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A GEOMETRIC MEAN IN THE FURUTA INEQUALITY
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Abstract. Uchiyama discussed the Furuta inequality from the viewpoint of the Jensen

inequality. Recently Furuta and Kamei improved it as follows: Suppose that A;B;C > 0

and r; s � 0. If At � Bt r� Ct for all t � 0, then

f(t) = A�r ] s+r

t+r

(Bt r� Ct)

is an increasing function of t � s. On the other hand, if At � Bt !� Ct for all t � 0,

then

h(t) = A�r ] s+r

t+r

(Bt !� Ct)

is a decreasing function of t � s.

In this note, we pay our attention to the assumptions in above and point out that the

operator function F (s) = ((1 � �)As + �Bs)
1
s (s 2 R) for given A;B > 0 and � 2 [0; 1]

is monotone increasing under the chaotic order X � Y de�ned by logX � log Y and

consequently s-limh!0 F (h) = e(1��) logB+� log C .This means that we can see another

geometric mean B }� C = e(1��) logB+� logC in the Furuta inequality. Moreover we

consider Uchiyama's result in a general setting.

1. Introduction

First of all, we cite the L�owner-Heinz inequality (LH) which is one of the most funda-

mental operator inequalities: If A and B are positive operators acting on a Hilbert space

H and satisfy A � B, then Ap � Bp for all p 2 [0; 1]. In 1987, Furuta [8] established the

following historical extension of (LH), see [13], [9], [2] and [15].

The Furuta inequality

If A � B � 0, then for each r � 0,

(i) (B
r

2ApB
r

2 )
1
q � (B

r

2BpB
r

2 )
1
q

and

(ii) (A
r

2ApA
r

2 )
1
q � (A

r

2BpA
r

2 )
1
q

hold for p � 0 and q � 1 with (1+ r)q � p+ r.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure

Motivated by Ando's inequality [1], we introduced the chaotic order among positive

invertible operators [7]: For A;B > 0, we denote by A � B if logA � logB. Finally we
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obtained the following chaotic version (FC) of the Furuta inequality, [3] and [10], see also

[4], [5] and [6]:

For A;B > 0, A� B, i.e., logA � logB, if and only if

�
A

r

2ApA
r

2

� r

p+r �
�
A

r

2BpA
r

2

� r

p+r

for all p; r � 0. This is expressed in terms of the monotonicity of an operator function.

Theorem A . For A;B > 0, A� B if and only if for each s � 0, G(t; r) = A�r ] s+r

t+r

Bt

is an increasing function of both t � s and r � 0, where ]� is the �-geometric mean.

Recently, Uchiyama [16] gave a new viewpoint to the Furuta inequality. He explained

that it is from the Jensen inequality for operator concave functions.

Theorem B . If A � B !� C for A;B;C > 0, then

Bs r� Cs � A�r ] s+r

t+r

(Bt r� Ct)

for r � 0 and t � s � 0, where !� and r� are �-harmonic and arithmetic means respectively.

Afterwards, we were given an opportunity to see a paper [11] by Furuta and Kamei, in

which Theorem B is improved from the viewpoint of Theorem B.

Theorem C . Suppose that A;B;C > 0 and r; s � 0. If At � Bt r� Ct for all t � 0,

then

f(t) = A�r ] s+r

t+r

(Bt r� Ct)

is an increasing function of t � s. On the other hand, if At � Bt !� Ct for all t � 0, then

h(t) = A�r ] s+r

t+r

(Bt !� Ct)

is a decreasing function of t � s.

In this note, we pay our attention to the assumptions of Theorems B and C. Namely we

discuss the monotonicity of the operator function

F (s) = ((1 � �)As + �Bs)
1
s (s 2 R)

for given A;B > 0 and � 2 [0; 1]. It is not monotone increasing under the usual operator

order, but we can prove that it is monotone increasing under the chaotic order and moreover

s-limh!0 F (h) = e(1��) logA+� logB. We call it the chaotically �-geometric mean A}�B of

A and B. So we can reformulate Theorem C and generalize Theorem B. This means that we

�nd, in the Furuta inequality, another geometric mean di�erent from the geometric mean

]� in the sense of Kubo-Ando. Of course, they coincide if A and B commute.

