ON THE SPAN OF STARLIKE CURVES

K.T. Hallenbeck

Received March 9, 2001; revised June 22, 2001

Abstract

We prove that the dual monotone span of a starlike curve X is not smaller than the infimum, $\varepsilon(X)$, of the set of positive numbers m such that a chain with mesh m covers X.

1 Introduction. We review the definitions introduced by A. Lelek in [2] and [3]. Let X be a nonempty connected metric space. The span $\sigma(X)$ of X is the least upper bound of the set of real numbers $r, r \geq 0$, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions $f, g: Y \rightarrow X$ such that

$$
\begin{equation*}
f(Y)=g(Y) \tag{1}
\end{equation*}
$$

and $\operatorname{dist}[f(y), g(y)] \geq r$ for every $y \in Y$.
Relaxing the requirement posed by equality (1) to the inclusion $f(Y) \subseteq g(Y)$ produces the definition of the semispan $\sigma_{0}(X)$ of X. Requiring that g be onto gives the definitions of the surjective span $\sigma^{*}(X)$ and the surjective semispan $\sigma_{0}^{*}(X)$.

It was pointed out in [3] that

$$
0 \leq \sigma(X) \leq \sigma_{0}(X) \leq \operatorname{diam}(X)
$$

It follows from a more general result of Lelek [3, Th.2.1, p 39$]$ that when X is a continuum then $\sigma_{0} \leq \varepsilon(X)$. A different, direct, proof can be found in [1].

In this paper we concentrate on the case when X is a simple closed curve in the plane. Notice that in this case $\sigma^{*}(X)=\sigma(X)$ and $\sigma_{0}^{*}(X)=\sigma_{0}(X)$. Next, we review the definitions introduced in [1], starting with the monotone span $\sigma_{m}(X)$ of X.

Definition 1. If X is a simple closed curve then

$$
\sigma_{m}(X)=\sup _{f, g} \inf _{t \in[0,1]}\|f(t)-g(t)\|,
$$

where $f, g:[0,1] \rightarrow X$ are continuous on $[0,1]$, monotone on $[0,1)$, and $f([0,1])=X=$ $g([0,1])$.

Next we define the dual monotone span $\bar{\sigma}_{m}(X)$ of X.
Definition 2. If X is a simple closed curve then

$$
\bar{\sigma}_{m}(X)=\inf _{h, k} \sup _{t \in[0,1]}\|h(t)-k(t)\|,
$$

where $h, k:[0,1] \rightarrow X$ are continuous on $[0,1]$, monotone on $[0,1), h([0,1])=X=$ $k([0,1]), h(0)=k(0)$, there exists a point $t^{\prime} \in(0,1)$ such that $h\left(\left[0, t^{\prime}\right]\right) \cap k\left(\left[0, t^{\prime}\right]\right)=\{h(0)\}$ and neither $h\left(\left[0, t^{\prime}\right]\right)$ nor $k\left(\left[0, t^{\prime}\right]\right)$ is a singleton.

[^0]Finally, we define the dual effectively monotone span $\bar{\sigma}_{e m}(X)$.
Definition 3. If X is a simple closed curve then

$$
\bar{\sigma}_{e m}(X)=\inf _{h, k} \sup _{t \in[0,1]}\|h(t)-k(t)\|,
$$

where $h, k:[0,1] \rightarrow X$ are continuous, $h([0,1])=X=k([0,1]), h(0)=k(0)$, there exists a point $t_{o} \in(0,1)$ such that $h\left(t_{o}\right)=k\left(t_{o}\right) \neq h(0)$ and $h\left(\left[0, t_{o}\right]\right) \cap k\left(\left[0, t_{o}\right]\right)=\left\{h(0), h\left(t_{o}\right)\right\}$.

It was proven in [1] that $\bar{\sigma}_{e m}(X) \leq \varepsilon(X)$.
The span of X is equal to $\varepsilon(X)$ when X is the boundary of a convex region (see [4]).

2 Dual monotone span and starlike curves. Recall that a starlike curve is a simple closed curve whose every point can be seen from a fixed point in the bounded component of its complement. Thus, X is starlike if there is a point 0 in the bounded component D of $\mathbb{C} \backslash X$ such that $D \supset 0 P \backslash\{P\}$ for each point $P \in X$.

For a pair of two distinct points $A, B \in X$ we denote the counterclockwise are on X, with the endpoints A and B, by $A B^{\sim}$.

