n^{k}$ where $\mathcal{S}(k, j)$ are the Stirling number of the second kind. The corresponding statistic Y_{n} is equal to V-statistic V_{n} given by (1.2).

If w is the function given by $w\left(r_{1}, \ldots, r_{j} ; k\right)=1$ for positive integers r_{1}, \ldots, r_{j} such that $j=1, \ldots, k$ and $r_{1}+\cdots+r_{j}=k$, then $d(k, j)=\binom{k-1}{j-1}(j=1, \ldots, k)$ and $D(n, k)=\binom{n+k-1}{k}$. The corresponding statistic Y_{n} is equal to LB-statistic B_{n} which is given by

$$
\begin{equation*}
B_{n}=\binom{n+k-1}{k}^{-1} \sum_{r_{1}+\cdots+r_{n}=k} g(\underbrace{X_{1}, \ldots, X_{1}}_{r_{1}}, \ldots, \underbrace{X_{n}, \ldots, X_{n}}_{r_{n}}), \tag{1.4}
\end{equation*}
$$

where $\sum_{r_{1}+\cdots+r_{n}=k}$ denote the summation over all non-negative integers r_{1}, \ldots, r_{n} satisfying $r_{1}+\cdots+r_{n}=\check{k}($ see Toda and Yamato (2001)).

In Section 2 we quote the invariance principles for the U-statistic from Miller and Sen (1972), Sen (1974), Denker (1985) and Borovskikh (1996).

Our purpose is to show the invariance principles for the statistic Y_{n} given by (1.3), using the invariance principles for the U-statistic. These are shown in Section 3. For V-statistic the invariance principles are already shown (see Miller and Sen (1972), Sen (1974), Denker (1985) and Koroljuk and Borovskich (1994)). Our results are obtained for a linear combination of U-statistics including V-statistic and even under stronger conditions than the ones for V-statistic.

2 Invariance principles for U-statistic For the kernel $g\left(x_{1}, \ldots, x_{k}\right)$, we put

$$
\psi_{j}\left(x_{1}, \ldots, x_{j}\right)=E\left[g\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}=x_{1}, \ldots, X_{j}=x_{j}\right], \quad j=1, \ldots, k
$$

and

$$
\begin{gathered}
h^{(1)}\left(x_{1}\right)=\psi_{1}\left(x_{1}\right)-\theta \\
h^{(2)}\left(x_{1}, x_{2}\right)=\psi_{2}\left(x_{1}, x_{2}\right)-h^{(1)}\left(x_{1}\right)-h^{(1)}\left(x_{2}\right)-\theta, \\
h^{(c)}\left(x_{1}, \ldots, x_{c}\right)=\psi_{c}\left(x_{1}, \ldots, x_{c}\right)-\sum_{j=1}^{c-1} \sum_{(c, j)} h^{(j)}\left(x_{i_{1}}, \ldots, x_{i_{j}}\right)-\theta
\end{gathered}
$$

for $c=3,4, \ldots, k$, where the sum $\sum_{(c, j)}$ is taken over all integers such that $1 \leq i_{1}<\cdots<$ $i_{j} \leq c$. Let σ_{1}^{2} be the variance of $h^{(1)}\left(X_{1}\right)$. Since we consider the non-degenerate kernel g in this paper, we have $\sigma_{1}^{2}>0$.

Let $\left\{U_{n}(t): 0 \leq t \leq 1\right\}$ be a random process given by

$$
U_{n}(t)=\left\{\begin{array}{lll}
0 & \text { if } \quad t=j / n \quad(j=0,1, \ldots, k-1) \tag{2.1}\\
j\left(U_{j}-\theta\right) / k \sigma_{1} \sqrt{n} & \text { if } \quad t=j / n \quad(j=k, \ldots, n)
\end{array}\right.
$$

and by linear interpolation elsewhere. That is,

$$
U_{n}(t)=U_{n}\left(\frac{j}{n}\right)+(n t-j)\left[U_{n}\left(\frac{j+1}{n}\right)-U_{n}\left(\frac{j}{n}\right)\right]
$$

for $j / n<t<(j+1) / n(j=k-1, \ldots, n-1)$. The following lemma is the weak invariance principle for U-statistic (see, for example, Lee (1990), p.136-137).

Lemma 2.1 (Miller and Sen (1972)) We assume that $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$. Then $\left\{U_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $C[0,1]$ to a standard Brownian motion W.