2. The chaotically geometric mean

In this section, we discuss the monotonicity of the operator function F (s). First of all,

we do it under the usual operator order.

Lemma 1. Let B; C > 0 and � 2 [0; 1] be given. Then the operator function F (s) =

((1��)Bs+�Cs)
1
s (s 2 R) is monotone increasing on [1;1), i.e., F (s) � F (t) if 1 � s � t.

In addition, F (s) � F (t) if 1 � t � 2s, and F (s) is not monotone increasing on (0; 1] in

general.
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Proof. The �rst assertion follows from the operator concavity of the function xr (r 2 [0; 1]):

If 1 � s � t, then

((1 � �)Bt + �Ct)
s

t � (1� �)Bs + �Cs

and so F (t) � F (s) by (LH). On the other hand, the second one follows from the operator

convexity of xr for 1 � r � 2: If 1 � t � 2s, then

((1 � �)Bs + �Cs)
t

s � (1� �)Bt + �Ct

and so F (s) � F (t) by (LH).

Finally we give a simple counterexample to the third one as follows:

B =

�
2 1

1 1

�
3

; C =

�
2 1

1 3

�
3

:

Then

F (1) =
1

2
(B + C) =

�
14 14

14 20

�

and

F (
1

3
) = [

1

2
(B

1
3 + C

1
3 )]3 =

�
2 1

1 2

�
3

=

�
14 13

13 14

�
;

so that

F (1) � F (
1

3
) =

�
0 1

1 6

�
6� 0:

Next we discuss it under the chaotic order.

Lemma 2. The operator function F (s) is monotone increasing under the chaotic order,

i.e., F (s)� F (t) if s < t. In particular,

s� lim
h!0

F (h) = e(1��) logB+� logC :

Proof. It suÆces to show that for s < t with s; t 6= 0

1

s
log((1 � �)Bs + �Cs) �

1

t
log((1 � �)Bt + �Ct):

To prove this, the operator concavity of xr for r 2 [0; 1] is available. We �rst assume

0 < s < t. Then

log((1� �)Bt + �Ct)
s

t � log((1 � �)Bs + �Cs);

and so logF (t) � logF (s). Next, if s < t < 0, then t

s
2 (0; 1) and hence

log((1� �)Bs + �Cs)
t

s � log((1� �)Bt + �Ct):

Noting t < 0, we have logF (s) � logF (t).
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Now we prove the second assertion. By the operator concavity of log x and the Krein

inequality x � 1 � log x, it implies that for any t > 0

(1� �) logB + � logC

=
1

t
((1 � �) logBt + � logCt)

�
1

t
log((1� �)Bt + �Ct)

�
1

t
((1 � �)Bt + �Ct � 1)

= (1 � �)
Bt � 1

t
+ �

Ct � 1

t

! (1 � �) logB + � logC (t! +0):

Therefore it follows that

s � lim
t!+0

log((1� �)Bt + �Ct)
1
t = (1� �) logB + � logC;

so that

s� lim
t!+0

((1 � �)Bt + �Ct)
1
t = e(1��) logB+� logC :

On the other hand, it follows from the identity obtained above that for s > 0

FB;C(�s) = FB�1;C�1(s)
�1

! [e(1��) logB
�1
+� logC

�1

]�1

= e(1��) logB+� logC:

Hence we have the second assertion, which says that s-limh!0 F (h) can be regarded as F (0).

Therefore, if s < 0 < t, then

F (s)� F (0) � F (t):

Consequently we have the monotonicity of F (s).

