FUZZIFICATIONS OF a&2-IDEALS IN IS-ALGEBRAS

YOUNG BAE JUN AND EUN HWAN ROH

Received August 7, 2001

ABSTRACT. The fuzzification of $a\&\mathcal{I}$ -ideals in **IS**-algebras is considered. Relations between fuzzy $p\&\mathcal{I}$ -ideals and fuzzy $a\&\mathcal{I}$ -ideals are stated. Characterizations of fuzzy $a\&\mathcal{I}$ -ideals are given. Extension property for fuzzy $a\&\mathcal{I}$ -ideal is established.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In 1993, Y. B. Jun et al. [5] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Y. B. Jun et al. [8] renamed the BCI-semigroup (resp, BCI-monoid and BCI-group) as the **IS**-algebra (resp. **IM**-algebra and **IG**-algebra) and studied further properties of these algebras (see [7] and [8]). In [9], E. H. Roh et al. introduced the concept of a $p\&\mathcal{I}$ -ideal in an **IS**-algebra, and gave necessary and sufficient conditions for an \mathcal{I} -ideal to be a $p\&\mathcal{I}$ -ideal, and also stated a characterization of **PS**-algebras by $p\&\mathcal{I}$ -ideals. Y. B. Jun and E. H. Roh [6] considered the fuzzification of a $p\&\mathcal{I}$ -ideal in an **IS**-algebra, and investigated some of their properties. E. H. Roh et al. [10] discussed the notion of $a\&\mathcal{I}$ -ideals in **IS**-algebras. In this paper, we consider the fuzzification of $a\&\mathcal{I}$ -ideals. We state characterizations of fuzzy $a\&\mathcal{I}$ -ideals. We state characterizations of fuzzy $a\&\mathcal{I}$ -ideals. We finally establish the extension property for fuzzy $a\&\mathcal{I}$ -ideals.

2. Preliminaries

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

- ((x * y) * (x * z)) * (z * y) = 0,
- (x * (x * y)) * y = 0,
- x * x = 0,
- x * y = 0 and y * x = 0 imply x = y

for all $x, y, z \in X$. A BCI-algebra X satisfying $0 \le x$ for all $x \in X$ is called a *BCK-algebra*. In any BCK/BCI-algebra X one can define a partial order " \le " by putting $x \le y$ if and only if x * y = 0.

A BCI-algbera X has the following properties: (P1) x * 0 = x, (P2) (x * y) * z = (x * z) * y,

2000 Mathematics Subject Classification: 06F35, 03G25, 08A72.

Key words and phrases: (fuzzy) *I*-ideal, (fuzzy) *p*&*I*-ideal, (fuzzy) *a*&*I*-ideal.

The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

 $(\mathbf{P3}) \ (x*z)*(y*z) \leq x*y$

for all $x, y, z \in X$. A nonempty subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Definition 2.1. (Jun et al. [8]) An **IS**-algebra is a non-empty set X with two binary operations "*" and "." and constant 0 satisfying the axioms

- I(X) := (X, *, 0) is a BCI-algebra.
- $S(X) := (X, \cdot)$ is a semigroup.
- the operation "" is distributive (on both sides) over the operation "*", that is,

 $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z), \forall x, y, z \in X.$

Example 2.2. Let $X = \{0, a, b, c\}$ be a set with the following Cayley tables:

*	0	a	b	c		0	a	b	c
0	0	0	с	b	0	0	0	0	0
a	a	0	c	b	a	0	0	0	0
b	b	b	0	c	b	0	0	b	c
c	c	c	b	0	с	0	0	c	b

Then X is an **IS**-algebra (see [8]).

Definition 2.3. [1, Definition 2.3] A nonempty subset A of an **IS**-algebra X is said to be *left* (resp. *right*) *stable* if $x \cdot a \in A$ (resp. $a \cdot x \in A$) whenever $x \in S(X)$ and $a \in A$.

In what follows, the terminology "stable" means "left stable", and let X denote an **IS**-algebra unless otherwise specified.