We shall prove that $\varepsilon(X) \leq \bar{\sigma}_{m}(X)$ for any starlike curve X. First, we need another definition and several auxiliary lemmas.
Definition 4. Let X be a starlike polygon, let $h, k:[0,1] \rightarrow X$ be the functions described in Definition 3, and let $B=h(0)=k(0), E=h\left(t_{o}\right)=k\left(t_{o}\right)$, where $t_{o} \in(0,1)$ meats the conditions of Definition 3 as well. Let $B E^{\sim}=h\left(\left[0, t_{o}\right]\right), E B^{\sim}=k\left(\left[0, t_{o}\right]\right)$. For each point $P \in B E^{\sim}\left(E B^{\sim}\right)$, let t_{p} be the number in $\left(0, t_{o}\right)$ such that $h\left(t_{p}\right)=P\left(k\left(t_{p}\right)=P\right)$ and $\forall t \in\left(t_{p}, t_{o}\right) h(t) \neq P(k(t) \neq P)$. For any pair of points $P, Q \in X \backslash\{B, E\}$ we say that P precedes Q (written $P \ll Q$) if and only if $t_{p} \leq t_{Q}$. For any $P \in X \backslash\{B, E\}, B \ll P \ll E$.
Lemma A. Let X be a polygon, let h and k be as described in Definition 2, and let B, E and t_{o} be as described in Definitions 3 and 4. There exists a sequence $\left\{W_{j} W_{j}{ }^{\prime}\right\}_{j=1}^{N}$ of line segments with the following properties:

$$
\begin{array}{ll}
\text { 1(A) } & \forall 1 \leq j \leq N_{0} \quad W_{j} \in B E^{\sim}, W_{j}^{\prime} \in E B^{\sim} \quad \text { and } \\
& \exists t \in\left(0, t_{o}\right) \ni W_{j}=h(t), W_{j}^{\prime}=k(t) \\
\text { 2(A) } & \forall 1 \leq j<N_{0} \quad W_{j} \ll W_{j+1}, W_{j}^{\prime} \ll W_{j+1}^{\prime} \\
\text { 3(A) } \text { If } V \in X \backslash\{B, E\} \text { is a vertex then } \exists j, 1 \leq j \leq N_{o} \ni V=W_{j} \text { or } V=W_{j}^{\prime} .
\end{array}
$$

Proof. Let $\left\{V_{m}\right\}_{m=1}^{M}$ be the increasing sequence in the order \ll of all vertices on $X \backslash\{B, E\}$. Let $\left\{t_{m}\right\}_{m=1}^{M}$ be the corresponding non-decreasing sequence of numbers in $\left(0, t_{o}\right)$ such that $\forall 1 \leq m \leq M t_{m}=t_{V_{m}}$ (see Definition 4). We use induction to define $\left\{W_{j}, W_{j}{ }^{\prime}\right\}_{j=1}^{N_{0}}$ as follows. Put $W_{1}=h(1), W_{1}{ }^{\prime}=k\left(t_{1}\right)$. Soppose $W_{j-1}, W_{j-1}{ }^{\prime}$ are defined and suppose $W_{j-1}=h\left(t_{m-1}\right)$ or $W_{j-1}=k\left(t_{m-1}\right)$ for some $m, 1<m<M$. If $V_{m}=h\left(t_{m-1}\right)$ or $V_{m}=k\left(t_{m-1}\right)$ then put $W_{j}=h\left(t_{m+1}\right)$ and $W_{j}{ }^{\prime}=k\left(t_{m+1}\right)$; otherwise put $W_{j}=h\left(t_{m}\right)$ and $W_{j}{ }^{\prime}=k\left(t_{m}\right)$.
Lemma B. If $Q P C B$ is a convex quadrilateral with diagonals $Q C$ and $P B$ then $\|B Q\|+$ $\|P C\|<\|Q C\|+\|P B\|$.
Proof follows from the law of cosines or the triangle inequality.

Lemma C. Suppose P is a simple closed polygonal line with at least four vertices, and let A, B, C and D be vertices of P such that $P \supset A B, P \supset C D, A B \cap C D=\emptyset$. Let $A C^{\sim}, D B^{\sim}$ be polygonal lines such that $A B \cup A C^{\sim} \cup C D \cup D B^{\sim}=P, A C^{\sim} \cap D B^{\sim}=\emptyset$, and let $d>\delta>0$. If $\operatorname{diam} A C^{\sim} \leq d$ and $\operatorname{diam} D B^{\sim} \leq d$ then there exists a sequence $\left\{A_{k} C_{k}\right\}_{k=0}^{K}$ of pairwise disjoint polygonal lines such that

1(c) $\forall k=0, \ldots, K \quad A_{k} \in A B, C_{k} \in C D$,
$A_{o}=A, C_{o}=C, A_{K}=B, C_{K}=D$
2(c) $\forall 0 \leq k<K \quad \operatorname{diam} A_{k} C_{k}^{\sim} \leq d$
3(c) $\forall 0<k<K \operatorname{diam} P_{k} \leq d+\delta$, where P_{k} is the polygon whose boundary consists of

$$
A_{k-1} C_{k-1}^{\sim}, C_{k-1} C_{k}, C_{k} A_{k}^{\sim} \text { and } A_{k} A_{k-1} \sim, k=1, \ldots, K
$$

