A GEOMETRIC MEAN IN THE FURUTA INEQUALITY

MASATOSHI FUJII AND RITSUO NAKAMOTO

Received September 18, 2001

Abstract

Uchiyama discussed the Furuta inequality from the viewpoint of the Jensen inequality. Recently Furuta and Kamei improved it as follows: Suppose that $A, B, C>0$ and $r, s \geq 0$. If $A^{t} \ll B^{t} \nabla_{\mu} C^{t}$ for all $t \geq 0$, then $$
f(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)
$$ is an increasing function of $t \geq s$. On the other hand, if $A^{t} \ll B^{t}!_{\mu} C^{t}$ for all $t \geq 0$, then $$
h(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)
$$ is a decreasing function of $t \geq s$. In this note, we pay our attention to the assumptions in above and point out that the operator function $F(s)=\left((1-\mu) A^{s}+\mu B^{s}\right)^{\frac{1}{s}}(s \in \mathbb{R})$ for given $A, B>0$ and $\mu \in[0,1]$ is monotone increasing under the chaotic order $X \gg Y$ defined by $\log X \geq \log Y$ and consequently s-lim ${ }_{h \rightarrow 0} F(h)=e^{(1-\mu) \log B+\mu \log C}$. This means that we can see another geometric mean $B \diamond_{\mu} C=e^{(1-\mu) \log B+\mu \log C}$ in the Furuta inequality. Moreover we consider Uchiyama's result in a general setting.

1. Introduction

First of all, we cite the Löwner-Heinz inequality (LH) which is one of the most fundamental operator inequalities: If A and B are positive operators acting on a Hilbert space H and satisfy $A \geq B$, then $A^{p} \geq B^{p}$ for all $p \in[0,1]$. In 1987, Furuta [8] established the following historical extension of (LH), see [13], [9], [2] and [15].

The Furuta inequality

If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and
(ii)

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

Motivated by Ando's inequality [1], we introduced the chaotic order among positive invertible operators [7]: For $A, B>0$, we denote by $A \gg B$ if $\log A \geq \log B$. Finally we

Key words and phrases. Furuta inequality, geometric mean and chaotic order.
obtained the following chaotic version (FC) of the Furuta inequality, [3] and [10], see also [4], [5] and [6]:

For $A, B>0, A \gg B$, i.e., $\log A \geq \log B$, if and only if

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}
$$

for all $p, r \geq 0$. This is expressed in terms of the monotonicity of an operator function.

Theorem A. For $A, B>0, A \ll B$ if and only if for each $s \geq 0, G(t, r)=A^{-r} \forall_{\frac{s+r}{t+r}} B^{t}$ is an increasing function of both $t \geq s$ and $r \geq 0$, where \sharp_{α} is the α-geometric mean.

Recently, Uchiyama [16] gave a new viewpoint to the Furuta inequality. He explained that it is from the Jensen inequality for operator concave functions.
Theorem B. If $A \leq B!_{\mu} C$ for $A, B, C>0$, then

$$
B^{s} \nabla_{\mu} C^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)
$$

for $r \geq 0$ and $t \geq s \geq 0$, where $!_{\mu}$ and ∇_{μ} are μ-harmonic and arithmetic means respectively.
Afterwards, we were given an opportunity to see a paper [11] by Furuta and Kamei, in which Theorem B is improved from the viewpoint of Theorem B.