Definition 2.4. [8, Definition 3] A nonempty subset A of X is called an \mathcal{I} -ideal of X if it satisfies

- (i) A is a stable subset of S(X),
- (ii) for any $x, y \in I(X)$, $x * y \in A$ and $y \in A$ imply that $x \in A$.

Definition 2.5. [9, Definition 3.1] A nonempty subset A of X is called a $p\&\mathcal{I}$ -ideal of X if it satisfies

- (i) A is a stable subset of S(X),
- (ii) for any $x, y, z \in I(X)$, $(x * z) * (y * z) \in A$ and $y \in A$ imply that $x \in A$.

We place a bar over a symbol to denote a fuzzy set so $\bar{\mu}$, \bar{A} , \bar{X} , \cdots all represent fuzzy set in a set.

Definition 2.6. [3, Definition 4] A fuzzy set \overline{A} in X is called a *fuzzy* \mathcal{I} -*ideal* of X if it satisfies

- (i) \overline{A} is a fuzzy ideal of a *BCI*-algebra *X*,
- (ii) $\overline{A}(xy) \ge \overline{A}(y) \quad \forall x, y \in X.$

Definition 2.7. [6, Definition 3.2] A fuzzy set \overline{A} in X is called a *fuzzy* $p\&\mathcal{I}$ -*ideal* of X if it satisfies

- (i) A is a fuzzy stable set in S(X),
- (ii) $\overline{A}(x) \ge \min\{\overline{A}((x \ast z) \ast (y \ast z)), \overline{A}(y)\} \quad \forall x, y, z \in X.$

Note that every fuzzy $p\&\mathcal{I}$ -ideal is a fuzzy \mathcal{I} -ideal, but the converse is not true (see [6, Theorem 3.4 and Example 3.5]).

3. Fuzzy $a\&\mathcal{I}$ -ideals

Definition 3.1. [10, Definition 3.1] A non-empty subset A of an **IS**-algebra X is called a $a\&\mathcal{I}$ -ideal of X if it satisfies

(i) A is a stable subset of S(X),

(ii) for any $x, y, z \in I(X)$, $(x * z) * (0 * y) \in A$ and $z \in A$ imply that $y * x \in A$.

Definition 3.2. A fuzzy set A in X is called a *fuzzy a* & \mathcal{I} -*ideal* of X if it satisfies

(i) A is a fuzzy stable set in S(X),

ii)
$$A(y * x) \ge \min \{A((x * z) * (0 * y)), A(z)\} \quad \forall x, y, z \in I(X).$$

Example 3.3. Let $X = \{0, a, b, c\}$ be a set with the following Cayley tables:

*	0	a	b	c		0	a	b	c
0	0	0	b	b	0	0	0	0	0
a	a	0	c	b	a	0	a	0	a
b	b	b	0	0	b	0	0	b	b
c	c	b	a	0	c	0	a	b	c

Then X is an **IS**-algebra (see [8]). We can easily check that a fuzzy set \bar{A} in X given by $\bar{A}(0) = \bar{A}(a) = 0.6$ and $\bar{A}(b) = \bar{A}(c) = 0.2$ is a fuzzy $a\&\mathcal{I}$ -ideal of X.

Proposition 3.4. If \overline{A} is a fuzzy a& \mathcal{I} -ideal of X, then $\overline{A}(0 * x) \ge \overline{A}(x) \ge \overline{A}(0 * (0 * x))$ for all $x \in X$.

Proof. Since \overline{A} is fuzzy stable, it follows that $\overline{A}(0) = \overline{A}(0x) \ge \overline{A}(x)$ for all $x \in X$. Taking z = y = 0 in Definition 3.2(ii), we have

$$\bar{A}(0 * x) \ge \min \left\{ \bar{A}((x * 0) * (0 * 0)), \ \bar{A}(0) \right\} = \bar{A}(x)$$

for all $x \in X$. Now putting y = x and x = z = 0 in Definition 3.2(ii), we have

$$\bar{A}(x) \ge \min\left\{\bar{A}\Big((0*0)*(0*x)\Big), \ \bar{A}(0)\right\} = \bar{A}\Big(0*(0*x)\Big)$$

for all $x \in X$.

