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Abstract. In contrast with Noether theorem, we built up a new operative procedure

for the derivation of conservation laws. The purpose of this paper is to give further

generalization of discovering conservation laws for the maximizing problem under con-

straints given by a system of functions with arbitrary degree of homogeneity. An

illustration is made in the generalized growth model of von Neumann type.

Introduction. Noether theorem (Noether [11]) concerning with symmetries of the

action integral or its generalization (Bessel-Hagan [1]) with those up to divergence plays

an e�ective role for discovering conservation laws from the Lagrangian or the Hamiltonian

structures of considering problem. In contrast with Noether theorem, we built up a new

operative procedure for the derivation of conservation laws (Mimura and Nôno [6]) without

using either Lagrangian or Hamiltonian structures. It was discussed �rst for a system of

second-order di�erential equations and then the system was supposed to be given in the

form of the Euler-Lagrange equations with some Lagrangian. The results were applied to

various economic growth models (Mimura and Nôno [7]; Mimura, Fujiwara and Nôno [8], [9];

Fujiwara, Mimura and Nôno [2]-[5]) to discover new economic conservation laws including

non-Noether ones.

Particularly in [7], there was discussed the optimal control problem to maximize an

integration over a �nite (0 < T <1) or an in�nite (T =1) period of time:

(1)

Z T

0

e
��t

U( _q; q)dt;

under constraint F ( _q; q) = 0 given by a �rst degree homogeneous function F ( _q; q) with

respect to q and _q, where q = (qi(t)); _q = (dqi=dt) (i = 1; � � � ; n) and � is a constant.

Neamt�u [10] reformed some results for costructing conserved quantities in [7] by replacing

F ( _q; q) = 0 with F a( _q; q) = 0 (a = 1; :::;m), where F a( _q; q) are �rst degree homogeneous

functions.

The purpose of this paper is to give further generalization of discovering conservation

laws for the maximizing problem of (1) under constraint given by a system of functions with

arbitrary degree of homogeneity:

(2) F
a( _q; q) = 0 (a = 1; :::;m):

Here recall that von Neumann [14] gave an analysis of a model which has a unique ray of

balanced growth. Samuelson [12] generalized the analysis by studying transient approaches
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to the von Neumann balanced-growth ray, which was given now as the maximizing problem

of the integration Z T

0

_K1
dt

under constraint F ( _K; K) = 0 given by a �rst degree homogeneous function F ( _K; K),

where K = (Ki(t)) and _K = ( _Ki) = (dKi=dt) (i = 1; � � � ; n) are understood respectively

as the n capital goods and the n capital formations. This is the model called von Neumann

growth model, which grew up in [7] to be the generalized growth model of von Neumann

type by replacing the integrating function _K1 with the total time derivative of �rst degree

homogeneous function G(K) with respect to Ki, while the constraint F ( _K; K) = 0 is

unchanged.

In the application of this paper, the model of von Neumann type in [7] is generalized

moreover with respect to the constraint by replacing the �rst degree homogeneous function

with a system of arbitrary degree homogeneus functions. In his model (n = 2: i = 1; 2),

Samuelson [13] derived two conserved quantities, which conclude that the ratio of the na-

tional income and the national wealth is constant (income-wealth conservation law). In our

generalized model, together with � = 0 and n = 2, the system of functions with arbitrary

degree of homogeneity are reduced later to a homogeneous second order polynomial. Two

conserved quantites are derived and then, by using of which, a class of optimal paths for

the �nite horizon are determined in the reduced situation. Finally, in view of the optimal

paths, it is detailed the Samuelson's income-wealth conservation law in our model.

For convenience, di�erentiability is assumed to be of suÆciently high order and the

summation convention is employed throughout.

1. Maximizing problem for optimal economic growths. Our discussion begins

with an optimal control problem to maximize the integration (1) over a �nite or an in�-

nite period of time under the constraint (2) given by a system of functions F a( _q; q) (a =

1; � � � ; m) with arbitrary degree of homogeneity with respect to q and _q. In the variational

principle with the multiplier technique, we set the following Lagrangian as usual

(3) L( _�; _q; �; q; t) = e
��t

U( _q; q) + �aF
a( _q; q):

Here put �a = qn+a and arrange the variables qi and �a as (q
�) = (q1; � � � ; qn; �1; � � � ; �m).

