ON AZUMAYA AUTOMORPHISM EXTENSIONS OF RINGS

George szeto and Lianyong xue

Received May 23, 2000

ABSTRACT. Let B be a ring with 1, G an automorphism group of B of order n for some integer n invertible in B, C the center of B, and B^G the set of elements in B fixed under each element in G. Then, B is called an Azumaya automorphism extension of B^G with automorphism group G if $B \cong B^G \otimes_{C^G} V_B(B^G)$ as Azumaya C^G -algebras under the multiplication map. Some characterizations of an Azumaya automorphism extension are given and its subextensions arising from subgroups of G are also investigated.

1. INTRODUCTION

Let B be a ring with 1, G an automorphism group of B of order n for some integer ninvertible in B, C the center of B, and B^G the set of elements in B fixed under each element in G. In [1], a class of Galois extensions called the Azumaya Galois extensions was studied as a generalization of the DeMeyer-Kanzaki Galois extensions ([2] and [6]) where B is called an Azumava Galois extension with Galois group G if B is a Galois extension with Galois group G over an Azumaya C^G -algebra B^G and B a DeMeyer-Kanzaki Galois extension of B^G with Galois group G if B is an Azumaya algebra over C which is a Galois algebra with Galois group induced by and isomorphic with G([2] and [6]). We note that an Azumaya Galois extension $B \cong B^{G} \otimes_{C^{G}} V_{B}(B^{G})$ as C^{G} -algebras when $C \subset B^{G}$ where B^{G} is an Azumaya C^{G} algebra and $V_B(B^G)$ is a central Galois algebra with Galois group induced by and isomorphic with G ([1], Theorem 1 and Theorem 2). Moreover, an Azumava Galois extension B is characterized in terms of the Azumaya skew group ring B * G over C^G ([1], Theorem 1). The purpose of the present paper is to study a class of rings B such that $B \cong B^G \otimes_{C^G} V_B(B^G)$ as Azumaya C^{G} -algebras under the multiplication map called an Azumaya automorphism extension of B^G with group G. Clearly, an Azumaya Galois extension B with $C \subset B^G$ is an Azumaya automorphism extension, but the converse is not true because $V_B(B^G)$ may not be a Galois algebra. We shall characterize an Azumaya automorphism extension in terms of the projective H-separable extension B over an Azumaya C^{G} -algebra B^{G} and the Azumaya C^{G} -algebra $\operatorname{Hom}_{B^{G}}(B, B)$ respectively. Moreover, we shall show some properties of the Azumaya automorphism extensions contained in B arising from subgroups of G. This work was done under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

2. DEFINITIONS AND NOTATIONS

Throughout, B will represent a ring with 1, G an automorphism group of B of order n for some integer n invertible in B, C the center of B, and B^G the set of elements in B fixed under each element in G.

²⁰⁰⁰ Mathematics Subject Classification. 16S35, 16W20.

Key words and phrases. Galois extensions, Separable extensions, Azumaya algebras, Azumaya Galois extensions, and Azumaya automorphism extensions.

Let A be a subring of a ring B with the same identity 1. $V_B(A)$ is the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m$ for some integer m} such that $\sum a_i b_i = 1$, and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. B is called a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. Such a set $\{a_i, b_i\}$ is called a G-Galois system for B. B is called an Azumaya Galois extension if B is a Galois extension with Galois group G over an Azumaya C^G -algebra B^G . We call B a DeMeyer-Kanzaki Galois extension of B^G with Galois group G if B is an Azumaya C-algebra and C is a Galois algebra with Galois group $G|_C \cong G$. A ring B is called an H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule, and B is called a Galois H-separable extension if it is a Galois extension of C. We call B an Azumaya automorphism extension of B^G with group G if B is a Galois extension of C. We call B an Azumaya automorphism extension of B^G with group G if B is called a central Azumaya C^G -algebra under the multiplication map, and in particular, B is called a central Azumaya automorphism extension of B^G if $B^G = C$.

3. THE AZUMAYA AUTOMORPHISM EXTENSIONS

In this section, we shall characterize an Azumaya automorphism extension in terms of the projective *H*-separable extension *B* over an Azumaya C^{G} -algebra B^{G} and the Azumaya C^{G} -algebra Hom_{*BG*}(*B*, *B*) respectively. We first give a lemma.

Lemma 3.1. Let B be a projective H-separable extension of B^G . Then $V_B(B^G)$ is a separable algebra over C and $C = C^G$.