The space $C[0,1]$ is the space of all continuous real functions on $[0,1]$ with the norm $\rho(x, y)=\sup _{0<t<1}|x(t)-y(t)|$ for $x, y \in C[0,1]$. The σ-field of Borel subsets of $C[0,1]$ is generated by the open subsets of $C[0,1]$.

Lemma 2.2 (Borovskikh (1996), p.166.) We assume that $E\left|h^{(c)}\left(X_{1}, \ldots, X_{c}\right)\right|^{\gamma_{c}}<\infty$, for each $c=1,2, \ldots, k$ where $\gamma_{c}=2 c /(2 c-1)$.
Then $\left\{U_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $C[0,1]$ to a standard Brownian motion W.
Borovskikh (1996) states this fact in $D[0,1]$
Next, we quote strong invariance principle. Let $\{\xi(t): 0 \leq t<\infty\}$ be a random process given by

$$
\xi(t)= \begin{cases}0 & t=0,1, \ldots, k-1 \tag{2.2}\\ n\left(U_{n}-\theta\right) & t=n, n \geq k\end{cases}
$$

and by linear interpolation elsewhere.
Let $f(t)$ be a positive function satisfying the following conditions:
(i) $f(t)$ is increasing on $[0, \infty)$,
(ii) $t^{-1} f(t)$ is decreasing on $[0, \infty)$,
(iii) $\sum_{n \geq 1}[f(c n)]^{-1} \int_{\left[h^{(1)}(x)\right]^{2}>f(c n)}\left[h^{(1)}(x)\right]^{2} d F(x)<\infty$ for $\forall c>0$.

Since the kernel g is assumed to be non-degenerate, $h^{(1)}\left(x_{1}\right)$ is not equal to a constant almost surely (a.s.). The following lemma is the strong invariance principle for U -statistic (see, for example, Lee (1990), p.139).

Lemma 2.3 (Sen (1974)) We assume that $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$. Then there exists a standard Brownian motion $W(t)$ on $[0, \infty]$ such that as $t \rightarrow \infty$,

$$
\begin{equation*}
\xi(t)=k \sigma_{1} W(t)+O\left((t f(t))^{\frac{1}{4}} \log t\right) \text { a.s. } \tag{2.3}
\end{equation*}
$$

If we choose $f(t)=t /(\log t)^{4}$, then $(t f(t))^{1 / 4} \log t=t^{1 / 2}$ and we have the following.

Lemma 2.4 (Denker (1985)) We assume that $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(t \log \log t)^{-\frac{1}{2}}\left|\sigma^{-\frac{1}{2}} k^{-1} \xi(t)-W(t)\right|=0 \quad \text { a.s. } \tag{2.4}
\end{equation*}
$$

The following random process is defined in a space different from $C[0,1]$. Let $\left\{\nu_{n}(t), t \in\right.$ $[0,1]\}$ be a random process given by

$$
\begin{gathered}
\nu_{n}(t)=\frac{\sqrt{n}}{k \sigma_{1}}\left(U_{n(t)}-\theta\right) \\
n(t)=\min \left\{j \geq 1: n j^{-1} \leq t\right\}=-\left[-\frac{n}{t}\right], \quad t \in[0,1]
\end{gathered}
$$

where $\nu_{n}(t)$ belong to the space $D[0,1]$ of all real functions on $[0,1]$ which are right continuous and have left-hand limits. The Skorokhod metric is considered on the space $D[0,1]$.

Lemma 2.5 (Borovskikh (1996), p.169.) We assume that $E\left|h^{(c)}\left(X_{1}, \ldots, X_{c}\right)\right|^{\gamma_{c}}<\infty$, for each $c=1,2, \ldots, k$ where $\gamma_{c}=2 c /(2 c-1)$.
Then $\left\{\nu_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $D[0,1]$ to a standard Brownian motion W.
Borovskikh (1996) says this result reversed invariance principle.
3 Invariant principles for Y-statistic Let $\left\{Y_{n}(t): 0 \leq t \leq 1\right\}$ be a random process given by

$$
Y_{n}(t)= \begin{cases}0 & \text { if } \quad t=j / n \quad(j=0,1, \ldots, k-1) \tag{3.1}\\ j\left(Y_{j}-\theta\right) / k \sigma_{1} \sqrt{n} & \text { if } \quad t=j / n \quad(j=k, \ldots, n)\end{cases}
$$

and by linear interpolation elsewhere.
Then by (1.3) we have

$$
\begin{gather*}
Y_{n}\left(\frac{j}{n}\right)=0, j=0,1, \ldots, k-1 \\
Y_{n}\left(\frac{j}{n}\right)=\frac{1}{D(j, k)} \sum_{r=1}^{k} d(k, r)\binom{j}{r} \frac{j\left(U_{j}^{(r)}-\theta\right)}{k \sigma_{1} \sqrt{n}}, j=k, k+1, \ldots, n, \tag{3.2}
\end{gather*}
$$