Then, according to n+1 � � � n+m and 1 � � � n, the Euler-Lagrange equations of (3):

(4)
d

dt

�
@L

@ _q�

�
� @L

@q�
= 0

separate into F a = 0 (a = 1; � � � ; m) and

(5)
d

dt

�
@L

@ _qi

�
� @L

@qi
= 0 :

d

dt

�
e
��t @U

@ _qi
+ �a

@F a

@ _qi

�
= e

��t @U

@qi
+ �a

@F a

@qi
:

A conserved quantity (�rst integral) in question is a quantity 
( _�; _q; �; q; t) satisfying

d
=dt = 0 (conservation law) on the optimal paths, i.e., on solutions to (4), or equivalently

to F a = 0 and (5). The theorem 6 in [6] is reformulated as follows ([10], Theorem 4; cf. [7],

Theorem 1).
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Theorem 1. For the Lagrangian (3); let (�i1; �
1
a) = (�i1(

_�; _q; �; q; t); �1a(
_�; _q; �; q; t)) and

(�i2; �
2
a) = (�i2(

_�; _q; �; q; t); �2a(
_�; _q; �; q; t)) satisfy the equations

(6)
@F a

@ _qi
d�i

dt
+
@F a

@qi
�
i = 0;

(7)
d

dt

�
@2L

@ _qi@ _qj
d�j

dt
+

@2L

@ _qi@qj
�
j +

@F a

@ _qi
�a

�
�
�

@2L

@ _qj@qi
d�j

dt
+

@2L

@qi@qj
�
j +

@F a

@qi
�a

�
= 0;

on the optimal paths for the maximizing problem of (1) under the constraints (2): Then the

following conserved quatity 
 for the problem is constructed from (�i1; �
1
a) and (�i2; �

2
a):

(8) 
 =
@2L

@ _qi@ _qj

 
�
i
1

d�
j
2

dt
� �

j
2

d�i1

dt

!
+

@2L

@ _qi@qj
(�i1�

j
2 � �

i
2�

j
1) +

@F a

@ _qi
(�i1�

2
a � �

i
2�

1
a):

In terms of (�i; �a) = ( _qi; _�a + ��a) satisfying (6) and (7), the theorem 7 in [6] is also

reformulated as follows ([10], Theorem 5; cf. [7], Theorem 2).

Theorem 2. For the Lagrangian (3); let (�i; �a) = (�i( _�; _q; �; q; t); �a( _�; _q; �; q; t)) sat-

isfy the equations (6) and (7) on the optimal paths for the maximizing problem of (1) under

the constraints (2): Then the following conserved quantity 
 for the problem is constructed

from (�i; �a):

(9) 
 = _qi
�

@2L

@ _qi@ _qj
d�j

dt
+

@2L

@ _qi@qj
�
j +

@F a

@ _qi
�a

�
�
�
@L

@qi
+ �

@L

@ _qi

�
�
i
:

Here we impose an arbitrary degree s of homogeneity on the system of functions F a( _q; q) (a =

1; � � � ; m) with respect to _qj and qj , i.e.,

(10) _qj
@F a

@ _qj
+ q

j @F
a

@qj
= sF

a
;

which guarantee that �i = qi satisfy the equation (6) whenever F a = 0. So, together with

�i = qi, the Lagrangian (3) is substituted for the equation (7). Then, by the di�erentiations

of (10) with respect to _qi and qi:

(11)

_qj
@2F a

@ _qi@ _qj
+ q

j @
2F a

@ _qi@qj
= (s � 1)

@F a

@ _qi
;

_qj
@2F a

@ _qj@qi
+ q

j @
2F a

@qi@qj
= (s � 1)

@F a

@qi
;

the equations (7) are reduced to

d

dt

�
e
��t
�
_qj

@2U

@ _qi@ _qj
+ q

j @2U

@ _qi@qj

�
+ ((s� 1)�a + �a)

@F a

@ _qi

�

�
�
e
��t
�
_qj

@2U

@ _qj@qi
+ q

j @2U

@qi@qj

�
+ ((s � 1)�a + �a)

@F a

@qi

�
= 0:

Here assume also that U( _q; q) is r-th degree homogeneous with respect to _qj and qj , i.e.,

(12) _qj
@U

@ _qj
+ q

j @U

@qj
= rU;



374 FUMIYO FUJIWARA, FUMITAKE MIMURA AND TAKAYUKI NÔNO

and put �a = (r � s)�a: Then, by the relations from (5):

d

dt

�
�a

@F a

@ _qi

�
� �a

@F a

@qi
= � d

dt

�
e
��t @U

@ _qi

�
+ e

��t @U

@qi
;

the equations (7) lead �nally to

d

dt

�
e
��t

�
_qj

@2U

@ _qi@ _qj
+ q

j @2U

@ _qi@qj
� (r � 1)

