NORM EQUALITY CONDITION IN TRIANGULAR INEQUALITY

RITSUO NAKAMOTO AND SIN-EI TAKAHASI

Received August 2, 2001

Abstract

We characterize when the norm of the sum of elements in a Banach space is equal to the sum of their norms and give its applications to unital Banach algebras. Related to a recent result due to Barraa and Boumazgour, we give another equivalent condition of it in terms of linear functional on a unital C^{*}-algebra. Consequently, we have the following result.

For elements a and b in a unital C^{*}-algebra, the following statements are mutually equivalent: (i) $\|a+b\|=\|a\|+\|b\|$. (ii) There exists a norm one linear functional f such that $f(a)=\|a\|$ and $f(b)=\|b\|$. (iii) There exists a state f such that $f\left(a^{*} b\right)=\|a\|\|b\|$.

1. Introduction

In normed linear spaces, the most fundamental inequality is the triangular inequality, that is, for elements x, y in normed space,

$$
\begin{equation*}
\|x+y\| \leq\|x\|+\|y\| \tag{1}
\end{equation*}
$$

It is a problem when the equality in (1) holds. In the inner product spaces, it is well known that the equality holds if and only if $x=\lambda y$ or $y=\lambda x$ for some constant $\lambda \geq 0$.

For bounded linear operators A and B on a Banach space, many authors studied the equation

$$
\begin{equation*}
\|A+B\|=\|A\|+\|B\|, \tag{2}
\end{equation*}
$$

see [1], [9] and the references cited therein.
In [1], for a bounded linear operator T on a uniformly convex Banach space, it is shown that the Daugavet equation $\|1+T\|=1+\|T\|$ holds if and only if its norm $\|T\|$ is an approximate proper value of T.

Recently, for bounded linear operators A and B on a Hilbert space, Barraa and Boumazgour [2] proved (2) holds if and only if

$$
\begin{equation*}
\|A\|\|B\| \in \overline{W\left(A^{*} B\right)} \tag{3}
\end{equation*}
$$

where $\overline{W(T)}$ denotes the closure of the numerical range $W(T)$ of an operator T.
We note that the condition (3) is equivalent to the existence of a normalized positive linear functional (i.e. state) f on the algebra of all bounded linear operators such that $f\left(A^{*} B\right)=\|A\|\|B\|$ (see [3]).

In this note, we give a necessary and sufficient condition to hold that the norm of the sum of elements in a Banach space is equal to the sum of their norms and its applications. Related to a recent result due to Barraa and Boumazgour, we give another equivalent condition of it in terms of linear functional on a unital C^{*}-algebra. Consequently, for elements a and b in a

[^0]unital C^{*}-algebra, the following statements are mutually equivalent: (i) $\|a+b\|=\|a\|+\|b\|$. (ii) There exists a norm one linear functional f such that $f(a)=\|a\|$ and $f(b)=\|b\|$. (iii) There exists a state f such that $f\left(a^{*} b\right)=\|a\|\|b\|$.

2. Results.

From the operator theoretic viewpoint, the above result of Barraa and Boumazgour is very interesting. We give its C^{*}-algebraic version, which is essentially same as their result:

Theorem 1. Let \mathcal{A} be a unital C^{*}-algebra. Then for $a, b \in \mathcal{A},\|a+b\|=\|a\|+\|b\|$ holds if and only if there exists a state f on \mathcal{A} such that $f\left(a^{*} b\right)=\|a\|\|b\|$, or equivalently, $\|a\|\|b\| \in \overline{W\left(a^{*} b\right)}$ where $\overline{W(c)}=\{f(c) ; f:$ state on $\mathcal{A}\}$ for $c \in \mathcal{A}$.
For the completeness, we shall give a proof.
If $\|a+b\|=\|a\|+\|b\|$ is satisfied, then there exists a state f on \mathcal{A} such that

$$
f\left((a+b)^{*}(a+b)\right)=\|a+b\|^{2}=(\|a\|+\|b\|)^{2}
$$

as $(a+b)^{*}(a+b) \geq 0$. Since $f\left(a^{*} a\right) \leq\|a\|^{2}, f\left(b^{*} b\right) \leq\|b\|^{2}$ and $f\left(a^{*} b+b^{*} a\right) \leq 2\|a\|\|b\|$, it follows that $f\left(a^{*} a\right)=\|a\|^{2}, f\left(b^{*} b\right)=\|b\|^{2}$ and $f\left(a^{*} b+b^{*} a\right)=2\|a\|\|b\|$. Furthermore, as $\left|f\left(a^{*} b\right)\right| \leq\|a\|\|b\|$, we have $f\left(a^{*} b\right)=f\left(b^{*} a\right)=\|a\|\|\mid b\|$.

