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Abstract. The paper presents a mathematical model for an inelastic uid whose ap-

parent viscosity is a polynomial function of the invariants of the rate of strain tensor.

Starting with the constitutive equation, the two-dimensional boundary layer equations

for the ow near a moving at surface have been derived. The system of nonlinear

partial di�erential equations for this ow has been subjected to a similarity analysis.

This leads to a nonlinear ordinary di�erential equation (ode) involving the similarity

functions as well as a non-Newtonian parameter K and another parameter r(=W=U ,

W and U being the wall velocity and the free-stream velocity, respectively). For r � 1,

two nonlinear odes governing the similarity functions have been derived. These equa-

tions have been subjected to a perturbation analysis in terms of K. The resulting sys-

tems of two-point boundary value problems have been solved using standard numerical

techniques. The boundary layer velocity pro�les have been presented graphically.

1 Introduction The non-Newtonian uids for which the relationships between the stress

tensor and the deformation rate tensor are nonlinear, arise in several industrial applications

such as chemical, biochemical and mineral processing [1 { 3]. The extent to which the

rheological properties of the uids inuence the ow features varies according to the speci�c

uid ow dynamics. This in turn is related to the manner in which the apparent viscosity

of the uid under consideration is de�ned with respect to the shear rate. It is also known

that there are classes of incompressible inelastic uids for which the apparent viscosity

may decrease with shear rate (shear thinning or pseudoplastic behaviour), increase with

shear rate (shear thickening or dilatant behaviour); or the uid may possess yield stress,

e.g., Bingham plastic material. In this respect, it may be remarked that major e�orts in

literature have been devoted to the study of pseudoplastic and viscoplastic behaviours. This

has apparently been due to the frequent occurrences of such uid behaviours in applications.

However, with the increasing interest in the processing of highly concentrated suspensions

and pastes, the analysis of dilatant uids has assumed greater importance [4 { 6].

Our aim in this work is to consider a special type of dilatant uid [7] which has received

less attention in the literature. To this end, we have investigated uid dynamic characteris-

tics of a steady, laminar boundary layer ow over a moving wall. The governing boundary

layer equations of the uid model have �rst been derived using standard boundary layer

approximations. Subsequently, these equations have been subjected to a similarity anal-

ysis under the assumption that the ratio of the wall velocity to the free-stream velocity,

r, is small. The resulting ordinary di�erential equations have been solved using a regular

perturbation technique followed by numerical integration.
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2 The Fluid Model A constitutive equation of an inelastic non-Newtonian uid can be

represented in the form [1]

�ij = �(I1; I2; I3)eij(1)

where I1, I2 and I3 are scalar invariants of the rate of strain tensor. For the two-dimensional

ow being considered here, I1 and I3 vanish identically. Furthermore, we assume that �(I2)

can be approximated as a power series in I2:

�(I2) = �0 + �1I2 + �2I
2

2
+ � � �(2)

where �0 is the conventional zero-shear viscosity, while other coeÆcients �i (> 0) are the

rheological parameters of the uid. The series expansion (2) allows us to account for the

shear thickening behaviour. In the present case, we retain only up to the �rst degree terms

in I2, and thus

� = �0 + �1I2(3)

The model given by equation (1), in conjunction with equation (3), is employed to

theoretically analyze the boundary layer ow mentioned above.

3 Governing Equations Consider the steady, laminar ow of the rheological uid, sat-

isfying the constitutive equations (1) and (3), near a two-dimensional stagnation point on a

wall moving in its own plane with velocity W1. In the cartesian coordinate system, with a

suitably chosen origin, the x-axis is taken along the plate, while the y-axis is perpendicular

to it, into the uid. The density � of the uid is assumed to be constant. The equations

governing the x- and y- components of velocity, u = u(x; y), v = v(x; y), and the pres-

sure p = p(x; y), are the usual momentum and continuity equations. Taking into account

the inuence of �0 and �1 on the stress components �ij , the x- and y- components of the

momentum equations can be written as
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The continuity equation is

@u

@x
+

@v

@y
= 0(6)