Proof. Since *B* is a projective *H*-separable extension of B^G , *B* is finitely generated projective B^G -module. Since $|G|^{-1} \in B$, B^G is a direct summand of *B* as B^G -bimodule, and so *B* is a B^G -progenerator. Hence Hom_{BG}(*B*, *B*) is a separable extension of *B* ([9], Theorem 7-(3)). Therefore, $V_B(B^G)$ is separable over *C* ([9], Proposition 12-(1)). Moreover, since *B* is an *H*-separable extension of B^G and B^G is a direct summand of *B*, B^G satisfies the double centralizer property in *B* ([8], Proposition 1.2). Hence $C = V_B(B) \subset V_B(V_B(B^G)) = B^G$. Thus, $C = C^G$.

Theorem 3.2. The following statements are equivalent:

- (1) B is an Azumaya automorphism extension of B^G with group G.
- (2) B is a projective H-separable extension of B^G which is an Azumaya C^G -algebra.
- (3) B is a projective H-separable extension of B^G and $Hom_{B^G}(B, B)$ is an Azumaya C^G -algebra.

Proof. (1) \implies (2) Since *B* is an Azumaya automorphism extension of B^G with group G, B^G is an Azumaya C^G -algebra. Hence we only need to prove that *B* is a projective *H*-separable extension of B^G . Since *B* is an Azumaya C^G -algebra, *B* is a projective C^G -module. Also, B^G is a separable C^G -algebra, so *B* is a projective B^G -module ([3],

Proposition 2.3, page 48). But then B is an H-separable extension of B^G ([5], Lemma 1). Thus, B is a projective H-separable extension of B^G .

 $(2) \Longrightarrow (1)$ Since *B* is a separable extension of B^G which is a separable C^G -algebra, *B* is a separable C^G -algebra by the transitivity property of separable extensions. Since *B* is a projective *H*-separable extension of B^G , $C = C^G$ by Lemma 3.1, and so *B* is an Azumaya C^G -algebra. But, by hypothesis, B^G is an Azumaya C^G -algebra, so $B \cong B^G \otimes_{C^G} V_B(B^G)$ as Azumaya C^G -algebras by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57).

(2) \Longrightarrow (3) Since *B* is an Azumaya C^{G} -algebra, *B* is a C^{G} -progenerator ([3], Theorem 3.4, page 52). Therefore, $\operatorname{Hom}_{C^{G}}(B, B)$ is an Azumaya C^{G} -algebra ([3], Proposition 4.1, page 56). But, B^{G} is an Azumaya C^{G} -subalgebra of $\operatorname{Hom}_{C^{G}}(B, B)$, so $\operatorname{Hom}_{B^{G}}(B, B)$ ($= V_{\operatorname{Hom}_{C^{G}}(B,B)}(B^{G})$) is an Azumaya C^{G} -algebra by the commutator theorem for Azumaya algebras again.

(3) \Longrightarrow (2) Since *B* is a projective *H*-separable extension of B^G , $V_B(B^G)$ is separable over *C* and $C = C^G$ by Lemma 3.1. Moreover, since $\operatorname{Hom}_{B^G}(B, B)$ is an Azumaya C^G algebra and *B* is an *H*-separable extension of B^G , $\operatorname{Hom}_{B^G}(B, B) \cong B \otimes_{C^G} (V_B(B^G))^{\circ}$ ([9], the proof of Proposition 12). Hence *B* and $(V_B(B^G))^{\circ}$ are Azumaya C^G -algebras ([3], Theorem 4.4, page 58). Hence $V_B(V_B(B^G))$ is an Azumaya C^G -algebra. But, by the proof of Lemma 3.1, $B^G = V_B(V_B(B^G))$, so B^G is an Azumaya C^G -algebra.

We note that if B is an Azumaya Galois extension with Galois group G and $C \subset B^G$, then $B \cong B^G \otimes_{C^G} V_B(B^G)$ as Azumaya C^G -algebras where $V_B(B^G)$ is a central Galois algebra with Galois group induced by and isomorphic with G([1]), Theorem 1 and Theorem 2). Hence the order of the Galois group |G| is a unit in B([6]), Corollary 3).

4. THE AZUMAYA AUTOMORPHISM SUBEXTENSIONS

Let B be an Azumaya automorphism extension and a Galois extension of B^G with Galois group G. We shall show that any subgroup K of G induces an Azumaya automorphism subextension in B with group induced by K. Moreover, for any separable commutative subalgebra S of B, a sufficient condition is given for S such that $V_B(S)$ is an Azumaya automorphism subextension in B with group induced by a subgroup of G.