Theorem 3.5. Every fuzzy $a\&\mathcal{I}$ -ideal is a fuzzy \mathcal{I} -ideal.

Proof. Let \overline{A} be a fuzzy $a\&\mathcal{I}$ -ideal of X. Taking y = 0 in Definition 3.2(ii) and using Proposition 3.4, we get

$$\begin{split} \bar{A}(x) &\geq \bar{A}\Big(0*(0*x)\Big) \geq \bar{A}(0*x) \\ &\geq \min\Big\{\bar{A}\Big((x*z)*(0*0)\Big), \ \bar{A}(z)\Big\} \\ &= \min\Big\{\bar{A}(x*z), \ \bar{A}(z)\Big\}. \end{split}$$

for all $x, z \in X$. Hence \overline{A} is a fuzzy \mathcal{I} -ideal of X.

The following example shows that the converse of Theorem 3.5 may not be true.

Example 3.6. Let X be an **IS**-algebra in Example 3.3 and let \overline{B} be a fuzzy set in X defined by $\overline{B}(0) = \overline{B}(b) = 0.8$ and $\overline{B}(a) = \overline{B}(c) = 0.5$. Then \overline{B} is a fuzzy \mathcal{I} -ideal of X, but it is not a fuzzy $a\&\mathcal{I}$ -ideal of X since

$$\bar{B}(a * b) = 0.5 < 0.8 = \min \Big\{ \bar{B} \Big((b * b) * (0 * a) \Big), \ \bar{B}(b) \Big\}.$$

We provide conditions for a fuzzy \mathcal{I} -ideal to be a fuzzy $a\&\mathcal{I}$ -ideal.

Theorem 3.7. Let \overline{A} be a fuzzy \mathcal{I} -ideal of X. Then the following are equivalent.

- (i) \overline{A} is a fuzzy $a\&\mathcal{I}$ -ideal of X.
- $\text{(ii)} \ \bar{A}\Big(y*(x*z)\Big) \geq \bar{A}\Big((x*z)*(0*y)\Big), \ \forall x,y,z \in I(X),$
- $\text{(iii)} \ \bar{A}(y\ast x)\geq \bar{A}\Big(x\ast (0\ast y)\Big), \ \forall x,y\in I(X).$

Proof. Assume that \overline{A} is a fuzzy $a\&\mathcal{I}$ -ideal of X. For every $x, y, z \in I(X)$, we have

$$\begin{split} \bar{A}\Big(y*(x*z)\Big) &\geq \min\Big\{\bar{A}\Big(((x*z)*((x*z)*(0*y)))*(0*y)\Big), \ \bar{A}\Big((x*z)*(0*y)\Big)\Big\} \\ &= \min\Big\{\bar{A}\Big(((x*z)*(0*y))*((x*z)*(0*y))\Big), \ \bar{A}\Big((x*z)*(0*y)\Big)\Big\} \\ &= \min\Big\{\bar{A}(0), \ \bar{A}\Big((x*z)*(0*y)\Big)\Big\} \\ &= \bar{A}\Big((x*z)*(0*y)\Big). \end{split}$$

(iii) is by taking z = 0 in (ii) and using (P1). Suppose that (iii) holds. Note that

$$\left(x*(0*y)\right)*\left((x*z)*(0*y)\right) \le x*(x*z) \le z$$

for all $x, y, z \in I(X)$. Since \overline{A} is order reversing, it follows that

$$\bar{A}\Big(\big(x\ast(0\ast y)\big)\ast\big(\big(x\ast z\big)\ast(0\ast y)\big)\Big)\geq\bar{A}(z).$$

Hence

$$\begin{split} \bar{A}(y * x) &\geq \bar{A}\Big(x * (0 * y)\Big) \\ &\geq \min\Big\{\bar{A}\Big((x * (0 * y)) * ((x * z) * (0 * y))\Big), \ \bar{A}\Big((x * z) * (0 * y)\Big)\Big\} \\ &\geq \min\Big\{\bar{A}\Big((x * z) * (0 * y)\Big), \ \bar{A}(z)\Big\}, \end{split}$$

and so \overline{A} is a fuzzy $a\&\mathcal{I}$ -ideal of X.