Theorem C. Suppose that $A, B, C>0$ and $r, s \geq 0$. If $A^{t} \ll B^{t} \nabla_{\mu} C^{t}$ for all $t \geq 0$, then

$$
f(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)
$$

is an increasing function of $t \geq s$. On the other hand, if $A^{t} \ll B^{t}!_{\mu} C^{t}$ for all $t \geq 0$, then

$$
h(t)=A^{-r} \forall_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)
$$

is a decreasing function of $t \geq s$.
In this note, we pay our attention to the assumptions of Theorems B and C. Namely we discuss the monotonicity of the operator function

$$
F(s)=\left((1-\mu) A^{s}+\mu B^{s}\right)^{\frac{1}{s}} \quad(s \in \mathbb{R})
$$

for given $A, B>0$ and $\mu \in[0,1]$. It is not monotone increasing under the usual operator order, but we can prove that it is monotone increasing under the chaotic order and moreover s- $\lim _{h \rightarrow 0} F(h)=e^{(1-\mu) \log A+\mu \log B}$. We call it the chaotically μ-geometric mean $A \diamond_{\mu} B$ of A and B. So we can reformulate Theorem C and generalize Theorem B . This means that we find, in the Furuta inequality, another geometric mean different from the geometric mean \sharp_{μ} in the sense of Kubo-Ando. Of course, they coincide if A and B commute.

2. The chaotically geometric mean

In this section, we discuss the monotonicity of the operator function $F(s)$. First of all, we do it under the usual operator order.

Lemma 1. Let $B, C>0$ and $\mu \in[0,1]$ be given. Then the operator function $F(s)=$ $\left((1-\mu) B^{s}+\mu C^{s}\right)^{\frac{1}{s}}(s \in \mathbb{R})$ is monotone increasing on $[1, \infty)$, i.e., $F(s) \leq F(t)$ if $1 \leq s \leq t$. In addition, $F(s) \leq F(t)$ if $1 \leq t \leq 2 s$, and $F(s)$ is not monotone increasing on $(0,1]$ in general.

Proof. The first assertion follows from the operator concavity of the function $x^{r}(r \in[0,1])$: If $1 \leq s \leq t$, then

$$
\left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{s}{t}} \geq(1-\mu) B^{s}+\mu C^{s}
$$

and so $F(t) \geq F(s)$ by (LH). On the other hand, the second one follows from the operator convexity of x^{r} for $1 \leq r \leq 2$: If $1 \leq t \leq 2 s$, then

$$
\left((1-\mu) B^{s}+\mu C^{s}\right)^{\frac{t}{s}} \leq(1-\mu) B^{t}+\mu C^{t}
$$

and so $F(s) \leq F(t)$ by (LH).
Finally we give a simple counterexample to the third one as follows:

$$
B=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{3}, \quad C=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)^{3}
$$

Then

$$
F(1)=\frac{1}{2}(B+C)=\left(\begin{array}{ll}
14 & 14 \\
14 & 20
\end{array}\right)
$$

and

$$
F\left(\frac{1}{3}\right)=\left[\frac{1}{2}\left(B^{\frac{1}{3}}+C^{\frac{1}{3}}\right)\right]^{3}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)^{3}=\left(\begin{array}{ll}
14 & 13 \\
13 & 14
\end{array}\right)
$$

so that

$$
F(1)-F\left(\frac{1}{3}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 6
\end{array}\right) \nsupseteq 0 .
$$

Next we discuss it under the chaotic order.

Lemma 2. The operator function $F(s)$ is monotone increasing under the chaotic order, i.e., $F(s) \ll F(t)$ if $s<t$. In particular,

$$
\mathrm{s}-\lim _{h \rightarrow 0} F(h)=e^{(1-\mu) \log B+\mu \log C}
$$

Proof. It suffices to show that for $s<t$ with $s, t \neq 0$

$$
\frac{1}{s} \log \left((1-\mu) B^{s}+\mu C^{s}\right) \leq \frac{1}{t} \log \left((1-\mu) B^{t}+\mu C^{t}\right) .
$$

To prove this, the operator concavity of x^{r} for $r \in[0,1]$ is available. We first assume $0<s<t$. Then

$$
\log \left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{s}{t}} \geq \log \left((1-\mu) B^{s}+\mu C^{s}\right)
$$

and so $\log F(t) \geq \log F(s)$. Next, if $s<t<0$, then $\frac{t}{s} \in(0,1)$ and hence

$$
\log \left((1-\mu) B^{s}+\mu C^{s}\right)^{\frac{t}{s}} \geq \log \left((1-\mu) B^{t}+\mu C^{t}\right)
$$

Noting $t<0$, we have $\log F(s) \leq \log F(t)$.