Theorem 1. If X is a starlike curve then $\varepsilon(X) \leq \bar{\sigma}_{m}(X)$.
Proof. Suppose X is a starlike polygon, B and E are two distinct points on X. Let h, k : $[0,1] \rightarrow X$ be continuous on $[0,1]$, monotone on $[0,1), h(0)=k(0)=B, h\left(t_{o}\right)=k\left(t_{o}\right)=E$ for some $t_{o} \in(0,1), h\left(\left[0, t_{o}\right]\right)=B E^{\sim}, k\left(\left[0, t_{o}\right]\right)=E B^{\sim}$. Suppose $\left\{W_{j} W_{j}{ }^{\prime}\right\}_{j=0}^{N_{o}}$ is a sequence of line segments described in Lemma A. Let $\delta>0$. We shall define a chain of closed polygons $\left\{R_{j}\right\}_{j=1}^{N}$ that satisfy the following conditions:

$$
\begin{array}{ll}
1(1) & \bigcup_{j=1}^{N} R_{j} \supset X \\
2(1) & \forall 1 \leq j<N \quad R_{j} \cap R_{j+1} \subseteq \partial R_{j} \cap \partial R_{j+1} \neq \emptyset \\
& \forall j, k \quad|k-j|>1 \Rightarrow R_{j} \cap R_{k}=\emptyset \\
3(1) & \forall 1 \leq j \leq N \quad \operatorname{diam} R_{j} \leq \bar{\sigma}_{m}(X)+\delta
\end{array}
$$

Without loss of generality, we can assume that B is a vertex. It follows from Lemma A that $W_{1} \neq B, W_{1}^{\prime} \neq B, W_{1} \in B E^{\sim}, W_{1}{ }^{\prime} \in E B^{\sim}$. We choose two points W_{0} and $W_{o}{ }^{\prime}$ so that $B \in W_{o} W_{o}{ }^{\prime}, W_{o} W_{o}{ }^{\prime} \cap W_{1} W_{1}{ }^{\prime}=\emptyset$ and $\left\|W_{o} W_{o}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. Without loss of generality, we shall assume that $\forall 1<j \leq N_{o}\left\|W_{j-1}{ }^{\prime} W_{j}^{\prime}\right\| \leq \bar{\sigma}_{m}(X),\left\|W_{j-1} W_{j}\right\| \leq \bar{\sigma}_{m}(X)$. To make the notation shorter, we give the working name Q_{j} to the polygon with vertices $W_{j-1}, W_{j}, W_{j}{ }^{\prime}, W_{j-1}{ }^{\prime}, \quad j=1, \ldots, N_{o}$, after eliminating $W_{j-1} W_{j-1}{ }^{\prime}$ from the sequence whenever $W_{j} W_{j}^{\prime} \supset W_{j-1} W_{j-1}{ }^{\prime}$. These polygons will be modified in the course of our construction.

Let n be the largest natural number such that $Q_{n} \supset \bigcup_{j=1}^{n} Q_{j}$.
If $n>1$ then we put $Q_{1}=Q_{n}$, relabel the remaining line segments in $\left\{W_{j} W_{j}{ }^{\prime}\right\}$ in the consecutive manner as $W_{2} W_{2}{ }^{\prime}, W_{3} W_{3}{ }^{\prime}, \ldots$, and let Q_{j} be the polygon with the new vertices $W_{j-1}, W_{j}, W_{j}{ }^{\prime}, W_{j-1}{ }^{\prime}$ for each j. Suppose the line segments $W_{j} W_{j}{ }^{\prime}, j=1, \ldots, N_{o}$ are not pairwise disjoint and let m be the natural number such that

$$
4(1) \quad W_{m} W_{m}^{\prime} \cap \bigcup_{j=1}^{m-1} Q_{j} \neq \emptyset \text { and } \forall j=2, \ldots, m-1 \quad W_{j} W_{j}^{\prime} \cap \bigcup_{i=1}^{j-1} Q_{i}=\emptyset
$$

Consider the following cases:
I. $W_{m}, W_{m}{ }^{\prime} \in \bigcup_{j=1}^{m-1} Q_{j}$
II. $\quad W_{m}, W_{m}{ }^{\prime} \notin \bigcup_{j=1}^{m-1} Q_{j}$

IIII. $W_{m} \in \bigcup_{j=1}^{m-1} Q_{j}$ and $W_{m}{ }^{\prime} \notin \bigcup_{j=1}^{m-1} Q_{j}$.
Note that the argument in the case when $W_{m}{ }^{\prime} \in \bigcup_{j=1}^{m-1} Q_{j}$ and $W_{m} \notin \bigcup_{j=1}^{m-1} Q_{j}$ would be symmentric to the one we will offer in III.

In case I, let m_{o} be the largest number, $m_{o} \geq m$, such that $\forall j=m, \ldots, m_{o} \quad W_{j} W_{j}{ }^{\prime} \in$ $\bigcup_{i=1}^{m-1} Q_{i}$. Relabel the line segments $W_{j} W_{j}{ }^{\prime}$ for $j>m_{o}$ as follows. Put $W_{m}=W_{m_{o}+1}, W_{m}{ }^{\prime}=$ $W_{m_{o}+1^{\prime}}, \ldots, W_{m+i}=W_{m_{o}+i+1}, W_{m+i}{ }^{\prime}=W_{m_{o}+i+1}, \ldots$, and consider case II or III if necessary.