Lemma 3.8. [6, Theorem 3.9] Let \overline{A} be a fuzzy \mathcal{I} -ideal of X. Then \overline{A} is a fuzzy $p\&\mathcal{I}$ -ideal of X if and only if it satisfies

$$\bar{A}(x) \ge \bar{A}\Big(0*(0*x)\Big), \ \forall x \in I(X).$$

Combining Proposition 3.4 and Lemma 3.8, we have the following theorem. **Theorem 3.9.** Every fuzzy $a\&\mathcal{I}$ -ideal is a fuzzy $p\&\mathcal{I}$ -ideal. The converse of Theorem 3.9 is false, as is shown in the following example.

Example 3.10. Let X be an **IS**-algebra in Example 2.2 and let \overline{A} be a fuzzy set in X defined by $\overline{A}(0) = \overline{A}(a) = 0.7$ and $\overline{A}(b) = \overline{A}(c) = 0.5$. Then \overline{A} is a fuzzy $p\&\mathcal{I}$ -ideal of X, but it is not a fuzzy $a\&\mathcal{I}$ -ideal of X because

$$\bar{A}(b*c) = 0.5 < 0.7 = \min \Big\{ \bar{A} \Big((c*a)*(0*b) \Big), \ \bar{A}(a) \Big\}.$$

Theorem 3.11. In an associative **IS**-algebra X, that is, the identity (x*y)*z = x*(y*z) holds in X, every fuzzy \mathcal{I} -ideal is a fuzzy a& \mathcal{I} -ideal.

Proof. Let \overline{A} be a fuzzy \mathcal{I} -ideal of X. Note that

$$(y * x) * (x * (0 * y)) = (y * x) * ((x * 0) * y) = (y * x) * (x * y)$$

= $(y * (x * y)) * x = ((y * x) * y) * x$
= $((y * y) * x) * x = (0 * x) * x$
= $0 * (x * x) = 0 * 0 = 0$

for all $x, y \in X$. Hence

$$\begin{split} \bar{A}(y * x) &\geq \min \Big\{ \bar{A}\Big((y * x) * (x * (0 * y))\Big), \ \bar{A}\Big(x * (0 * y)\Big) \Big\} \\ &= \min \Big\{ \bar{A}(0), \ \bar{A}\Big(x * (0 * y)\Big) \Big\} \\ &= \bar{A}\Big(x * (0 * y)\Big). \end{split}$$

It follows from Theorem 3.7 that \overline{A} is a fuzzy $a\&\mathcal{I}$ -ideal of X.

Theorem 3.12. (Extension property for fuzzy $a\&\mathcal{I}$ -ideals) Let \overline{A} and \overline{B} be fuzzy \mathcal{I} -ideal of X such that $\overline{A}(0) = \overline{B}(0)$ and $\overline{A} \subseteq \overline{B}$, that is, $\overline{A}(x) \leq \overline{B}(x)$ for all $x \in X$. If \overline{A} is a fuzzy $a\&\mathcal{I}$ -ideal of X, then so is \overline{B} .