For d and D given in Section 1, we suppose that there exists a positive constant β_{1} such that

$$
\begin{equation*}
1-\frac{d(k, k)}{D(n, k)}\binom{n}{k} \leq \frac{\beta_{1}}{n} \tag{3.3}
\end{equation*}
$$

We note that the left-hand side is nonnegative from the assumption. The inequality (3.3) is equivalent to

$$
\begin{equation*}
\frac{1}{D(n, k)} \sum_{j=1}^{k-1} d(k, j)\binom{n}{j} \leq \frac{\beta_{1}}{n} \tag{3.4}
\end{equation*}
$$

For the LB-statistic given by (1.4), $\beta_{1}=k(k-1)$ and for the V -statistic given by (1.2), $\beta_{1}=k(k-1) / 2$ (see Toda and Yamato (2001)). Since we have $\beta_{1}=0$ for the U-statistic, the U-statistic U_{n} is not included in the following discussion.

Proposition 3.1 We suppose (3.3), and that $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<\infty$ for $1 \leq i_{1} \leq \cdots \leq$ $i_{k} \leq k$. Then $\sup _{0 \leq t \leq 1}\left|Y_{n}(t)-U_{n}(t)\right|$ converges to zero in probability as $n \rightarrow \infty$.

Proof: Since $U_{n}^{(k)}=U_{n}$, by (3.2) we have

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|Y_{n}(t)-U_{n}(t)\right| \leq I_{1 n}+\sum_{r=1}^{k-1} I_{2 n}^{(r)} \tag{3.5}
\end{equation*}
$$

where

$$
I_{1 n}=\max _{k \leq j \leq n}\left|\frac{d(k, k)}{D(j, k)}\binom{j}{k}-1\right| \times\left|U_{n}\left(\frac{j}{n}\right)\right|
$$

and

$$
I_{2 n}^{(r)}=\max _{k \leq j \leq n} \frac{d(k, r)}{D(j, k)}\binom{j}{r} \frac{j\left|U_{j}^{(r)}-\theta\right|}{k \sigma_{1} \sqrt{n}}, r=1, \ldots, k-1
$$

By using (3.3) to $I_{1 n}$, we have

$$
\begin{gathered}
I_{1 n}=\max _{k \leq j \leq n}\left|\frac{d(k, k)}{D(j, k)}\binom{j}{k}-1\right| \frac{j\left|U_{j}-\theta\right|}{k \sigma_{1} \sqrt{n}} \\
\quad \leq \frac{\beta_{1}}{k \sigma_{1}} \max _{k \leq j \leq n} \frac{\left|U_{j}-\theta\right|}{\sqrt{n}} .
\end{gathered}
$$

We note that $\left\{U_{j}, j=k, k+1, \ldots\right\}$ is a reverse martingale with respect to the σ-fields $\sigma\left(U_{j}, U_{j+1}, \ldots\right)$ and therefore $\left\{\left|U_{j}-\theta\right|, j=k, k+1, \ldots\right\}$ is a reverse submartingale. So by applying the inequality given by Koroljuk and Borovskich (1994), p. 78 to $P\left(\sup _{j \geq k} \mid\right.$ $\left.U_{j}-\theta \mid / \sqrt{n}>\varepsilon\right)$, for $\forall \varepsilon>0$ we have

$$
\begin{equation*}
P\left(\max _{k \leq j \leq n} \frac{\left|U_{j}-\theta\right|}{\sqrt{n}}>\varepsilon\right) \leq P\left(\sup _{j \geq k}\left|U_{j}-\theta\right|>\varepsilon \sqrt{n}\right) \leq \frac{E\left|U_{k}-\theta\right|}{\varepsilon \sqrt{n}} \tag{3.6}
\end{equation*}
$$

which converges to zero as $n \rightarrow \infty$. Thus $\max _{k \leq j \leq n}\left|U_{j}-\theta\right| / \sqrt{n}$ and therefore $I_{1 n}$ converges to zero in probability as $n \rightarrow \infty$.