Theorem 4.1. Let B be an Azumaya automorphism extension and a Galois extension of B^G with Galois group G. Then, for any subgroup K of G, $B^K \cdot V_B(B^K)$ is an Azumaya automorphism extension of B^K with group K' induced by K.

Proof. Since B is a Galois extension of B^G with Galois group G, B is also a Galois extension of B^K with Galois group K. Hence B is a finitely generated and projective left (or right) B^K -module. Moreover, since $|G|^{-1} \in B$, $|K|^{-1} \in B$. This implies that B^K is a direct summand of B as a B^K -module. Thus, the separability of B over C^G implies that B^K is a separable algebra over C^G by the proof of Theorem 3.8 on page 55 in [3]. But then $V_B(B^K)$ is also separable over C^G and $V_B(V_B(B^K)) = B^K$ by the commutator theorem for Azumaya algebras. Therefore, B^K and $V_B(B^K)$ have the same center which is denoted by D. This implies that B^K and $V_B(B^K)$ are Azumaya D-algebras, and so $B^K \otimes_D V_B(B^K) \cong B^K \cdot V_B(B^K)$ by the multiplication map. Noting that $B^K \cdot V_B(B^K)$ is

invariant under K, we conclude that $B^K \cdot V_B(B^K)$ is an Azumaya automorphism extension of B^K with group K' induced by K.

By keeping the hypotheses of Theorem 4.1, next we give some equivalent conditions under which $B^K \cdot V_B(B^K)$ is a Galois extension of B^K with Galois group K' induced by K.

Theorem 4.2. Let B be an Azumaya automorphism extension and a Galois extension of B^{G} with Galois group G, and K a subgroup of G. Then, The following statements are equivalent:

- (1) $B^K \cdot V_B(B^K)$ is a Galois extension of B^K with Galois group K' induced by K.
- (2) $V_B(B_K^K)$ is a central Galois algebra with Galois group $\breve{K'}$ induced by K.
- $(3) V_B(B^K) = \bigoplus \sum_{h' \in K'} J_{h'} \text{ where } J_{h'} = \{b \in V_B(B^K) \mid bx = h(x)b \text{ for all} \\ x \in V_B(B^K)\}.$ $(4) B^I = B^K \cdot V_B(B^K) \text{ where } I = \{h \in K \mid h(d) = d \text{ for each } d \in V_B(B^K)\}.$

Proof. (1) \implies (2) By Theorem 4.1, $B^K \cdot V_B(B^K)$ is an Azumaya automorphism extension of B^K with group K' induced by K. Moreover, by hypothesis, $B^K \cdot V_B(B^K)$ is a Galois extension of B^K with Galois group K' induced by K, so $B^K \cdot V_B(B^K)$ is an Azumaya Galois extension of B^K with Galois group K' induced by K. Hence $V_B(B^K)(=V_A(A^{K'}))$ where $A = B^K \cdot V_B(B^K)$ is a central Galois algebra with Galois group K' ([1], Theorem 2).

 $(2) \Longrightarrow (1)$ Since $V_B(B^K)$ is a Galois extension with Galois group K' induced by K, $B^K \cdot V_B(B^K)$ is a Galois extension of B^K with the same Galois system.

 $(2) \iff (4)$ Since B is a Galois extension of B^G with Galois group G, B is also a Galois extension of B^K with Galois group K. Hence B is a finitely generated and projective left (or right) B^K -module. Moreover, B is an Azumava C^G -algebra, so B is an H-separable extension of B^K ([5], Theorem 1). But then B is an H-separable Galois extension of B^K with Galois group K. Thus, $(2) \iff (4)$ holds by Theorem 6-(3) in [10].

(2) \implies (3) Since $V_B(B^K)$ is a Galois algebra with Galois group K', $V_B(B^K) =$ $\oplus \sum_{h' \in K'} J_{h'}$ by ([6], Theorem 1).

(3) \implies (2) Since $B^K \cdot V_B(B^K)$ is an Azumaya automorphism extension of B^K with group K', B^K and $V_B(B^K)$ are Azumaya algebras over the same center D. Hence K' is a D-automorphism group of $V_B(B^K)$. Therefore, $J_{h'}J_{h'^{-1}} = D$ for each $h' \in K'$ ([7], Lemma 5). Thus, $V_B(B^K)$ is a central Galois algebra with Galois group K' ([4], Theorem 1).