Proof. Let $x, y \in X$. Using Theorem 3.7(ii) and (P2), we have

$$\begin{split} \bar{B}\Big(y*(x*(x*(0*y)))\Big) &\geq \bar{A}\Big(y*(x*(x*(0*y)))\Big) \\ &\geq \bar{A}\Big((x*(x*(0*y)))*(0*y)\Big) \\ &= \bar{A}\Big((x*(0*y))*(x*(0*y))\Big) \\ &= \bar{A}(0) = \bar{B}(0). \end{split}$$

Note that

$$\begin{split} & \left(\left(y \, \ast \, x \right) \ast \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \right) \ast \left(y \, \ast \left(x \, \ast \, \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \right) \right) \\ & = \quad \left(\left(y \, \ast \, x \right) \ast \left(y \, \ast \left(x \, \ast \, \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \right) \right) \ast \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \right) \\ & \leq \quad \left(x \, \ast \left(x \, \ast \, \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \right) \right) \ast \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \\ & = \quad \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) \ast \left(x \, \ast \, \left(0 \, \ast \, y \right) \right) = 0, \end{split}$$

and so $\bar{B}\Big(((y*x)*(x*(0*y)))*(y*(x*(x*(0*y))))\Big) \geq \bar{B}(0).$ It follows that

$$\begin{split} &\bar{B}\left(\left(y*x\right)*\left(x*\left(0*y\right)\right)\right)\\ &\geq \min\left\{\bar{B}\left(\left(\left(y*x\right)*\left(x*\left(0*y\right)\right)\right)*\left(y*\left(x*\left(x*\left(0*y\right)\right)\right)\right),\ \bar{B}\left(y*\left(x*\left(x*\left(0*y\right)\right)\right)\right)\right)\right\}\\ &\geq \min\left\{\bar{B}\left(\left(\left(y*x\right)*\left(x*\left(0*y\right)\right)\right)*\left(y*\left(x*\left(x*\left(0*y\right)\right)\right)\right)\right),\ \bar{B}(0)\right\}\\ &= \bar{B}\left(\left(\left(y*x\right)*\left(x*\left(0*y\right)\right)\right)*\left(y*\left(x*\left(x*\left(0*y\right)\right)\right)\right)\right)\\ &\geq \bar{B}(0), \end{split}$$

so that

$$\begin{split} \bar{B}(y*x) &\geq \min \Bigl\{ \bar{B}\Bigl((y*x)*(x*(0*y))\Bigr), \ \bar{B}\Bigl(x*(0*y)\Bigr) \\ &\geq \min \Bigl\{ \bar{B}(0), \ \bar{B}\Bigl(x*(0*y)\Bigr) \Bigr\} \\ &= \ \bar{B}\Bigl(x*(0*y)\Bigr). \end{split}$$

Using Theorem 3.7, we know that \overline{B} is a fuzzy $a\&\mathcal{I}$ -ideal of X.

 \Box

References

- S. S. Ahn and H. S. Kim, A note on *I*-ideals in BCI-semigroups, Comm. Korean Math. Soc. 11(4) (1996), 895-902.
- [2] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 351-366.
- [3] Y. B. Jun, S. S. Ahn, J. Y. Kim and H. S. Kim, Fuzzy *I*-ideals in BCI-semigroups, Southeast Asian Bulletin of Mathematics 22 (1998), 147-153.
- [4] Y. B. Jun, S. S. Ahn and H. S. Kim, *Fuzzy I-ideals in* IS-algebras, Comm. Korean Math. Soc. 15(3) (2000), 499-509.
- [5] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15(1) (1993), 59-64.
- [6] Y. B. Jun and E. H. Roh, Fuzzy p&I-ideals in IS-algebras, J. Fuzzy Math. 7(1) (1999), 473-480.
- [7] Y. B. Jun, E. H. Roh and X. L. Xin, *I-ideals generated by a set in* IS-algebras, Bull. Korean Math. Soc. 35(4) (1998), 615-624.
- [8] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24(4) (1998), 309-321.
- [9] E. H. Roh, S. M. Hong and Y. B. Jun, p&*I*-ideals in IS-algebras, Far East J. Math. Sci (FJMS) 1(1) (1999), 127-136.
- [10] E. H. Roh, S. Y. Kim and W. H. Shim, a&*I*-ideals on IS-algebras, Scientiae Mathematicae Japonicae 53(1) (2001), 107-111.

Y. B. Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. *E-mail*: ybjun@nongae.gsnu.ac.kr

E. H. Roh: Department of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea. *E-mail*: ehroh@ns.chinju-e.ac.kr