Now we prove the second assertion. By the operator concavity of $\log x$ and the Krein inequality $x-1 \geq \log x$, it implies that for any $t>0$

$$
\begin{aligned}
& (1-\mu) \log B+\mu \log C \\
& =\frac{1}{t}\left((1-\mu) \log B^{t}+\mu \log C^{t}\right) \\
& \leq \frac{1}{t} \log \left((1-\mu) B^{t}+\mu C^{t}\right) \\
& \leq \frac{1}{t}\left((1-\mu) B^{t}+\mu C^{t}-1\right) \\
& =(1-\mu) \frac{B^{t}-1}{t}+\mu \frac{C^{t}-1}{t} \\
& \rightarrow(1-\mu) \log B+\mu \log C \quad(t \rightarrow+0)
\end{aligned}
$$

Therefore it follows that

$$
s-\lim _{t \rightarrow+0} \log \left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{1}{t}}=(1-\mu) \log B+\mu \log C
$$

so that

$$
s-\lim _{t \rightarrow+0}\left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{1}{t}}=e^{(1-\mu) \log B+\mu \log C}
$$

On the other hand, it follows from the identity obtained above that for $s>0$

$$
\begin{aligned}
F_{B, C}(-s) & =F_{B^{-1}, C^{-1}(s)^{-1}} \\
& \rightarrow\left[e^{(1-\mu) \log B^{-1}+\mu \log C^{-1}}\right]^{-1} \\
& =e^{(1-\mu) \log B+\mu \log C}
\end{aligned}
$$

Hence we have the second assertion, which says that s- $\lim _{h \rightarrow 0} F(h)$ can be regarded as $F(0)$. Therefore, if $s<0<t$, then

$$
F(s) \ll F(0) \ll F(t)
$$

Consequently we have the monotonicity of $F(s)$.
For the sake of convenience, we define another geometric mean:
Definition 3. For $B, C>0$ and $\mu \in[0,1]$,

$$
B \diamond_{\mu} C=e^{(1-\mu) \log B+\mu \log C}
$$

is said to be the chaotically μ-geometric mean of B and C.

Theorem 4. For $B, C>0$ and $\mu \in[0,1]$, both $\left(B^{t} \nabla_{\mu} C^{t}\right)^{\frac{1}{t}}$ and $\left(B^{t}!_{\mu} C^{t}\right)^{\frac{1}{t}}$ converge to the chaotically μ-geometric mean $B \diamond_{\mu} C$ as $t \searrow 0$. Consequently

$$
s-\lim _{t \searrow 0}\left(B^{t} \sharp_{\mu} C^{t}\right)^{\frac{1}{t}}=B \diamond_{\mu} C .
$$

Proof. The first assertion follows from Lemma 2. To prove the second one, it suffices to show that $\log \left(B^{t} \not \sharp_{\mu} C^{t}\right)^{\frac{1}{t}}$ converges to $(1-\mu) \log B+\mu \log C$. By the well-known arithmeticgeometric mean inequality, we have

$$
B^{t}!_{\mu} C^{t} \leq B^{t} \sharp_{\mu} C^{t} \leq B^{t} \nabla_{\mu} C^{t}
$$

so that

$$
\log \left(B^{t}!_{\mu} C^{t}\right) \leq \log \left(B^{t} \sharp_{\mu} C^{t}\right) \leq \log \left(B^{t} \nabla_{\mu} C^{t}\right)
$$

By multiplying $\frac{1}{t}$ on each term, it follows from Lemma 2 that the middle term $\frac{1}{t} \log \left(B^{t} \not{ }_{\mu} C^{t}\right)$ must converge to $(1-\mu) \log B+\mu \log C$.