Case II calls for the following distinction:
IIa $\quad W_{m} W_{m}{ }^{\prime} \cap \bigcup_{j=1}^{m-1} W_{j} W_{j}{ }^{\prime}=\emptyset$
IIb $\quad W_{m} W_{m}{ }^{\prime} \cap \bigcup_{j=1}^{m-1} W_{j} W_{j}{ }^{\prime} \neq \emptyset$
In case IIa, there is exactly one $t, 1 \leq t \leq m-1$, such that $Q_{t} \cap W_{m} W_{m}{ }^{\prime}=\emptyset$. Let $m=t$, and let Q_{m} be the polygon with vertices $W_{t-1}, W_{m}, W_{m}{ }^{\prime}, W_{t-1}{ }^{\prime}$.

In case IIb , the procedure is as follows. Let i be the smallest number such that $W_{i} W_{i}^{\prime} \cap$ $W_{m} W_{m}{ }^{\prime} \neq \emptyset$. If $i<m-1$ then eliminate $W_{j} W_{j}{ }^{\prime}$ for all $j, i<j<m$, for which $W_{j} W_{j}{ }^{\prime} \cap$ $W_{m} W_{m}{ }^{\prime}=\emptyset$ so that it can be assumed, without loss of generality, that either $W_{i} W_{i}^{\prime} \cap$ $W_{j} W_{m}{ }^{\prime} \neq \emptyset$ or $W_{i} W_{i}{ }^{\prime} \cap W_{j}{ }^{\prime} W_{m} \neq \emptyset$ for $j=i+1, \ldots, m-1$. Recall that, by Lemma A, $\left\|W_{i} W_{j}{ }^{\prime}\right\|=\left\|h\left(t_{j}\right)-k\left(t_{j}\right)\right\| \leq \bar{\sigma}_{m}(X)$ for all j.

Suppose first that $\left\|W_{m-1} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. Let n be the largest number such that $n<i$ and $W_{n} W_{n}{ }^{\prime} \cap W_{n+1} W_{m}{ }^{\prime}=\emptyset$.

If $\forall j, n<j \leq m,\left\|W_{j} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$ then define the new Q_{n+1} to be the polygon with vertices $W_{n}, W_{n+1}, W_{m}{ }^{\prime}$ and $W_{n}{ }^{\prime}$, the new Q_{n+2} to be the triangle $W_{n+1} W_{n+2} W_{m}{ }^{\prime}, \ldots$, the new Q_{m} to be the triangle $W_{m-1} W_{m} W_{m}{ }^{\prime}$. Otherwise, let j be the largest number, $n<j<m-1$, such that $\left\|W_{j} W_{m}{ }^{\prime}\right\|>\bar{\sigma}_{m}(X)$. Then, by Lemma $\mathrm{B},\left\|W_{j+1} W_{j}{ }^{\prime}\right\| \leq$ $\bar{\sigma}_{m}(X) ., \ldots,\left\|W_{m} W_{j}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$, and we define the new Q_{j+1} to be the triangle $W_{j} W_{j+1} W_{j}{ }^{\prime}$, the new Q_{j+2} to be the triangle $W_{j+1} W_{j+2} W_{j}{ }^{\prime}, \ldots$, the new Q_{m} to be the triangle $W_{m-1} W_{m} W_{j}{ }^{\prime}$.

Suppose now that $\left\|W_{m-1} W_{m}{ }^{\prime}\right\|>\bar{\sigma}_{m}(X)$. Then, by Lemma B, $\left\|W_{m} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. If $\operatorname{int}\left(W_{m} W_{m-1}{ }^{\prime}\right) \cap B E^{\sim}=\emptyset$ then we define our new Q_{m} to be the triangle $W_{m-1}{ }^{\prime} W_{m} W_{m-1}{ }^{\prime}$. Otherwise, we define a new W_{m-1} by chooseing a point on $B E^{\sim}$, arbitrarily chose to $\operatorname{int}\left(W_{m} W_{m-1}{ }^{\prime}\right) \cap B E^{\sim}$ and preceding it, and if necessary, redefine each W_{j} that succeeds
it in the order \ll on X, arbitrarily close to, and preceding, the new W_{m-1}. Here, Q_{m} is the quadrilateral $W_{m-1}{ }^{\prime} W_{m-1} W_{m} W_{m}{ }^{\prime}$.

We now turn to case III. First, we claim that $W_{m} W_{m}{ }^{\prime} \cap W_{m-1} W_{m-1}{ }^{\prime} \neq \emptyset$. This is clearly true when $W_{m} \in W_{m-1} W_{m-1}{ }^{\prime}$. Suppose then that $W_{m} \notin W_{m-1} W_{m-1}{ }^{\prime}$ and let D be the bounded component of the complement of X and let $0 \in D$ be the point with respect to which X is starlike. Let L be the line passing thorough W_{m} and $W_{m-1}{ }^{\prime}$ and let V_{1} and V_{2} be the open half planes such that $V_{1} \cup L \cup V_{2}=\mathbb{C}, W_{m-1} \in V_{2}, V_{1} \cap V_{2}=\emptyset$. Since $D \supset 0 W_{m-1} \backslash\left\{W_{m-1}\right\}$ and $D \supset 0 W_{m-1}{ }^{\prime} \backslash\left\{W_{m-1}{ }^{\prime}\right\}$, we have $0 \in V_{1}$, and hence $W_{m}{ }^{\prime} \in V_{2}$. It follows from the latter that $W_{m} W_{m}{ }^{\prime} \cap W_{m-1} W_{m-1}{ }^{\prime} \neq \emptyset$. If $W_{m} \in W_{m-1} W_{m-1}{ }^{\prime}$ we define the new Q_{m} to be the triangle $W_{m} W_{m}{ }^{\prime} W_{m-1}{ }^{\prime}$.