Let B be an Azumaya automorphism extension and a Galois extension of B^G with Galois group G. By Theorem 4.1, for any subgroup K of G, $B^K \cdot V_B(B^K)$ is an Azumaya automorphism extension of B^K with group K' induced by K. We shall give more properties of the Azumaya automorphism subextensions arising from subgroups of G. We first claim that $V_B(B^K)$ is a central Azumaya automorphism extension with group K'.

Theorem 4.3. Let B be an Azumaya automorphism extension and a Galois extension of B^G with Galois group G and K a nontrivial subgroup of G. Then, $V_B(B^K)$ is a central Azumaya automorphism extension with group K'.

Next, we show a one-to-one correspondence relation between a class of subgroups of G and a class of Azumaya automorphism subextensions in B. We begin with two lemmas.

Lemma 4.4. Let B be an Azumaya automorphism extension and a Galois extension of B^G with Galois group G, K a nontrivial subgroup of G, and D the center of B^K . Then, $V_B(D) = B^K \cdot V_B(B^K)$.

Proof. By the proof of Theorem 4.1, B^K is a separable C^G -algebra, so D is a separable C^G -algebra ([3], Theorem 3.8, page 55). Therefore $V_B(D)$ is a separable C^G -algebra and $V_B(V_B(D)) = D$ by the commutator theorem for Azumaya algebras. This implies that $V_B(D)$ is an Azumaya D-algebra. But, by Theorem 4.1, $B^K \cdot V_B(B^K)$ is an Azumaya D-algebra, so $B^K \cdot V_B(B^K)$ is an Azumaya D-subalgebra of $V_B(D)$. Thus, $V_B(D) = (B^K \cdot V_B(B^K)) \cdot V_{V_B(D)}(B^K \cdot V_B(B^K))$ by the commutator theorem for Azumaya algebras again. Noting that $D \subset V_{V_B(D)}(B^K \cdot V_B(B^K)) \subset V_B(B^K \cdot V_B(B^K)) = V_{V_B(B^K)}(V_B(B^K)) = D$, we have $V_{V_B(D)}(B^K \cdot V_B(B^K)) = D$. Consequently, $V_B(D) = (B^K \cdot V_B(B^K)) \cdot D = B^K \cdot V_B(B^K)$.

Lemma 4.5. Assume that B is an Azumaya automorphism extension with group G. Let S be a commutative separable subalgebra of B over C^G and K a subgroup of G such that $S \subset B^K \subset V_B(S)$. If $V_B(S)$ is an Azumaya automorphism extension with group K' induced by K, then $V_B(S) = B^K \cdot V_B(B^K)$.

Proof. We first note that $V_B(S)$ is invariant under K. Next, since $V_B(S)$ is an Azumaya automorphism extension with group K' induced by K, $V_B(S) = (V_B(S))^K \cdot V_{V_B(S)}((V_B(S))^K)$. Moreover, since $B^K \subset V_B(S)$, $(V_B(S))^K = B^K$. But then $V_{V_B(S)}((V_B(S))^K) = V_{V_B(S)}(B^K) = V_B(B^K) \cap V_B(S) = V_B(B^K)$ for $S \subset B^K$ by the definition of K. Thus, $V_B(S) = B^K \cdot V_B(B^K)$.

Let K and L be subgroups of G. We define $K \sim L$ if $B^L \cdot V_B(B^L) = B^K \cdot V_B(B^K)$. We note that \sim is an equivalence relation on the class of subgroups of G, the equivalence class of K is denoted by $[K \sim]$, and $\mathcal{C} = \{[K \sim] | K < G\}$. Let $\mathcal{D} = \{A |$ there exists a commutative separable subalgebra S of B such that $A = V_B(S)$ is an Azumaya automorphism subextension in B with group K' induced by a subgroup K of G and $S \subset B^K \subset V_B(S)\}$.

Theorem 4.6. Assume that B is an Azumaya automorphism extension and a Galois extension of B^G with Galois group G. Let $f: \mathcal{C} \to \mathcal{D}$ by $f([K \sim]) = B^K \cdot V_B(B^K)$ for each $[K \sim] \in \mathcal{C}$. Then f is a bijection.

Proof. Clearly, f is well defined by Lemma 4.4, and an injection by the definition of \sim . Also, Lemma 4.5 implies that f is an surjection.

We conclude the present paper with two examples of Azumaya automorphism extensions with group G. One is a Galois extension with Galois group G and the other is not.

Example 1.