In order to analyze the uid motion near the solid boundary, it is necessary to derive the

boundary layer equations of the ow. This is best done by considering the non-dimensional

forms of the governing equations. To this end, we write

< = U1L=�0; ~y =
p
<y=L; ~x = x=L

~u = u=U1; ~v =
p
<v=U1; ~p = p=(�U2

1
)(7)

where �0 = �0=� is the Newtonian kinematic viscosity, < is the Reynolds number, and L

and U1 are the characteristic scales of length and velocity, respectively. Using equation (7)

in equations (4) and (5) and neglecting tildes on the variables for convenience, we obtain
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where �K = (�1U
2

1
)=(�0L

2) is a non-dimensional parameter characterising the ratio of non-

Newtonian to ordinary viscous forces. One may also note that the continuity equation (6)

remains unchanged in the non-dimensional form. Thus, equations (8) and (9) together with



490 NIRMAL C. SACHETI, PALLATH CHANDRAN AND TAYFOUR EL-BASHIR

equation (6) are the governing equations for the two-dimensional ow in non-dimensional

forms. Equations (8) and (9) can be further simpli�ed under boundary layer approximation

by assuming that the Reynolds number < is several orders of magnitude larger than unity.

Following the usual boundary layer analysis [8], we retain the lowest order e�ect of <. To
this order, and noting that the non-Newtonian parameter �K is assumed to be of order

1=< [7], equations (8) and (9) reduce, respectively, to
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@p

@y
= 0(11)

The boundary conditions to be satis�ed by the velocity variables are

u = W; v = 0 at y = 0; u! U as y !1(12)

where U andW are the non-dimensional free-stream velocity and wall velocity, respectively.

4 Method of Solution Following Gorla [9], we seek similarity solutions using the trans-

formations

u = Uf
0(y) +Wg

0(y); v = �f(y)(13)

where prime denotes derivative with respect to y. It can be easily veri�ed that the con-

tinuity equation (6) is automatically satis�ed by equation (13). Using equation (13) in

equation (10), we obtain

f
02 � ff

00 � f
000 � 1 + r (f 0g0 � fg

00 � g
000) �K

�
f
002
f
000 + rf

002
g
000

+ 2rf 00g00f 000 + 2r2f 00g00g000 + r
2
g
002
f
000 + r

3
g
002
g
000
�
= 0(14)

where K = 3 �KU
2, and r = W=U . In equation (14), K is a modi�ed non-Newtonian

parameter and r is a measure of the speed of the wall motion compared to the free-stream

velocity. In order to solve the highly nonlinear ordinary di�erential equation (14), it is

necessary to make further assumptions on the ow. In this paper, we shall obtain the

solution corresponding to r � 1. Equating to zero the coeÆcients of r0 and r
1, we obtain

a set of two coupled nonlinear ordinary di�erential equations

f
000 + ff

00 � f
02 + 1 +Kf

002
f
000 = 0(15)

g
000 + fg

00 � f
0
g
0 +K

�
f
002
g
000 + 2f 00g00f 000

�
= 0(16)

The transformed boundary conditions are

f(0) = f
0(0) = g(0) = g

0(1) = 0; f
0(1) = g

0(0) = 1(17)

Our prime objective in this work is to analyze the e�ect of the non-Newtonian parameter

K on the stagnation point ow. The velocity functions are now governed by equations (15){

(17). In order to solve them, we further assume that the non-Newtonian e�ects are small

so that a perturbation solution can be obtained. We write

f(y) = f0(y) +Kf1(y) +K
2
f2(y) + � � �(18)

g(y) = g0(y) +Kg1(y) +K
2
g2(y) + � � �(19)
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On using equations (18) and (19) in equations (15) and (16) and equating to zero the

coeÆcients of each power of K, we obtain a set of ordinary di�erential equations governing

fi and gi, (i = 0; 1; 2; : : : ). It is evident from the available literature on similar studies

of other uid models (see, e.g., [9 { 12]) that higher order terms fi and gi, (i = 3; 4; : : : )

in the respective series for f and g, do not contribute signi�cantly to the function values.