By (3.4), for $r=1, \ldots, k-1$ we have

$$
I_{2 n}^{(r)} \leq \frac{\beta_{1}}{k \sigma_{1}}\left\{\max _{k \leq j \leq n} \frac{\left|U_{j}^{(r)}-\theta_{r}\right|}{\sqrt{n}}+\frac{\left|\theta_{r}-\theta\right|}{\sqrt{n}}\right\}
$$

where $\theta_{r}=E U_{j}^{(r)}$. By the same reason as $I_{1 n}, \max _{k \leq j \leq n}\left|U_{j}^{(r)}-\theta_{r}\right| / \sqrt{n}$ converges to zero in probability as $n \rightarrow \infty$. Thus $I_{2 n}^{(r)}$ converges to zero in probability as $n \rightarrow \infty$ for $r=1, \ldots, k-1$. Hence by $(3.5), \sup _{0 \leq t \leq 1}\left|Y_{n}(t)-U_{n}(t)\right|$ converges to zero in probability as $n \rightarrow \infty$.
¿From Lemmas 1.1, 1.2 and Proposition 3.1, we have the following theorems.
Theorem 3.2 We assume (3.3), $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$, and that
$E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<\infty$ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq k$.
Then $\left\{Y_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $C[0,1]$ to a standard Brownian motion W.

Theorem 3.3 We assume that $E\left|h^{(c)}\left(X_{1}, \ldots, X_{c}\right)\right|^{\gamma_{c}}<\infty$, for each $c=1,2, \ldots, k$, where $\gamma_{c}=2 c /(2 c-1)$ and $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<\infty$ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq k$. We also suppose (3.3).
Then $\left\{Y_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $C[0,1]$ to a standard Brownian motion W.
Now we consider the strong invariance principle for the statistic Y_{n}.
Lemma 3.4 We suppose (3.3), and that $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<\infty$ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq$ k. Then $(n / \log \log n)\left|Y_{n}-U_{n}\right|$ converges to zero almost surely as $n \rightarrow \infty$.

Proof: By (1.3) we have

$$
Y_{n}-U_{n}=\left(U_{n}-\theta\right)\left[\frac{d(k, k)}{D(n, k)}\binom{n}{k}-1\right]+\sum_{j=1}^{k-1} \frac{d(k, j)}{D(n, j)}\binom{n}{j}\left(U_{n}^{(j)}-\theta\right)
$$

Using (3.3) and (3.4) to the right-hand side of the above, we have

$$
\frac{n}{\log \log n}\left|Y_{n}-U_{n}\right| \leq \frac{\beta_{1}}{\log \log n}\left[\left|U_{n}-\theta\right|+\sum_{j=1}^{k-1}\left|U_{n}^{(j)}-\theta\right|\right]
$$

Under the assumption for $j=1, \ldots, k, U_{n}^{(j)} \rightarrow \theta_{j}$ a.s. as $n \rightarrow \infty$ and therefore the righthand side converges to zero a.s. as $n \rightarrow \infty$. Hence $(n / \log \log n)\left|Y_{n}-U_{n}\right|$ converges to zero a.s. as $n \rightarrow \infty$.

Let $\{\eta(t): 0 \leq t<\infty\}$ be a random process given by

$$
\eta(t)= \begin{cases}0 & t=0,1, \ldots, k-1 \\ n\left(Y_{n}-\theta\right) & t=n, n \geq k\end{cases}
$$

and by linear interpolation elsewhere.
Then for all $n \geq k$, we have

$$
\eta(n)-\xi(n)=n\left(Y_{n}-U_{n}\right)
$$

which converges to zero a.s. as $n \rightarrow \infty$ by Lemma 3.4. So we have

$$
|\eta(n)-\xi(n)|=o\left((n f(n))^{\frac{1}{4}} \log n\right) .
$$

Thus by this result and Lemma 2.3 we have the following.
Theorem 3.5 We assume that $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$ and that $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<$ ∞ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq k$. We also suppose (3.3). Then there exists a standard Brownian motion $W(t)$ on $[0, \infty]$ such that as $t \rightarrow \infty$,

$$
\eta(t)=k \sigma_{1} W(t)+O\left((t f(t))^{\frac{1}{4}} \log t\right) \text { a.s. }
$$

Theorem 3.6 We assume that $E\left|g\left(X_{1}, \ldots, X_{k}\right)\right|^{2}<\infty$ and that $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<$ ∞ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq k$. We also suppose (3.3). Then

$$
\lim _{t \rightarrow \infty}(t \log \log t)^{-\frac{1}{2}}\left|\sigma^{-\frac{1}{2}} k^{-1} \eta(t)-W(t)\right|=0 \quad \text { a.s. }
$$

The following is the reversed invariance principle for Y_{n}. Let $\left\{\zeta_{n}(t), t \in[0,1]\right\}$ be a random process given by

$$
\zeta_{n}(t)=\frac{\sqrt{n}}{k \sigma_{1}}\left(Y_{n(t)}-\theta\right), \quad t \in[0,1] .
$$