Remark. The second assertion of Theorem 4 appeared in [12, Lemma 3.3].

3. Uchiyama's generalization on the Furuta inequality

As stated in Theorem B, Uchiyama gave an interesting viewpoint to the Furuta inequality. Recently it is considered under the chaotic order by Furuta-Kamei, which we cite as Theorem C. We now reformulate it by using the chaotically μ-geometric mean.

Theorem 5. For $A, B, C>0$ and $\mu \in[0,1]$, the following statements are mutually equivalent:
(1) $A \ll B \diamond_{\mu} C$.
(2) $B^{s} \nabla_{\mu} C^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)$ for $r \geq 0$ and $t \geq s \geq 0$.
(3) For each $r, s \geq 0, f(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)$ is an increasing function of $t \geq s$.

Proof. First of all, we note that (1) is equivalent to the condition $A^{t} \ll B^{t} \nabla_{\mu} C^{t}$ for all $t \geq 0$ by Lemma 2 and Theorem 4. That is, (1) implies (3) has been proved in Theorem C. If (3) holds, then (2) is obtained by putting $t=s$. Finally, if (2) holds for $s=0$, then for each $t>0,1 \leq A^{-r} \sharp_{\frac{r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)$ for all $r \geq 0$. It is equivalent to (1) by (FC) stated in $\S 1$.

The following theorem is a complement to Theorem 5, which is corresponding to the second assertion of Theorem C.
Theorem 6. For $A, B, C>0$ and $\mu \in[0,1]$, the following statements are mutually equivalent:
(1) $A \gg B \diamond_{\mu} C$.
(2) $B^{s}!_{\mu} C^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)$ for $r \geq 0$ and $t \geq s \geq 0$.
(3) For each $r, s \geq 0, h(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)$ is a decreasing function of $t \geq s$.

Proof. Clearly (1) is equivalent to the condition $A^{-1} \ll B^{-1} \diamond_{\mu} C^{-1}$. So it follows from Theorem 5 that (1) means $f_{A^{-1}, B^{-1}, C^{-1}}(t)$ is monotone increasing. Moreover, since $h_{A, B, C}(t)^{-1}=f_{A^{-1}, B^{-1}, C^{-1}}(t)$, (1) holds if and only if $h(t)$ is monotone decreasing, i.e., (3) holds. The proof of the others is similar to that of Theorem 5 .

We note that Theorems 4-6 require an improvement of Theorem B. As a matter of fact, we can reply as follows:
Theorem 7. Suppose that $A, B, C>0$ satisfy $A \ll\left(B^{t_{0}} \nabla_{\mu} C^{t_{0}}\right)^{1 / t_{0}}$ for some t_{0}. If $t_{0} \geq 0$, then

$$
B^{s} \nabla_{\mu} C^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)
$$

for all $r \geq 0$ and $t \geq s \geq 0$ with $t \geq t_{0}$. On the other hand, if $t_{0}<0$, then

$$
\left(B^{t}!_{\mu} C^{t}\right)^{\frac{s}{t}} \leq A^{-r} \forall_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)
$$

for all $r \geq 0$ and $-t_{0} \geq t \geq s \geq 0$.
Proof. We need the following fact [14, Theorem 2 (3)] obtained by (FC): If $A \ll B$, then $B^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}} B^{t}$ for all $r \geq 0$ and $t \geq s \geq 0$. We first suppose that $A \ll F\left(t_{0}\right)$ for some $t_{0}>0$. Since $A \ll F(t)$ for $t \geq t_{0}$ by Lemma 2 , we have

$$
F(t)^{s} \leq A^{-r} \forall_{\frac{s+r}{t+r}} F(t)^{t}
$$

for all $r \geq 0$ and $t \geq s \geq 0$ with $t \geq t_{0}$. On the other hand, since $F(t)^{s}=\left(B^{t} \nabla_{\mu} C^{t}\right)^{\frac{s}{t}} \geq$ $B^{s} \nabla_{\mu} C^{s}$ by $t \geq s \geq 0$, it follows that

$$
B^{s} \nabla_{\mu} C^{s} \leq F(t)^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}} F(t)^{t}=A^{-r} \sharp_{\frac{s+r}{t+r}} B^{t} \nabla_{\mu} C^{t} .
$$