Moreover, the algebra involved in the derivation of the corresponding set of coupled ordinary

di�erential equations and then �nding their solutions is a cumbersome process with little

consequence to the ow analysis. In Section 5, we have also given justi�cation (see Tables 1

and 2) for neglecting terms of degree 3 and above in the series (18) and (19). We shall thus

consider here terms up to f2 and g2 only. The relevant equations are
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The boundary conditions become

f0(0) = f
0
0
(0) = g0(0) = g

0
0
(1) = 0; f

0
0
(1) = g

0
0
(0) = 1(26)

f1(0) = f
0
1
(0) = f

0
1
(1) = g1(0) = g

0
1
(0) = g

0
1
(1) = 0(27)

f2(0) = f
0
2
(0) = f

0
2
(1) = g2(0) = g

0
2
(0) = g

0
2
(1) = 0(28)

It is worth noting that the above analysis applies to the case when the wall velocity

W 6= 0. For the stagnation point ow near a stationary wall (W = 0), the problem can be

analyzed in terms of a single similarity function f [7].

5 Numerical Results The set of boundary value problems, equations (20){(28), gov-

erning the functions fi and gi (i = 0, 1, 2) have been numerically integrated using the

NAG Subroutine D02AGFE. As stated in the previous section, in order to justify the per-

turbation approximation of the solutions for small deviations from the Newtonian pro�les,

we shall �rst present the relative errors in the partial sums of the series (18) and (19) up

to and including the terms of degree 2 in K. Let Sn, (n = 0; 1; 2), denote the partial

sums of either series up to this order. Obviously, S0 denotes the Newtonian value while

S1 and S2 refer, respectively, to the �rst order and second order contributions due to the

non-Newtonian e�ects. As our study is devoted to the analysis of the non-Newtonian e�ects

over the corresponding Newtonian ows, it is instructive to compute the relative errors be-

tween S1 (= f0 +Kf1 or g0 +Kg1) and S2 (= f0 + Kf1 +K
2
f2 or g0 +Kg1 +K

2
g2).
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The numerical values of the partial sums S1 and S2 as also their relative percentage errors

have thus been given in Tables 1 and 2. It may be noted that the inclusion of the second

order approximation in either series gives acceptable accuracy in comparison to the �rst

order approximation. In particular, when K is very small (0:1 � 0:3), the maximum error

between the �rst and second order approximations for both f and g is generally less than

2%. However, as should be expected, the relative percentage errors increase marginally as

K assumes larger values. The results for the velocity in the boundary layer and the missing

wall derivatives presented below should thus be seen in this perspective.

Table 1: Partial sums of f-series and percentage errors

K y f0 +Kf1 f0 +Kf1 +K
2
f2

jS1�S2j

S1
� 100

(S1) (S2)

0.1 0.54 0.1512 0.1515 0.20

1.08 0.5174 0.5180 0.12

1.62 0.9930 0.9936 0.06

2.17 1.5139 1.5146 0.05

2.71 2.0501 2.0508 0.03

3.25 2.5905 2.5912 0.03

3.79 3.1316 3.1323 0.02

4.33 3.6730 3.6737 0.02

4.87 4.2141 4.2148 0.02

5.42 4.6886 4.6893 0.01

0.3 0.54 0.1439 0.1468 2.02

1.08 0.5019 0.5069 1.00

1.62 0.9733 0.9791 0.60

2.17 1.4927 1.4987 0.40

2.71 2.0283 2.0345 0.31

3.25 2.5684 2.5746 0.24

3.79 3.1091 3.1154 0.20

4.33 3.6498 3.6563 0.18

4.87 4.1903 4.1969 0.16

5.42 4.6661 4.6722 0.13

0.5 0.54 0.1366 0.1448 6.00

1.08 0.4863 0.5003 2.88

1.62 0.9537 0.9697 1.68

2.17 1.4715 1.4883 1.14

2.71 2.0066 2.0236 0.85

3.25 2.5463 2.5635 0.68

3.79 3.0865 3.1040 0.57

4.33 3.6267 3.6446 0.49

4.87 4.1665 4.1848 0.44

5.42 4.6435 4.6604 0.36

In order to analyze the e�ects of the governing parameters K and r, we have plotted

the boundary layer velocity pro�les (u=W vs y) for both Newtonian (K = 0) and non-
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Table 2: Partial sums of g-series and percentage errors