The random process $\zeta_{n}(t)$ belong to $D[0,1]$.
Theorem 3.7 We assume that $E\left|h^{(c)}\left(X_{1}, \ldots, X_{c}\right)\right|^{\gamma_{c}}<\infty$, for each $c=1,2, \ldots, k$ where $\gamma_{c}=2 c /(2 c-1)$ and that $E\left|g\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|<\infty$ for $1 \leq i_{1} \leq \cdots \leq i_{k} \leq k$. We also suppose (3.3).
Then $\left\{\zeta_{n}(t): 0 \leq t \leq 1\right\}$ converges weakly in $D[0,1]$ to a standard Brownian motion W.
Proof. By the definition of $\nu_{n}(t), \zeta_{n}(t)$, we have

$$
\sup _{0 \leq t \leq 1}\left|\zeta_{n}(t)-\nu_{n}(t)\right|=\frac{\sqrt{n}}{k \sigma_{1}} \sup _{0 \leq t \leq 1}\left|Y_{n(t)}-U_{n(t)}\right|=\frac{\sqrt{n}}{k \sigma_{1}} \sup _{j \geq n}\left|Y_{j}-U_{j}\right|
$$

By (1.3), (3.3) and (3.4), for $j \geq n$ we get

$$
\left|Y_{j}-U_{j}\right| \leq \frac{\beta_{1}}{n}\left[\left|U_{j}-\theta\right|+\sum_{r=1}^{k-1}\left(U_{j}^{(r)}-\theta\right)\right]
$$

Thus

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|\zeta_{n}(t)-\nu_{n}(t)\right| \leq \frac{\beta_{1}}{k \sigma_{1}}\left\{\frac{1}{\sqrt{n}} \sup _{j \geq n}\left|U_{j}-\theta\right|+\sum_{r=1}^{k-1} \frac{1}{\sqrt{n}} \sup _{j \geq n}\left|U_{j}^{(r)}-\theta\right|\right\} . \tag{3.7}
\end{equation*}
$$

By the same reason stated with respect to (3.6), for $\forall \varepsilon>0$ we have

$$
P\left(\frac{1}{\sqrt{n}} \sup _{j \geq n}\left|U_{j}-\theta\right|>\varepsilon\right) \leq \frac{1}{\varepsilon \sqrt{n}} E\left|U_{n}-\theta\right|
$$

which converges to zero as $n \rightarrow \infty$. Thus $\sup _{j \geq n}\left|U_{j}-\theta\right| / \sqrt{n}$ converges to zero in probability as $n \rightarrow \infty$. Similarly for $r=1, \ldots, k-1, \sup _{j \geq n}\left|U_{j}^{(r)}-\theta\right| / \sqrt{n}$ converges to zero in probability as $n \rightarrow \infty$ by the assumption. Hence by (3.7), $\sup _{0 \leq t \leq 1}\left|\zeta_{n}(t)-\nu_{n}(t)\right|$ converges to zero in probability as $n \rightarrow \infty$. This fact and Lemma 2.5 give the weak convergence of $\left\{\zeta_{n}(t): 0 \leq t \leq 1\right\}$.

References

[1] Borovskikh, Yu.V. (1996). U-statistics in Banach spaces. VSP, Utrecht.
[2] Denker, M. (1985). Asymptotic Distribution Theory in Nonparametric Statistics. Friedr. Vieweg \& Sohn, Wiesbaden.
[3] Koroljuk, V.S. and Borovskich, Yu.V. (1994). Theory of U-statistics. Kluwer Academic Publishers, Dordrecht.
[4] Lee, A. J. (1990). U-statistics. Marcel Dekker, New York.
[5] Miller, R.G. and Sen, P.K. (1972). Weak convergence of U-statistics and von Mises differentiable statistical functions. Ann. Math. Statist. 43, 31-41.
[6] Sen, P.K. (1974). Almost sure behaviour of U-statistics and von Mises differentiable statistical functions. Ann. Statist. 2, 387-395.
[7] Toda, K. and Yamato, H. (2001). Berry-Esseen bounds for a class of statistics including LBstatistic and V-statistic. J. Japan Statis.Soc. (To appear.)
Department of Mathematics and Computer Science, Kagoshima University, Kagoshima 890-0065, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 62E20, 60F17; Secondary 62G99.
 Key words and phrases. Estimable parameter, functional limit theorem, V-statistics, LB-statistic.