@U

@ _qi

��

�e��t
�
_qj

@2U

@ _qj@qi
+ q

j @2U

@qi@qj
� (r � 1)

@U

@qi

�
= 0;

which are satis�ed identically by virtue of the following di�erentiations of (12) with respect

to _qi and qi:

(13)

_qj
@2U

@ _qi@ _qj
+ q

j @2U

@ _qi@qj
= (r � 1)

@U

@ _qi
;

_qj
@2U

@ _qj@qi
+ q

j @2U

@qi@qj
= (r � 1)

@U

@qi
:

Therefore (�i; �a) = (qi; (r� s)�a) satis�es (6) and (7) on the optimal paths. The solution

is substituted for (9) to obtain the conserved quantity


 = _qi
�
_qj

@2L

@ _qi@ _qj
+ q

j @2L

@ _qi@qj
+ (r � s)�a

@F a

@ _qi

�
� q

i

�
@L

@qi
+ �

@L

@ _qi

�

= _qi
�
_qj

@2L

@ _qi@ _qj
+ q

j @2L

@ _qi@qj

�
� e

��t
q
i @U

@qi
� �q

i @L

@ _qi
+ (r � s)�a _q

i @F
a

@ _qi
� �aq

i @F
a

@qi
:

Since by (11), (12) and (13):

_qi
�
_qj

@2L

@ _qi@ _qj
+ q

j @2L

@ _qi@qj

�
� e

��t
q
i @U

@qi
= (r � 1)e��t _qi

@U

@ _qi
� e

��t
q
i @U

@qi
+ (s � 1)�a _q

i @F
a

@ _qi

= re
��t

�
_qi
@U

@ _qi
� U

�
+ (s � 1)�a _q

i @F
a

@ _qi
;


 is written as


 = re
��t

�
_qi
@U

@ _qi
� U

�
� �q

i @L

@ _qi
+ (r � 1)�a _q

i @F
a

@ _qi
� �aq

i @F
a

@qi
;

and since by (10):

(r � 1)�a _q
i @F

a

@ _qi
� �aq

i @F
a

@qi
= �r�aqi

@F a

@qi
+ (r � 1)s�aF

a
;


 is written �nally as


 = r

�
��aqi

@F a

@qi
+ e

��t
�
_qi
@U

@ _qi
� U

��
� �q

i

�
�a

@F a

@ _qi
+ e

��t @U

@ _qi

�
+ (r � 1)s�aF

a
:

Thus, including the result ([10], Theorem 6), the theorem 3 in [7] is generalized as follows.
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Theorem 3. Let the functions U( _q; q) in (1) and F a( _q; q) in (2) be r-th and s-th degree

homogeneous with respect to _qi and qi; respectively: Then; there exists the following conserved

quantity 
 for the maximizing problem of (1) under the constraints (2):

(14) 
 = r

�
��aqi

@F a

@qi
+ e

��t
�
_qi
@U

@ _qi
� U

��
� �q

i

�
�a

@F a

@ _qi
+ e

��t @U

@ _qi

�
:

We consider now a function '( _q; q) which can separate the conserved quantity (14) into

two conserved ones

(15) 
1 = �aq
i @F

a

@qi
� e

��t
�
_qi
@U

@ _qi
� U

�
+ �';

(16) 
2 = q
i

�
�a

@F a

@ _qi
+ e

��t @U

@ _qi

�
� r';

i.e., a function '( _q; q) satisfying d
1=dt = 0 and d
2=dt = 0, where �
 = r
1 + �
2. In

d
1=dt, it follows the identity

d

dt

�
e
��t _qi

@U

@ _qi
� e

��t
U

�
= _qi

d

dt

�
e
��t @U

@ _qi

�
� e

��t _qi
@U

@qi
+ �e

��t
U;

and, by (10), the identity

d

dt

�
�aq

i @F
a

@qi

�
=

d

dt

�
��a _qi

@F a

@ _qi
+ s�aF

a

�

= � _qi
d

dt

�
�a

@F a

@ _qi

�
+ (s � 1)�a�q

i @F
a

@ _qi
+ s�a _q

i @F
a

@qi
+ s _�aF

a
:

So, in view of (3), d
1=dt leads to

d
1

dt
= �

�
d'

dt
� e

��t
U

�
� _qi

�
d

dt

�
@L

@ _qi

�
� @L

@qi

�
+ s _�aF

a
:

also, in view of (10) and (12), d
2=dt leads to

d
2

dt
= �r

�
d'

dt
� e

��t
U

�
+ q

i

�
d

dt

�
@L

@ _qi

�
� @L

@qi

�
+ s�aF

a
:

Therefore 
1 and 
2 become conserved quantities if ' satis�es d'=dt = e��tU , i.e.,

' =

Z
e
��t

Udt;

which is substituted for (15) and (16) to deduce:

Theorem 4. Let the functions U( _q; q) in (1) and F ( _q; q) in (2) be r-th and s-th degree

homogeneous with respect to _qi and qi; respectively: Then; there exist the following two

conserved quantities 
1 and 
2 for the maximizing problem of (1) under the constraints

(2):

(17) 
1 = �aq
i @F

a

@qi
� e

��t
�
_qi
@U

@ _qi
�U

�
+ �

Z
e
��t

Udt;
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(18) 
2 = q
i

�
�a

@F a

@ _qi
+ e

��t @U

@ _qi

�
� r

Z
e
��t

Udt:

2. Reformation of the maximizing problem. Here assume that U in (1) is a

function of q = (qi) which is a collection of state variables x = (x�) and control variables

u = (u�), i.e., (qi) = (x�; u�) (� = 1; � � � ; k; � = 1; � � � ; `; k + ` = n); and F a (a =

1; � � � ; m) is the following system of �rst degree homogeneous functions:8<
:

F
a = _qa � f

a(q) if 1 � a � k;

F
a = 0 if k + 1 � a � k + `:

Then the maximizing problem turns into that of an integration over a �nite (0 < T <1)

or an in�nite (T =1) period of time:

(1)0
Z T

0

e
��t

U(x; u)dt;

under constraints

(2)0 _x� = f
�(x; u);

where f�(x; u) (� = 1; � � � ; k) is a system of �rst degree homogeneous functions. Moreover,

the Lagrangian L of (3) takes the form

(3)0 L = e
��t

U + ��( _x
� � f

�);

whose Euler-Lagrange equations consist of (2)0 and

(5a)0
d

dt

�
@L

@ _x�

�
� @L

@x�
= 0 : e

��t @U

@x�
= _�� +

@f�

@x�
��;

(5b)0
d

dt

�
@L

@ _u�

�
� @L

@u�
= 0 : e

��t @U

@u�
=

@f�

@u�
��:

In the setting, the conserved quantity 
 of (14) leads to

(14)0

 = r

�
��

�
x
� @f

�

@x�
+ u

� @f
�

@u�

�
� e

��t
U

�
� ���x

�

= r
�
��f

� � e
��t

U
�
� ���x

�
:

The equations (5a)0 and (5b)0 are used to see

re
��t

U = re
��t

�
x
� @U

@x�
+ u

� @U

@u�

�
= _��x

� + ��

�
x
� @f

�

@x�
+ u

� @f
�

@u�

�

= _��x
� + ��f

�;

which is, together with (2)0, carried into (14)0 to have the same appearance of the conserved

quantity obtained in ([2], Theorem 1.2; in which �� correspond here to �� in (14)00 below).
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Theorem 5. Let the functions U(x; u) in (1)0 and f�(x; u) in (2)0 be r-th and �rst

degree homogeneous with respect to x� and u�; respectively: Then there exists the following

conserved quantity 
 for the maximizing problem of (1)0 under the constraints (2)0:

(14)00 
 = (r � 1)�� _x
� � ( _�� + ���)x

�
:

3. An application to generalized growth model of von Neumann type. The

theorems established in the preceding sections can be applied e�ectively for the derivation

of new conservation laws in several economic growth models. Here is given an application

within the n capital goods qi = Ki and n capital formations _qi = _Ki. Accordingly in

the theorem 1 through the theorem 4, U( _K; K) and F a( _K; K) are regarded respectively

as an r-th degree homogeneous utility function and a system of s-th degree homogeneous

transformation functions with respect to _Ki and Ki, and � is a constant discount rate (see

[2]-[5] for the application of the theorem 5). In the situation, the conserved quantity (14)

leads immediately to

�
 = r

�
�aK

i @F
a

@Ki
� e

��t
�

_Ki @U

@ _Ki
� U

��
+ �K

i

�
�a

@F a

@ _Ki
+ e

��t @U

@ _Ki

�
:

Particularly for U = ci
_Ki (ci: const.; cf. [13], in which U is of the form U = _K1), this

quantity �
 is reduced to

�
 = �aK
i @F

a

@Ki
+ �K

i

�
�a

@F a

@ _Ki
+ cie

��t
�
:

Here we assume that U is a total time derivative of a �rst degree homogeneous function

G(K) with respect to Ki, i.e., U = _Ki@G=@Ki: Then U is �rst degree homogeneous with

respect to _Ki, i.e., _Ki@U=@ _Ki = U ; and is also of degree zero with respect to Ki, i.e.,

Ki@U=@Ki = 0: Accordingly it follows thatZ
e
��t

Udt =

Z
e
��t _Ki @U

@ _Ki
dt = e

��t
K

i @U

@ _Ki
�
Z

K
i d

dt

�
e
��t @U

@ _Ki

�
dt

= e
��t

K
i @U

@ _Ki
+ �

Z
e
��t

K
i @U

@ _Ki
dt�

Z
e
��t

K
i d

dt

�
@U

@ _Ki

�
dt

= e
��t

K
i @U

@ _Ki
+ �

Z
e
��t

K
i @U

@ _Ki
dt:

Therefore the conserved quantities (17) and (18) with �rst degree (r = 1) homogeneous

function U = _Ki@G(K)=@Ki have the appearances respectively in the following theorem.

Theorem 6. Let G = G(K) be �rst degree homogeneous function with respect to the n

capital goods Ki: Then for the maximizing problem of

(1)00
Z T

0

e
��t _Ki @G

@Ki
dt;

under constraints of s-th degree homogeneous transformation functions

(2)00 F
a( _K; K) = 0 (a = 1; :::;m);



378 FUMIYO FUJIWARA, FUMITAKE MIMURA AND TAKAYUKI NÔNO

there exist the following two conserved quantities 
1 and 
2:

(19) 
1 = �aK
i @F

a

@Ki
+ �

Z
e
��t

Udt;

(20) 
2 = �aK
i @F

a

@ _Ki
� �

Z
e
��t

K
i @U

@ _Ki
dt:

Remark 1. The conserved quantities (19) and (20) reduce respectively, if � = 0, to


1 = �aK
i@F a=@Ki and 
2 = �aK

i@F a=@ _Ki; and moreover, if n = 2; m = 1 and

s = 1, to the Samuelson's ones [13] 
1 = �Ki@F=@Ki and 
2 = �Ki@F=@ _Ki in which �,

Y � Ki@F=@Ki and W � �Ki@F=@ _Ki are regarded respectively as the implicit price, the

national income and the national wealth.

Remark 2. What is important and interesting in the above theorem is that the Samuel-

son's conservation laws 
1 = �Ki@F=@Ki and 
2 = �Ki@F=@ _Ki are valid for the utility of

the form U = dG=dt where G = G(K) is a �rst degree homogeneous function with respect

to Ki, and for the transformation function F ( _K; K) with arbitrary degree of homogeneity

with respect to Ki and _Ki (in [13], U = _K1 and F ( _K; K) is assumed to be of �rst degree

homogeneous function).

Remark 3. As seen before, (�i; �a) = (qi; (r � s)�a) is solutions satisfying (6) and (7) on

the optimal paths, which are written here respectively as (�i; �a) = (Ki; (1 � s)�a). And,

in view of the equations from (5) with U = _Ki@G(K)=@Ki and � = 0:

d

dt

�
�a

@F a

@ _Ki

�
� �a

@F a

@Ki
= 0;

we have immediately the other one (�i; �a) = (0; �a). The above conserved quantities �
1

of (19) or 
2 of (20) can be obtained also by substituting (�i; �a) = (Ki; (1� s)�a) for (9),

or (�i1; �
1
a) = (Ki; (1 � s)�a) and (�i2; �

2
a) = (0; �a) for (8), respectively.

In what follows, let 0 < T <1, � = 0, n = 2 and m = 1, and a transformation function

of two capital goods F = F ( _K1; _K2; K1; K2) be a homogeneous second order polynomial

of the form:

(2)000 F = a1( _K
1)2+a2( _K

2)2+�(a1(K
1)2+a2(K

2)2) (a1; a2; �: const.; a1a2 < 0; � 6= 0):

Then (19) and (20) lead respectively to the following conserved quantities �1 � 1
2

1=� and

�2 � 1
2

2:

�1 = �(a1(K
1)2 + a2(K

2)2);

�2 = �(a1K1
_K1 + a2K2

_K2):

So, in the identity
_�1 = _�(a1(K

1)2 + a2(K
2)2) + 2�2 = 0;

the following conserved quantity �3 is observed:

�3 = _�(a1(K
1)2 + a2(K

2)2):

Accordingly, since �3=�1 = _�=� = � (�: const.), � is determine as

� = Ce
�t (C: const.):
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Here note that the Lagrangian L in the consideration is of the form

L = _K1 @G

@K1
+ _K2 @G

@K2
+ �F;

where G = G(K1; K2) is �rst degree homogeneous function with respect to K1 and K2.