Let A = Q[i, j, k] be the quaternion algebra over the rational number $Q, B = M_2(A)$ the 2 × 2 matrix ring over A, and $G = \{1, g_i, g_j, g_k\}$ where $g_i\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} iai^{-1} & ibi^{-1} \\ ici^{-1} & idi^{-1} \end{pmatrix}, \quad g_j\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} jaj^{-1} & jbj^{-1} \\ jcj^{-1} & jdj^{-1} \end{pmatrix}, \text{ and}$ $g_k\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} kak^{-1} & kbk^{-1} \\ kck^{-1} & kdk^{-1} \end{pmatrix} \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in B. \text{ Then,}$ (1) The center of B is $C = \{ \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} | q \in Q \} \cong Q$, and $Q^G = Q$. (2) $B^G = M_2(Q)$, the 2 × 2 matrix ring over Q. Hence B^G is an Azumaya Q-algebra. (3) $V_B(B^G) = \{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a \in A \} \cong A$ which is a central Galois extension of Q with Galois group induced by and isomorphic with G with a Galois system: $\{\frac{1}{2}, \frac{1}{2}i, \frac{1}{2}j, \frac{1}{2}k\}$ $\begin{array}{l} \underbrace{\frac{1}{2}, -\frac{1}{2}i, -\frac{1}{2}j, -\frac{1}{2}k}_{(4)} \\ (4) B \cong B^G \otimes_Q V_B(B^G) \text{ as Azumaya } Q \text{-algebras under the multiplication map.} \end{array}$

(5) By (3), B is a Galois extension with Galois group G.

Example 2.

Let B, A, and Q be as given in Example 1 and G the group generated by g and $g_i \text{ where } g_i \begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} iai^{-1} & ibi^{-1} \\ ici^{-1} & idi^{-1} \end{pmatrix} \text{ and } g(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} \alpha(a) & \alpha(b) \\ \alpha(c) & \alpha(d) \end{pmatrix} \text{ for all } g(a) = \begin{pmatrix} a & b \\ a & c \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in B \text{ where } \alpha(q_1 + q_2i + q_3j + q_4k) = q_1 + q_2j + q_3k + q_4i \text{ for all } q_1 + q_2i + q_3j + q_4k \in A.$ Then,

- (1) It is straightforward to check that G has order 12.
- (2) The center of B is $C = \{ \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} | q \in Q \} \cong Q$, and $Q^G = Q$.
- (3) $B^G = M_2(Q)$, the 2 × 2 matrix ring over Q. Hence B^G is an Azumaya Q-algebra. (4) $V_B(B^G) = \{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a \in A \} \cong A$ which is an Azumaya Q-algebra.
- (5) $B \cong B^G \otimes_O V_B(B^G)$ as Azumaya Q-algebras under the multiplication map.

(6) B is not a Galois extension with Galois group G. Suppose that B is a Galois extension with Galois group G. Then the skew group ring $B * G \cong \operatorname{Hom}_{B^G}(B, B)$ ([2], Theorem 1). But B is a free module of rank 4 over $B^{\vec{G}}$, so B * G has rank 48 over $B^{\vec{G}}$. On the other hand, $\operatorname{Hom}_{B^{\vec{G}}}(B,B)$ has rank 16 over $B^{\vec{G}}$. This is a contradiction.

References

- [1] R. Alfaro and G. Szeto, Skew Group Rings Which Are Azumaya, Comm. in Algebra, 23(6), (1995), 2255-2261.
- [2] F.R. DeMeyer, Some Notes on The General Galois Theory of Rings, Osaka J. Math., 2 (1965). 117-127.
- [3] F.R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [4] M. Harada, Supplementary Results on Galois Extension, Osaka J. Math., 2 (1965), 343-350.

- [5] S. Ikehata, Note on Azumaya Algebras And H-Separable Extensions, Math. J. Okayama Univ., 23 (1981), 17-18.
- [6] T. Kanzaki, On Galois Algebra over A Commutative Ring, Osaka J. Math., 2 (1965), 309-317.
- [7] A. Rosenberg and D. Zelinsky, Automorphisms of Separable Algebras, Pacific J. Math., 11(1961), 1109-1117.
- [8] K. Sugano, Note on Semisimple Extensions And Separable Extensions, Osaka J. Math., 4 (1967), 265-270.
- [9] K. Sugano, Note on Separability of Endomorphism Rings, Hokkaido J. Math., Vol XXI, No, 3,4, (1971), 196-208.
- [10] K. Sugano, On A Special Type of Galois Extensions, Hokkaido J. Math., 9 (1980), 123-128.

Department of Mathematics, Bradley University, Peoria, Illinois 61625 - U.S.A.