Next we suppose that $A \ll F\left(t_{0}\right)$ for some $t_{0}<0$. Since

$$
A \ll F\left(t_{0}\right) \ll F(-t)=\left(B^{t}!_{\mu} C^{t}\right)^{\frac{1}{t}}
$$

for $-t_{0} \geq t \geq s \geq 0$, we have the desired inequality

$$
\left(B^{t}!_{\mu} C^{t}\right)^{\frac{s}{t}} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)
$$

by applying the inequality cited in above again.
For the sake of convenience, we cite a mean theoretic proof of the inequality [14, Theorem 2 (3)] used above: For this, (FC) under $A \ll B$ is expressed as $1 \leq A^{-r} \frac{{ }_{\frac{r}{r}}}{\frac{r}{t+r}} B^{t}=$ $B^{t} \sharp_{\frac{t}{t+r}} A^{-r}$ for $r, t \geq 0$. Thus, if $A \ll B$ and $r \geq 0$, then for $t \geq s \geq 0$
$A^{-r} \sharp_{\frac{s+r}{t+r}} B^{t}=B^{t} \sharp_{\frac{t-s}{t+r}} A^{-r}=B^{t} \sharp_{\frac{t-s}{t}}\left(B^{t} \sharp_{\frac{t}{t+r}} A^{-r}\right) \geq B^{t} \sharp_{\frac{t-s}{t}} 1=1 \sharp_{\frac{s}{t}} B^{t}=B^{s}$.
We now remark that Theorem 7 can be rephrased as a similar form to Theorem C.
Corollary 8. Suppose that $A, B, C>0, \mu \in[0,1]$ and $t_{0}>0$. Then the following statements are mutually equivalent:
(1) $A \ll\left(B^{t_{0}} \nabla_{\mu} C^{t_{0}}\right)^{1 / t_{0}}$.
(2) $B^{s} \nabla_{\mu} C^{s} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}^{t+}\left(B^{t} \nabla_{\mu} C^{t}\right)$ for all $r \geq 0$ and $t \geq s \geq 0$ with $t \geq t_{0}$.
(3) For each $r, s \geq 0, f(t)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t} \nabla_{\mu} C^{t}\right)$ is an increasing function of t, precisely, $f(t) \geq f\left(t_{1}\right)$ for $t \geq t_{1} \geq s$ with $t \geq t_{0}$.

Proof. (1) $\rightarrow(3)$: It is similar to that of Theorem C. Since $A \ll F\left(t_{0}\right) \ll F(t)$ for $t \geq t_{0}$ by Lemma 2, Theorem A implies that

$$
A^{-r} \sharp_{\frac{s+r}{t_{1}+r}} F(t)^{t_{1}} \leq A^{-r} \sharp_{\frac{s+r}{t+r}} F(t)^{t}=f(t)
$$

for $t \geq t_{1} \geq s \geq 0$. Moreover, since the operator concavity of $x^{\alpha}(\alpha \in[0,1])$ ensures that

$$
F(t)^{t_{1}}=\left(B^{t} \nabla_{\mu} C^{t}\right)^{\frac{t_{1}}{t}} \geq B^{t_{1}} \nabla_{\mu} C^{t_{1}}=F\left(t_{1}\right)^{t_{1}}
$$

we have

$$
f\left(t_{1}\right)=A^{-r} \sharp_{\frac{s+r}{t_{1}+r}} F\left(t_{1}\right)^{t_{1}} \leq A^{-r} \sharp_{\frac{s+r}{t_{1}+r}} F(t)^{t_{1}} \leq f(t) .
$$

(3) $\rightarrow(2)$: If we take $t_{1}=s$ in (3), then $f(s) \leq f(t)$ for $t \geq t_{0}$. Since $f(s)=B^{s} \nabla_{\mu} C^{s}$, we have (2). (2) $\rightarrow(1)$: We take $s=0$ and $t=t_{0}$ in (2).