For the sake of convenience, we de�ne another geometric mean:

De�nition 3. For B;C > 0 and � 2 [0; 1],

B }� C = e(1��) logB+� logC

is said to be the chaotically �-geometric mean of B and C.

Theorem 4. For B;C > 0 and � 2 [0; 1], both (Bt r� Ct)
1
t and (Bt !� Ct)

1
t converge to

the chaotically �-geometric mean B }� C as t& 0. Consequently

s� lim
t&0

(Bt ]� Ct)
1
t = B }� C:

Proof. The �rst assertion follows from Lemma 2. To prove the second one, it suÆces to

show that log(Bt ]� C
t)

1
t converges to (1��) logB+� logC. By the well-known arithmetic-

geometric mean inequality, we have

Bt !� Ct � Bt ]� Ct � Bt r� Ct;

so that

log(Bt !� Ct) � log(Bt ]� Ct) � log(Bt r� Ct):

By multiplying 1

t
on each term, it follows from Lemma 2 that the middle term 1

t
log(Bt ]� C

t)

must converge to (1 � �) logB + � logC.
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Remark. The second assertion of Theorem 4 appeared in [12, Lemma 3.3].

3. Uchiyama's generalization on the Furuta inequality

As stated in TheoremB, Uchiyama gave an interesting viewpoint to the Furuta inequality.

Recently it is considered under the chaotic order by Furuta-Kamei, which we cite as Theorem

C. We now reformulate it by using the chaotically �-geometric mean.

Theorem 5. For A;B;C > 0 and � 2 [0; 1], the following statements are mutually equiv-

alent:

(1) A� B }� C.

(2) Bs r� Cs � A�r ] s+r

t+r

(Bt r� Ct) for r � 0 and t � s � 0.

(3) For each r; s � 0, f(t) = A�r ] s+r

t+r

(Bt r� Ct) is an increasing function of t � s.

Proof. First of all, we note that (1) is equivalent to the condition At � Bt r� Ct for all

t � 0 by Lemma 2 and Theorem 4. That is, (1) implies (3) has been proved in Theorem C.

If (3) holds, then (2) is obtained by putting t = s. Finally, if (2) holds for s = 0, then for

each t > 0, 1 � A�r ] r

t+r
(Bt r� Ct) for all r � 0. It is equivalent to (1) by (FC) stated

in x1.

The following theorem is a complement to Theorem 5, which is corresponding to the

second assertion of Theorem C.

Theorem 6. For A;B;C > 0 and � 2 [0; 1], the following statements are mutually equiv-

alent:

(1) A� B }� C.

(2) Bs !� Cs � A�r ] s+r

t+r

(Bt !� Ct) for r � 0 and t � s � 0.

(3) For each r; s � 0, h(t) = A�r ] s+r

t+r

(Bt !� Ct) is a decreasing function of t � s.

Proof. Clearly (1) is equivalent to the condition A�1 � B�1 }� C�1. So it follows

from Theorem 5 that (1) means fA�1;B�1;C�1(t) is monotone increasing. Moreover, since

hA;B;C(t)
�1 = fA�1;B�1;C�1(t), (1) holds if and only if h(t) is monotone decreasing, i.e., (3)

holds. The proof of the others is similar to that of Theorem 5.

We note that Theorems 4 - 6 require an improvement of Theorem B. As a matter of fact,

we can reply as follows:

Theorem 7. Suppose that A;B;C > 0 satisfy A � (Bt0 r� Ct0)1=t0 for some t0. If

t0 � 0, then

Bs r� Cs � A�r ] s+r

t+r

(Bt r� Ct)

for all r � 0 and t � s � 0 with t � t0. On the other hand, if t0 < 0, then

(Bt !� Ct)
s

t � A�r ] s+r

t+r

(Bt !� Ct)

for all r � 0 and �t0 � t � s � 0.