If $\left\|W_{m-1} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$ then define the new Q_{m} to be the triangle $W_{m-1} W_{m}{ }^{\prime} W_{m-1}{ }^{\prime}$.
Suppose now that $\left\|W_{m-1} W_{m}^{\prime}\right\|>\bar{\sigma}_{m}(X)$. Assume, without loss of generality, that $W_{m} \cap \bigcup_{j=1}^{m-1} W_{j} W_{j}{ }^{\prime}=\emptyset$. If the angle at W_{m} in the triangle $W_{m}{ }^{\prime} W_{m} W_{m-1}$ is smaller than $\pi / 2$ then let C be the perpendicular projection of $W_{m}{ }^{\prime}$ onto $W_{m} W_{m-1}$. Otherwise, put $C=W_{m}$. Note that $\left\|W_{m}{ }^{\prime} C\right\| \leq \bar{\sigma}_{m}(X)$. Also, $\left\|W_{m-1}{ }^{\prime} C\right\| \leq \bar{\sigma}_{m}(X)$ since the angle at C in the triangle $W_{m-1}{ }^{\prime} C W_{m-1}$ exceeds $\pi / 2$ and $\left\|W_{m-1} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. Let i be the largest number, $i<m-1$, such that $W_{i} W_{i}{ }^{\prime} \cap C W_{m}{ }^{\prime}=\emptyset$. Choose a sequence of points $\left\{C_{j}\right\}_{j=i+1}^{m-2}$ such that the polygonal lines connecting W_{j}, C_{j} and $W_{j}{ }^{\prime}, j=i+1, \ldots, m-$ 2, are pairwise disjoint and do not intersect the polygonal line $W_{m-1}{ }^{\prime} C W_{m-1}, C_{j} \neq$ $C,\left\|C_{j} C\right\|<\delta, j=i+1, \ldots, m-2$. Notice now that since for each $j=i+1, \ldots, m-2$ the angle at C_{j} in the triangle $W_{j}{ }^{\prime} C_{j} W_{j}$ exceeds $\pi / 2$ and $\left\|W_{j} W_{j}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$ we have $\left\|C_{j} W_{j}^{\prime}\right\|<\bar{\sigma}_{m}(X)$ and $\left\|C_{j} W_{j}\right\|<\bar{\sigma}_{m}(X)$. We define the new Q_{i+1} to be the ploygon with vertices $W_{i}, W_{i+1}, C_{i+1}, W_{i+1}{ }^{\prime}$ and $W_{i}{ }^{\prime}$, the new Q_{j} to be the polygon with vertices $W_{j-1}, W_{j}, C_{j}, W_{j}^{\prime}, W_{j-1}{ }^{\prime}$ and C_{j-1} for $j=i+2, \ldots, m-2$, the new Q_{m-1} to be the polygon with vertices $W_{m-2}, W_{m-1}, C, W_{m-1}^{\prime}, W_{m-2}^{\prime}$ and C_{m-2}, and the new Q_{m} to be the triangle $W_{m-1}{ }^{\prime} C W_{m}{ }^{\prime}$.

This concludes the description of the procedures applied in cases I, II and III.
We now put $I_{j}=Q_{j} \cap Q_{j+1}$, and let W_{j} and $W_{j}{ }^{\prime}$ be the endpoints of I_{j} lying on $B E^{\sim}$ and $E B^{\sim}$, respectively, $1 \leq j<m$, except for I_{m-1} in case III when $\left\|W_{m-1} W_{m}{ }^{\prime}\right\|>\bar{\sigma}_{m}(X)$. We define I_{m} to be the line segment $W_{m} W_{m}{ }^{\prime}$ in cases I and IIa. We define I_{m} to be the polygonal line connecting $W_{m}, W_{m-1}{ }^{\prime}$ and $W_{m}{ }^{\prime}$ in case IIb when $\left\|W_{m} W_{m-1}{ }^{\prime}\right\| \leq$ $\bar{\sigma}_{m}(X)<\left\|W_{m-1} W_{m}^{\prime}\right\|$ and $\operatorname{int}\left(W_{m} W_{m-1}^{\prime}\right) \cap X=\emptyset$. If $\operatorname{int}\left(W_{m} W_{m-1}^{\prime}\right) \cap X \neq \emptyset$ while $\left\|W_{m} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)<\left\|W_{m-1} W_{m}{ }^{\prime}\right\|$ then $I_{m}=W_{m} W_{m}{ }^{\prime}$.

In the case when $\left\|W_{m-1} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$ in IIb, we put $I_{m}=W_{m} W_{m}{ }^{\prime}$ provided that for each $j\left\|W_{m-1} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X), n<j \leq m$, and define I_{m} to be the polygonal line connecting W_{m}, W_{j}^{\prime} and W_{m}^{\prime} otherwise, where j is the largest number, $n<j<m-1$, such that $\left\|W_{j} W_{m}{ }^{\prime}\right\|>\bar{\sigma}_{m}(X)$.