Corollary 9. Suppose that $A, B, C>0, \mu \in[0,1]$ and $t_{0}<0$. Then the following statements are mutually equivalent:
(1) $A \ll\left(B^{t_{0}} \nabla_{\mu} C^{t_{0}}\right)^{1 / t_{0}}$.
(2) $\left(B^{s}!_{\mu} C^{s}\right)^{\frac{s}{t}} \leq A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)$ for all $r \geq 0$ and $-t_{0} \geq t \geq s \geq 0$.
(3) For each $t \in\left[s,-t_{0}\right]$ and $s \geq 0, k(r)=A^{-r} \sharp_{\frac{s+r}{t+r}}\left(B^{t}!_{\mu} C^{t}\right)$ is an increasing function of $r \geq 0$.

Proof. (1) \rightarrow (3): Lemma 2 implies that $A \ll F(-t)$ for $t \leq-t_{0}$. Since $F(-t)^{t}=B^{t}!_{\mu} C^{t}$, it follows from Theorem A that $k(r)$ is an increasing function of $r \geq 0$. Moreover (3) implies that $k(0) \leq k(r)$ for $r \geq 0$, that is, (2) holds, and (2) \rightarrow (1) follows from putting $s=0$ in (2).

Acknowledgement. The authors would like to express their thanks to Professor Uchiyama and Professors Furuta and Kamei for giving an oportunity to read papers [16] and [11] respectively before publication.

References

[1] T.Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159.
[2] M.Fujir, Furuta's inequality and its mean theoretic approach, J. Operator theory, 23(1990), 67-72.
[3] M.Fujis, T.Furuta and E.Kamei, Furuta's inequality and application to Ando's theorem, Linear Alg. and Appl., 179(1993), 161-169.
[4] M.Fujii, J.-F. Jiang and E.Kamei, Characterization of chaotic order and its application to Furuta inequaity, Proc. Amer. Math. Soc., 125(1997), 3655-3658.
[5] M.Fujir, J.-F. Jiang and E.Kamei, Characterization of chaotic order and its applications to Furuta's type operator inequalities, Linear Multilinear Algebra, 43(1998), 339-349.
[6] M.Fujii, J.-F. Jiang, E.Kamei and K.Tanahashi, A characterization of chaotic order and a problem, J. Inequal. Appl., 2(1998), 149-156.
[7] M.Fujil and E.Kamei, Furuta's inequality for the chaotic order, I and II, Math. Japon., 36(1991), 603-606 and 717-722.
[8] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq$ $p+2 r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
[9] T.Furuta An elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
[10] T.Furuta Applications of order preserving operator inequalities, Operator Theory: Adv. Appl., Birkhäuser Verlag, Basel, 59 (1992), 180-198.
[11] T.Furuta and E.Kamei, An extension of Uchiyama's result associated with an order preserving operator inequality, preprint.
[12] F.Hiai and D.Petz, The Golden-Thompson trace inequality is complemented, Linear Alg. Appl., 181(1993), 153-185.
[13] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.
[14] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon., to appear.
[15] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 141-146.
[16] M.Uchiyama, An operator inequality related to Jensen's inequality, preprint.

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 5828582 , Japan.

E-mail address: mfujii@@cc.osaka-kyoiku.ac.jp
Faculty of Engineering, Ibaraki University, Nakanarusawa, Hitachi, Ibaraki 316-0033, Japan. E-mail address: nakamoto@@base.ibaraki.ac.jp