Proof. We need the following fact [14, Theorem 2 (3)] obtained by (FC): If A� B, then

Bs � A�r ] s+r

t+r

Bt for all r � 0 and t � s � 0. We �rst suppose that A� F (t0) for some

t0 > 0. Since A� F (t) for t � t0 by Lemma 2, we have

F (t)s � A�r ] s+r

t+r

F (t)t
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for all r � 0 and t � s � 0 with t � t0. On the other hand, since F (t)s = (Bt r� Ct)
s

t �

Bs r� Cs by t � s � 0, it follows that

Bs r� Cs � F (t)s � A�r ] s+r

t+r

F (t)t = A�r ] s+r

t+r

Bt r� Ct:

Next we suppose that A� F (t0) for some t0 < 0. Since

A� F (t0) � F (�t) = (Bt !� Ct)
1
t

for �t0 � t � s � 0, we have the desired inequality

(Bt !� Ct)
s

t � A�r ] s+r

t+r

(Bt !� Ct)

by applying the inequality cited in above again.

For the sake of convenience, we cite a mean theoretic proof of the inequality [14, Theorem

2 (3)] used above: For this, (FC) under A � B is expressed as 1 � A�r ] r

t+r
Bt =

Bt ] t

t+r

A�r for r; t � 0. Thus, if A� B and r � 0, then for t � s � 0

A�r ] s+r

t+r

Bt = Bt ] t�s
t+r

A�r = Bt ] t�s
t

(Bt ] t

t+r

A�r) � Bt ] t�s
t

1 = 1 ] s
t
Bt = Bs:

We now remark that Theorem 7 can be rephrased as a similar form to Theorem C.

Corollary 8. Suppose that A;B;C > 0, � 2 [0; 1] and t0 > 0. Then the following state-

ments are mutually equivalent:

(1) A � (Bt0 r� Ct0)1=t0 .

(2) Bs r� Cs � A�r ] s+r

t+r

(Bt r� Ct) for all r � 0 and t � s � 0 with t � t0.

(3) For each r; s � 0, f(t) = A�r ] s+r

t+r

(Bt r� C
t) is an increasing function of t, precisely,

f(t) � f(t1) for t � t1 � s with t � t0.

Proof. (1) ! (3): It is similar to that of Theorem C. Since A� F (t0) � F (t) for t � t0
by Lemma 2, Theorem A implies that

A�r ] s+r

t1+r

F (t)t1 � A�r ] s+r

t+r

F (t)t = f(t)

for t � t1 � s � 0. Moreover, since the operator concavity of x� (� 2 [0; 1]) ensures that

F (t)t1 = (Bt r� Ct)
t1
t � Bt1 r� Ct1 = F (t1)

t1 ;

we have

f(t1) = A�r ] s+r

t1+r

F (t1)
t1 � A�r ] s+r

t1+r

F (t)t1 � f(t):

(3) ! (2): If we take t1 = s in (3), then f(s) � f(t) for t � t0. Since f(s) = Bs r� Cs, we

have (2). (2) ! (1): We take s = 0 and t = t0 in (2).

Corollary 9. Suppose that A;B;C > 0, � 2 [0; 1] and t0 < 0. Then the following state-

ments are mutually equivalent:

(1) A � (Bt0 r� Ct0)1=t0 .

(2) (Bs !� Cs)
s

t � A�r ] s+r

t+r

(Bt !� Ct) for all r � 0 and �t0 � t � s � 0.

(3) For each t 2 [s;�t0] and s � 0, k(r) = A�r ] s+r

t+r

(Bt !� Ct) is an increasing function

of r � 0.

Proof. (1)! (3): Lemma 2 implies that A� F (�t) for t � �t0. Since F (�t)
t = Bt !� C

t,

it follows from Theorem A that k(r) is an increasing function of r � 0. Moreover (3) implies

that k(0) � k(r) for r � 0, that is, (2) holds, and (2) ! (1) follows from putting s = 0 in

(2).
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