By substituting the path � = Ce�t for a part of relating Euler-Lagrange equations with the

Lagrangian L:

d

dt

�
�
@F

@ _Ki

�
� �

@F

@Ki
= 0 (i = 1; 2);

the following second order di�erential equations are obtained:

�Ki + � _Ki � �K
i = 0 (i = 1; 2);

whose subsidiary equation has two distinct real solutions �1
2
(� +

p
D) and �1

2
(� �

p
D)

if its discriminant D � �2 + 4� satis�es D > 0, or a coinside solution �1
2
� if D = 0,

or two complex solutions �1
2
� � 1

2
i
p
�D if D < 0, which are used respectively to denote

the solutions Ki. And then, together with � = Ce�t, the solutions Ki are substituted for

�1 = const. to complete the �nal appearances of Ki.

Theorem 7. In the maximizing problem of (1)00 (0 < T <1; � = 0); let G = G(K1; K2)

be �rst degree homogeneous function with respect to the two capital goods K1 and K2 and

the transformation function F be a homogeneous second order polynomial of the form (2)000:

Then the optimal paths � and Ki (i = 1; 2) are determined as � = Ce�t (C: const.) and as

follows according as D = �2 + 4� is positive; zero and negative:

(i) Ki = Aie�
1

2
(�+

p
D)t +Bie�

1

2
(��

p
D)t if D > 0;

(ii) Ki = e�
�

2
t(Ait +Bi) if D = 0;

(iii) Ki = e�
�

2
t
�
Ai cos 1

2

p
�D t +Bi sin 1

2

p
�D t

�
if D < 0;

where A1; B1 are arbitrary constants and A2 = �
p
�a1/a2A1; B2 = �

p
�a1/a2B1; in

the right hand sides of which; the signs � correspond respectively for (ii) and (iii).

The conserved quantity �1 is always zero (so that �2 is also) for the optimal paths

Ki (i = 1; 2) of (ii) and (iii) in the theorem 7; and also for those of (i) with the con-

stants A2 = �
p
�a1/a2A1 and B2 = �

p
�a1/a2B1 (the signs � correspond respec-

tively). But nonzero conserved quantity �1 6= 0 and also �2 6= 0 are given respectively as

�1 = 4a1CA
1B1 and ��2 = 2�a1CA

1B1 by the optimal path � = Ce�t (C: const., C 6= 0)

and the optimal paths Ki (i = 1; 2) of (i) in the theorem 7 with the constants A2 =

�
p
�a1/a2A1 6= 0 and B2 = �

p
�a1/a2B1 6= 0 (the signs � and � correspond respec-

tively). So that the constant of the income-wealth (output-capital) ratio (Samuelson [13])

is Y=W = ���1=�2 = 2�=�. Therefore, in view of � = _�=� = d(log �)=dt, it is concluded:

Theorem 8. Together with the optimal path � = Ce�t (C: const., C 6= 0), the only optimal

paths Ki (i = 1; 2) of (i) in the theorem 7 with the constants A2 = �
p
�a1/a2A1 6= 0 and

B2 = �
p
�a1/a2B1 6= 0 (the signs � and � correspond respectively) are provided with

nonzero conserved quantities ��1 = 4a1�CA
1B1 (product of the implicit price � and the

national income Y = Ki@F=@Ki) and ��2 = 2�a1CA
1B1 (product of the implicit price �
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and the national wealth W = �Ki@F=@ _Ki); which give the constant of the income-wealth

ratio Y=W = 2�=(d(log �)=dt):

fnational incomeg
fnational wealthg =

2�

frate of logarithm of implicit priceg = constant.
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[5] F. Fujiwara, F. Mimura and T. Nôno, Conservation laws and optimal paths in external two-
sector growth model, Economic theory, dynamics and markets (Essays in honor of R. Sato),

ed., T. Negishi, R. V. Ramachandran and K. Mino, Kluwer Academic Publishers, Boston,

(2001), 153-164.
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