Conversely, if there exists a state f with $f\left(a^{*} b\right)=\|a\|\|b\|$, then it is easy to see that $f\left(a^{*} a\right)=\|a\|^{2}$ and $f\left(b^{*} b\right)=\|b\|^{2}$ by the Cauchy-Schwarz inequality. Hence we have

$$
\begin{aligned}
f\left((a+b)^{*}(a+b)\right) & =f\left(a^{*} a\right)+f\left(a^{*} b\right)+f\left(b^{*} a\right)+f\left(b^{*} b\right) \\
& =\|a\|^{2}+2\|a\|\|b\|+\|b\|^{2} \\
& =(\|a\|+\|b\|)^{2} \\
& \geq\|a+b\|^{2} .
\end{aligned}
$$

Remark 1. For a bounded linear operator T on a Hilbert space, a complex number λ ia called a normal approximate propervalue of T if there exists a sequence of unit vectors x_{n} such that $\lim _{n \rightarrow \infty}\left\|(T-\lambda) x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|(T-\lambda)^{*} x_{n}\right\|=0$ ([8]). It is known that $\|T\| \in \overline{W(T)}$ if and only if $\|T\|$ is a normal approximate proper value of T (see $[7,6]$). Therefore, for bounded linear operators A and $B,\|A+B\|=\|A\|+\|B\|$ if and only if $\|A\|\|B\|$ is a normal approximate propervalue of $A^{*} B$, or equivalently, there exists a character χ (on the unital C^{*}-algebra generated by $A^{*} B$) with $\chi\left(A^{*} B\right)=\|A\|\|B\|([8])$.

In Banach space setting, we have
Theorem 2. Let X be a Banach space and X^{*} its dual space. Let x_{1}, \cdots, x_{n} be nonzero elements in X. Then $\left\|x_{1}+\cdots+x_{n}\right\|=\left\|x_{1}\right\|+\cdots+\left\|x_{n}\right\|$ if and only if there exists an extreme point f in the closed unit ball X_{1}^{*} of X^{*} such that $f\left(x_{i}\right)=\left\|x_{i}\right\| \quad(i=1, \cdots, n)$.

Proof. Suppose that $\left\|x_{1}+\cdots+x_{n}\right\|=\left\|x_{1}\right\|+\cdots+\left\|x_{n}\right\|$ and let $\lambda_{i}=\left\|x_{i}\right\|, u_{i}=$ $x_{i} / \lambda_{i} \quad(i=1, \cdots, n)$. Then, by the Hahn-Banach extension theorem, we can choose a norm one functional g in X^{*} with $g\left(x_{1}+\cdots+x_{n}\right)=\lambda_{1}+\cdots+\lambda_{n}$, so that

$$
\frac{\lambda_{1}}{\lambda_{1}+\cdots+\lambda_{n}} g\left(u_{1}\right)+\cdots+\frac{\lambda_{n}}{\lambda_{1}+\cdots+\lambda_{n}} g\left(u_{n}\right)=1 .
$$

Since each $g\left(u_{i}\right)$ is a modulus one complex number, it follows that $g\left(u_{i}\right)=1$ and hence $g\left(x_{i}\right)=\left\|x_{i}\right\| \quad(i=1, \cdots, n)$. Now set

$$
F=\left\{h \in X^{*}:\|h\| \leq 1, h\left(x_{i}\right)=\left\|x_{i}\right\| \quad(i=1, \cdots, n)\right\} .
$$

Then F is a non-empty weak ${ }^{*}$-compact subset of X^{*} from the above argument and hence we can choose an extreme point f of F by the Krein-Milman theorem. We show that f is also an extreme point in the closed unit ball of X^{*}. To do this, let f_{1} and f_{2} be two elements of the closed unit ball of X^{*} such that $f=\frac{f_{1}+f_{2}}{2}$. Then $f_{1}\left(x_{i}\right) \leq\left\|x_{i}\right\|, f_{2}\left(x_{i}\right) \leq\left\|x_{i}\right\|$ and $\frac{f_{1}\left(x_{i}\right)+f_{2}\left(x_{i}\right)}{2}=\left\|x_{i}\right\|$ for $i=1, \cdots, n$. Therefore we have $f_{1}\left(x_{i}\right)=f_{2}\left(x_{i}\right)=\left\|x_{i}\right\| \quad(i=$ $1, \cdots, n)$ and hence $f_{1}, f_{2} \in F$, so that $f=f_{1}=f_{2}$.

The converse is straightforward.
Remark 2. In Theorem 2, it is easy to see that $\left\|x_{1}+\cdots+x_{n}\right\|=\left\|x_{1}\right\|+\cdots+\left\|x_{n}\right\|$ if and only if there exists an element $f \in X_{1}^{*}$ such that $f\left(x_{i}\right)=\left\|x_{i}\right\| \quad(i=1, \cdots, n)$.