K y g0 +Kg1 g0 +Kg1 +K
2
g2

jS1�S2 j

S1
� 100

(S1) (S2)

0.1 0.54 0.4349 0.4347 0.05

1.08 0.6765 0.6761 0.06

1.62 0.7861 0.7856 0.06

2.17 0.8266 0.8259 0.08

2.71 0.8386 0.8379 0.08

3.25 0.8416 0.8408 0.10

3.79 0.8424 0.8415 0.11

4.33 0.8428 0.8418 0.12

4.87 0.8431 0.8420 0.13

5.42 0.8424 0.8413 0.13

0.3 0.54 0.4521 0.4506 0.33

1.08 0.7168 0.7138 0.42

1.62 0.8398 0.8353 0.54

2.17 0.8857 0.8800 0.64

2.71 0.8997 0.8930 0.74

3.25 0.9035 0.8958 0.85

3.79 0.9048 0.8964 0.93

4.33 0.9057 0.8967 0.99

4.87 0.9066 0.8973 1.03

5.42 0.9045 0.8953 1.02

0.5 0.54 0.4692 0.4651 0.87

1.08 0.7571 0.7487 1.11

1.62 0.8934 0.8810 1.39

2.17 0.9449 0.9291 1.67

2.71 0.9609 0.9420 1.97

3.25 0.9654 0.9440 2.22

3.79 0.9672 0.9438 2.42

4.33 0.9686 0.9437 2.57

4.87 0.9701 0.9442 2.67

5.42 0.9666 0.9412 2.63

Newtonian (K = 0:3) uids. These are shown in Figs. 1 and 2, respectively, for a range of

values of � (= 1=r), and include the physical situations corresponding to the free-stream

velocity U being in the same or opposite directions of the wall velocity W . It may be

observed that the velocity pro�les of our dilatant uid model are of uniform pattern, and

converges to their free-stream values in the region near y � 2. This indicates that the

boundary layer thickness is essentially independent of the magnitude of �, which is in

agreement with a similar study for a viscoelastic uid [9]. However, it is of interest to note

that the overshooting e�ects for velocities reported in the literature for viscoelastic uid

models [9 { 12] are absent for the present non-Newtonian model. This implies that the

velocity in the boundary layer for the present dilatant model cannot exceed the free-stream
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velocity. Although the non-Newtonian velocity pro�les do not show much deviations from

the Newtonian pro�les within the perturbation approximations and the consequent small

parameter values chosen here, we have nevertheless shown comparison of a couple of pro�les

in Fig. 3.

In many practical applications, prediction of the local wall shear stress is of great im-

portance. The wall shear stress depends on the missing wall derivatives f 00(0) and g
00(0).

The values of these derivatives have thus been computed and are given in Table 3 for a

range of values of the rheological parameter K.

Table 3: Wall derivatives f 00(0) and g
00(0)

K f
00(0) g

00(0) K f
00(0) g

00(0)

0.00 1.2326 -0.8113 0.50 1.1542 -0.4258

0.05 1.2110 -0.7657 0.55 1.1632 -0.3960

0.10 1.1924 -0.7216 0.60 1.1752 -0.3677

0.15 1.1770 -0.6791 0.65 1.1903 -0.3409

0.20 1.1645 -0.6382 0.70 1.2085 -0.3158

0.25 1.1552 -0.5989 0.75 1.2297 -0.2922

0.30 1.1489 -0.5611 0.80 1.2540 -0.2702

0.35 1.1456 -0.5249 0.85 1.2813 -0.2498

0.40 1.1454 -0.4903 0.90 1.3117 -0.2310

0.45 1.1483 -0.4573 0.95 1.3452 -0.2137
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Figure 1: Boundary layer velocity pro�les (K = 0)
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Figure 2: Boundary layer velocity pro�les (K = 0:3)
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Figure 3: Comparison of Newtonian and non-Newtonian velocity pro�les
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