Finally, in case III we define I_{m} to be the line segment $W_{m-1} W_{m}{ }^{\prime}$ when $\left\|W_{m-1} W_{m}{ }^{\prime}\right\| \leq$ $\bar{\sigma}_{m}(X)$, and to be the line segment $C W_{m}{ }^{\prime}$ when $\left\|W_{m-1} W_{m}{ }^{\prime}\right\|>\bar{\sigma}_{m}(X)$. In the latter case I_{m-1} is defined to be the polygonal line connecting W_{m-1}, C and $W_{m-1}{ }^{\prime}$.

$$
\text { Suppose that }\left\{n: n>m, W_{n} W_{n}^{\prime} \cap \bigcup_{j=1}^{n-1} Q_{j} \neq \emptyset\right\} \neq \emptyset
$$

Let $m_{1}, m_{1}>m$, be the smallest number such that

$$
\begin{equation*}
W_{m} W_{m}^{\prime} \cap \bigcup_{j=1}^{m_{1}-1} Q_{j} \neq \emptyset \tag{1}
\end{equation*}
$$

We consider cases I, II, III, where m is replaced by m_{1}, with the following modification of case II.

IIa $\quad W_{m_{1}} W_{m_{1}}{ }^{\prime} \cap\left[\bigcup_{j=1}^{m} I_{j} \cup \bigcup_{j=m+1}^{m_{1}-1} W_{j} W_{j}{ }^{\prime}\right]=\emptyset$

The procedure in this case dose not change.

$$
\begin{aligned}
& \mathrm{IIb}_{1} \quad W_{m_{1}} W_{m_{1}}{ }^{\prime} \cap I_{m}=\emptyset \text { and } \\
& \\
& W_{m_{1}} W_{m_{1}}{ }^{\prime} \cap\left[\bigcup_{j=1}^{m-1} I_{j} \cup \bigcup_{j=m+1}^{m_{1}-1} W_{j} W_{j}^{\prime}\right] \neq \emptyset
\end{aligned}
$$

The procedure we follow in this case was described previously for case IIb.

$$
\begin{array}{ll}
\operatorname{IIb}_{2} & W_{m_{1}} W_{m_{1}}^{\prime} \cap I_{m} \neq \emptyset \text { and } W_{m_{1}} W_{m_{1}}^{\prime} \cap W_{m} W_{m}^{\prime}=\emptyset \\
\mathrm{IIb}_{3} & W_{m_{1}} W_{m_{1}}^{\prime} \cap W_{m} W_{m}^{\prime} \neq \emptyset \text { and } W_{m_{1}} W_{m_{1}}^{\prime} \cap W_{m-1} W_{m-1}^{\prime} \neq \emptyset \\
\mathrm{IIb}_{4} & W_{m_{1}} W_{m_{1}}^{\prime} \cap W_{m} W_{m}^{\prime} \neq \emptyset \text { and } W_{m_{1}} W_{m_{1}}^{\prime} \cap W_{m-1} W_{m-1}^{\prime}=\emptyset
\end{array}
$$

Clearly, IIb_{2} can only happen if I_{m} is the polygonal line $W_{m} W_{m-1}{ }^{\prime} W_{m}{ }^{\prime}$ (resulting from the case IIb for m). Recall that then $\left\|W_{m} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)<\left\|W_{m-1} W_{m}{ }^{\prime}\right\|$ and $\operatorname{int}\left(W_{m} W_{m-1}{ }^{\prime}\right) \cap B E^{\sim}=\emptyset$. Hence, the angle at $W_{m}{ }^{\prime}$ in the quadrilateral $W_{m-1} W_{m} W_{m-1}{ }^{\prime} W_{m}{ }^{\prime}$ must be smaller than $\pi / 2$, for otherwise $W_{m-1} W_{m-1}^{\prime}$ would constitute the longest side of the triangle $W_{m-1} W_{m-1}{ }^{\prime} W_{m}{ }^{\prime}$ and consequently, $\left\|W_{m-1} W_{m}{ }^{\prime}\right\|<\left\|W_{m-1} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. Similarly, the angle at W_{m-1} in the same quadrilateral must be smaller that $\pi / 2$ for otherwise $\left\|W_{m-1} W_{m}{ }^{\prime}\right\|<\left\|W_{m} W_{m}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. In the even when the angle at $W_{m-1}{ }^{\prime}$ is also smaller than $\pi / 2$, we let W be the orthogonal projection of W_{m-1} onto $W_{m}{ }^{\prime} W_{m-1}{ }^{\prime}$ and let V be the intersection point of $W_{m-1} W$ and the ray with the endpoint W_{m-1}^{\prime} containing $W_{m-2}{ }^{\prime}$. We replace $W_{m-1}^{\prime}{ }^{\prime}$ with V. Notice that the angle at V in the quadrilateral $W_{m-1} W_{m} V W_{m}{ }^{\prime}$ is larger than $\pi / 2$ and $\left\|W_{m-1} V\right\|<\left\|W_{m} W_{m-1}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)$. It follows from the above argument that we can assume without loss of generality that the angle at $W_{m-1}{ }^{\prime}$ in the quadrilateral $W_{m-1} W_{m} W_{m-1}{ }^{\prime} W_{m}{ }^{\prime}$ exceeds $\pi / 2$, as dose the angle at $W_{m-1}{ }^{\prime}$ in the triangle $W_{m} W_{m-1}{ }^{\prime} W_{m}{ }^{\prime}$.