Recall that the numerical range $V(a)$ of an element a in a unital Banach algebra \mathcal{A} is defined as follows [4]:

$$
V(a)=\left\{f(a) ; f(1)=1, f \in \mathcal{A}_{1}^{*}\right\}
$$

As a result of Theorem 2,
Corollary 1. For an element a in a unital Banach algebra, $\|1+a\|=1+\|a\|$ holds if and only if $\|a\|$ belongs to the numerical range $V(a)$.

Proof. By using Theorem 2, for a in a unital Banach algebra, $\|1+a\|=1+\|a\|$ holds if and only if there exists a norm one linear functional f such that $f(1)=1$ and $f(a)=\|a\|$, that is, $\|a\| \in V(a)$.

Remark 3. In a C^{*}-algebra, if $\|1+a\|=1+\|a\|$ is satisfied, then we can choose a norm one self-adjoint linear functional f such that $f(1)=1$ and $f(a)=\|a\|$. As $f(1)=\|f\|=1$, f itself is a positive linear functional, that is, f is a state.

Here we notice that if a bounded linear operator A on a Hilbert space satisfies $\| 1+$ $A\|=1+\| A \|$, then A is a normaloid operator (i.e. $\|A\|$ is equal to the spectral radius of A). However the converse does not necessarily hold as easily seen by the example $A=$ $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \oplus i$.

A bridge between Theorem 1 and Theorem 2 is the following.
Theorem 3. Let \mathcal{A} be a unital C^{*}-algebra. The the following statements are equivalent:
(i) For $a, b \in \mathcal{A}$, there exists a norm one linear functional f such that $f(a)=\|a\|$ and $f(b)=\|b\|$.
(ii) For $a, b \in \mathcal{A}$, there exists a state f such that $f\left(a^{*} b\right)=\|a\|\|b\|$.

Proof. (i) \Rightarrow (ii). Let f be a norm one linear functional on A such that $f(a)=\|a\|$ and $f(b)=\|b\|$, and $f=u \cdot g$ be the enveloping polar decomposition of f where u is a partial isometry and g is a state (see [5]). If $f(a)=\|a\|$ and $f(b)=\|b\|$, then we have $g\left(a^{*} a\right)=\|a\|^{2}$ and $g\left(b^{*} b\right)=\|b\|^{2}$, because

$$
\|a\|^{2}=g(u a)^{2} \leq g\left(a^{*} u^{*} u a\right) \leq g\left(a^{*} a\right) \leq\|a\|^{2}
$$

Also, we have

$$
\begin{aligned}
(\|a\|+\|b\|)^{2} & =g(u a+u b)^{2} \leq g\left((a+b)^{*} u^{*} u(a+b)\right) \\
& \leq g\left((a+b)^{*}(a+b)\right) \leq\|a+b\|^{2}
\end{aligned}
$$

Hence it follows that $g\left(a^{*} b+b^{*} a\right)=2\|a\|\|b\|$, and so, $g\left(a^{*} b\right)=\|a\|\|b\|$.
(ii) \Rightarrow (i). Let $g(x)=\frac{1}{\|a\|} f\left(a^{*} x\right)$ for $x \in \mathcal{A}$. Then it is easy to see that g is a norm one linear functional with $g(a)=\|a\|$ and $g(b)=\|b\|$.

References

[1] Y.A.Abranovich, C.D.Aliprantis and O.Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Func. Anal, 97 (1991), 215-230.
[2] M.Barraa and M.Boumazgour, Inner derivations and norm equality, to appear in Proc. Amer Math. Soc., (Article electronically published on May 25, 2001).
[3] S.K.Bernerian and G.H.Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc., 18(1967), 499-503.
[4] F.F.Bonsall and J.Duncan, Complete normed algebras, Springer-Verlag, 1973.
[5] J.Dixmier, C^{*}-algebras, North-Holland Publishing Company, 1977.
[6] M.Fujii and R.Nakamoto, On normal approximate spectrum. II, Proc. Japan Acad., 48(1972), 297301.
[7] S.Hildebrandt, Über den numerische Wertebereich eines Operators, Math. Ann., 163(1966), 230-247.
[8] I.Kasahara and H.Takai, Approximate propervalues and characters of C^{*}-algebra, Proc. Japan Acad., 48(1972), 91-93.
[9] C.S.Lin, Generalized Daugavet equations and invertible operators on uniformly convex Banach spaces, J. Math. Anal. and Appl., 197(1996), 518-528.

Faculty of Engineering, Ibaraki University, Nakanarusawa, Hitachi, Ibaraki 316-0033, Japan. E-mail address: nakamoto@@base.ibaraki.ac.jp

Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan.

[^0]: 2000 Mathematics Subject Classification. 46B99, 47A10, 47A12, 47A30.
 Key words and phrases, triangular inequality, Banach space, norm, C^{*}-algebra, numerical range, state.