Therefore, in case IIb_{2} we choose a point Z such that $\left\|W_{m-1}{ }^{\prime} Z\right\|<\delta, Z \notin \bigcup_{j=1}^{m} Q_{j}$, and define our new Q_{m+1} to be the polygon $W_{m} W_{m_{1}} Z W_{m_{1}}{ }^{\prime} W_{m}{ }^{\prime} W_{m-1}{ }^{\prime}$ while I_{m+1} is the polygonal line $W_{m_{1}} Z W_{m_{1}}{ }^{\prime}$. Note that for sufficiently small $\delta \operatorname{diam} I_{m+1} \leq\left\|W_{m_{1}} W_{m_{1}}{ }^{\prime}\right\| \leq$ $\bar{\sigma}_{m}(X)$. Put $m_{1}=m+1$ and delete all $W_{j} W_{j}^{\prime}$ for $m<j<m_{1}$.

The case IIb_{3} with $I_{m} \neq W_{m} W_{m}^{\prime}$ is handled similarly to IIb_{2}. In addition to the point Z described in the latter, we choose a point Y such that $\left\|W_{m} Y\right\|<\delta, Y \notin \bigcup_{j=1}^{m} Q_{j}$,
and define our new Q_{m+1} to be the polygon $W_{m} W_{m_{1}} Y Z W_{m_{1}}{ }^{\prime} W_{m}{ }^{\prime} W_{m-1}{ }^{\prime}$ while I_{m+1} is the polygonal line $W_{m_{1}} Y Z W_{m_{1}}{ }^{\prime}$. Note that for sufficiently small $\delta \operatorname{diam} I_{m+1} \leq\left\|W_{m_{1}} W_{m_{1}}{ }^{\prime}\right\| \leq$ $\bar{\sigma}_{m}(X)$. Put $m_{1}=m+1$ and delete all $W_{j} W_{j}{ }^{\prime}$ for $m<j<m_{1}$.

If $I_{m}=W_{m} W_{m}{ }^{\prime}$ then case IIb_{3} is handled the same way as case IIb_{1}.
Consider the case IIb_{4}. Delete all $W_{j} W_{j}{ }^{\prime}$ from the sequence $\left\{W_{j} W_{j}{ }^{\prime}\right\}_{j<m}$ such that $W_{j} W_{j}{ }^{\prime} \cap W_{m} W_{m}{ }^{\prime} \neq \emptyset$ and $W_{j} W_{j}{ }^{\prime} \cap W_{m_{1}} W_{m_{1}}{ }^{\prime}=\emptyset$. Either for all remaining $j, j<$ $m, W_{j} W_{j}{ }^{\prime} \cap W_{m} W_{m}{ }^{\prime}=\emptyset$ or there exists $j, j<m-1$ such that $W_{j} W_{j}{ }^{\prime} \cap W_{m} W_{m}{ }^{\prime} \neq \emptyset$ and $W_{j} W_{j}{ }^{\prime} \cap W_{m_{1}} W_{m_{1}}{ }^{\prime} \neq \emptyset$.

If the latter occurs, let $m-i$ be the largest number, $m-i<m-1$, such that $W_{m-i} W_{m-i}{ }^{\prime} \cap W_{m} W_{m}{ }^{\prime} \neq \emptyset$ and $W_{m-i} W_{m-i}{ }^{\prime} \cap W_{m} W_{m}{ }^{\prime} \neq \emptyset$ and apply case IIb (described previously for m) to m woth $m-i$ in place of $m-1$, deleting $W_{j} W_{j}{ }^{\prime}$ for $m-i<j \leq m-1$. Then, apply case IIb_{3}.

If the former occurs, we simply have case IIb and deal with it accordingly.
We now define $I_{j}, W_{j}, W_{j}{ }^{\prime}$ for $j \leq m_{1}$ in the same way as described before for $j \leq m$, and if $\left\{n: n>m_{1}, W_{n} W_{n}{ }^{\prime} \cap \bigcup_{j=1}^{n-1} Q_{j} \neq \emptyset\right\} \neq \emptyset$ then we let $m_{2}, m_{2}>m_{1}$, be the smallest number such taht $W_{m_{2}} W_{m_{2}}{ }^{\prime} \cap \bigcup_{j=1}^{m_{2}-1} Q_{j} \neq \emptyset$.

We thus construct a sequence $m, m_{1}, m_{2}, \ldots, m_{M}$, where m_{M} is the smallest number, $m_{M}>m_{M-1}$, such that $W_{m_{M}} W_{m_{M}}{ }^{\prime} \cap \bigcup_{j=1}^{m_{M}-1} Q_{j} \neq \emptyset$ and $\left\{n: n>m_{M}, W_{n} W_{n}{ }^{\prime} \cap \bigcup_{j=1}^{n-1} Q_{j} \neq\right.$ $\emptyset\}=\emptyset$. An application of one of the cases I , $\mathrm{IIa}, \mathrm{IIb}_{1}, \mathrm{IIb}_{2}, \mathrm{IIb}_{3}, \mathrm{IIb}_{4}$, III for each $m_{n}, n=$ $1, \ldots, M$, results in the construction of a sequence $\left\{Q_{j}\right\}_{j=1}^{M}$ of closed polygons with the following properties :
(i) $\bigcup_{j=1}^{M} Q_{j} \supset X$
(ii) $\operatorname{diam} I_{j} \leq \bar{\sigma}_{m}(X), I_{j}=Q_{j} \cap Q_{j+1}, j=1, \ldots, M-1$
(iii) $\forall 1 \leq j<M$ either $I_{j} \cap I_{j+1}=\emptyset$ or $I_{j} \cap I_{j+1}$ is a singleton and $X \supset I_{j} \cap I_{j+1}$
(iv) $\forall 1 \leq j<k<M \quad Q_{k} \cap Q_{j} \neq \emptyset \Rightarrow X \supset \bigcap_{i=j}^{k} Q_{i}=Q_{k} \cap Q_{j}$ and $\bigcap_{i=j}^{k} Q_{i}$ is a singleton
(v) $\forall 1 \leq j<M \quad Q_{j} \cap B E^{\sim}\left(Q_{j} \cap E B^{\sim}\right)$ is either a line segment or a point.

Our goal is to define a sequence of closed polygons that satisfy conditions $1(1), 2(1)$ and $3(1)$. To this end, we modify I_{j} or I_{j+1} for each $j, 0<j<M$, for which $I_{j} \cap I_{j+1} \neq \emptyset$.

If $W_{j} \in I_{j+1}\left(W_{j}^{\prime} \in I_{j+1}\right)$ then choose a point $Z \in X$ such that $\operatorname{dist}\left(Z, W_{j}\right)<$ $\delta\left(\operatorname{dist}\left(Z, W_{j}{ }^{\prime}\right)<\delta\right),\left\|Z W_{j}{ }^{\prime}\right\| \leq \bar{\sigma}_{m}(X)+\delta\left(\left\|W_{j} Z\right\| \leq \bar{\sigma}_{m}(X)+\delta\right)$ and $Z W_{j}{ }^{\prime} \cap I_{j+1}=$ $\emptyset\left(W_{j} Z \cap I_{j+1}=\emptyset\right)$. Then, define the new I_{j} to be $Z W_{j}^{\prime}\left(W_{j} Z\right)$.

If $W_{j+1} \in I_{j}\left(W_{j+1}{ }^{\prime} \in I_{j}\right)$ then choose a point $Z \in X$ such that $\operatorname{dist}\left(Z, W_{j+1}\right)<$ $\delta)\left(\operatorname{dist}\left(Z, W_{j+1}^{\prime}\right)<\delta\right),\left\|Z W_{j+1}^{\prime}\right\| \leq \bar{\sigma}_{m}(X)+\delta\left(\left\|W_{j+1} Z\right\| \leq \bar{\sigma}_{m}(X)+\delta\right)$ and $Z W_{j+1}{ }^{\prime} \cap I_{j}=$ $\emptyset\left(W_{j+1} Z \cap I_{j}=\emptyset\right)$. Then, define the new I_{j+1} to be $Z W_{j+1}^{\prime}\left(W_{j+1} Z\right)$.

In order to satisfy $3(1)$ we apply lemma C to each Q_{j} with diameter exceeding $\bar{\sigma}_{m}(X)+\delta$. We put $A B=W_{j-1} W_{j}, C D=W_{j-1}{ }^{\prime} W_{j}^{\prime}, C A^{\sim}=I_{j-1}, B D^{\sim}=I_{j}$. By Lemma C, Q_{j} is
partitioned into a finite number of closed polygons $R_{j 1}, R_{j 2}, \ldots, R_{j m(j)}$ with diameters not exceeding $\bar{\sigma}_{m}(X)+\delta$. Furthermore, ordering the indices of all polygons obtained this way and including all non partitioned $Q_{j}{ }^{\prime}$ s, results in a chain $\left\{R_{j}\right\}_{j=1}^{N}$ of closed polygons that satisfy $1(1)-3(1)$. Since $\delta>0$ was arbitrary and X has been chained with a chain whose mesh does not exceed $\bar{\sigma}_{m}(X)+\delta$, this concludes the proof of Theorem 1 .

References

[1] K.T. Hallenbeck, Estimates of spans of a simple closed curve involving mesh, Houston Journal of Mathematics, vol.26, no. 4 (2000), 741-745.
[2] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
[3] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
[4] K. Tkaczyńska (Hallenbeck), The span and semispan of some simple closed curves, Proc. Amer. Math. Soc., vol.III, no. 1 (1991), 247-253.

Department of Mathematics Widener University One University Place Chester, PA 19013 USA
email: hall@maths.widener.edu

[^0]: 2000 Mathematics Subject Classification. 54.
 Key words and phrases. span, mesh, starlike curve.

