ON THE SPAN OF STARLIKE CURVES

K.T. HALLENBECK

Received March 9, 2001; revised June 22, 2001

ABSTRACT. We prove that the dual monotone span of a starlike curve X is not smaller than the infimum, $\varepsilon(X)$, of the set of positive numbers m such that a chain with mesh m covers X.

1 Introduction. We review the definitions introduced by A. Lelek in [2] and [3]. Let X be a nonempty connected metric space. The span $\sigma(X)$ of X is the least upper bound of the set of real numbers $r, r \geq 0$, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions $f,g:Y \to X$ such that

(1)
$$f(Y) = g(Y)$$

and dist $[f(y), g(y)] \ge r$ for every $y \in Y$.

Relaxing the requirement posed by equality (1) to the inclusion $f(Y) \subseteq g(Y)$ produces the definition of the semispan $\sigma_0(X)$ of X. Requiring that g be onto gives the definitions of the surjective span $\sigma^*(X)$ and the surjective semispan $\sigma^*_0(X)$.

It was pointed out in [3] that

$$0 \le \sigma(X) \le \sigma_0(X) \le \operatorname{diam}(X).$$

It follows from a more general result of Lelek [3, Th.2.1, p39] that when X is a continuum then $\sigma_0 \leq \varepsilon(X)$. A different, direct, proof can be found in [1].

In this paper we concentrate on the case when X is a simple closed curve in the plane. Notice that in this case $\sigma^*(X) = \sigma(X)$ and $\sigma^*_0(X) = \sigma_0(X)$. Next, we review the definitions introduced in [1], starting with the monotone span $\sigma_m(X)$ of X.

Definition 1. If X is a simple closed curve then

$$\sigma_m(X) = \sup_{f,g} \inf_{t \in [0,1]} \|f(t) - g(t)\|,$$

where $f, g : [0, 1] \to X$ are continuous on [0, 1], monotone on [0, 1), and f([0, 1]) = X = g([0, 1]).

Next we define the dual monotone span $\overline{\sigma}_m(X)$ of X.

Definition 2. If X is a simple closed curve then

$$\overline{\sigma}_m(X) = \inf_{h,k} \sup_{t \in [0,1]} \|h(t) - k(t)\|,$$

where $h, k : [0,1] \to X$ are continuous on [0,1], monotone on [0,1), h([0,1]) = X = k([0,1]), h(0) = k(0), there exists a point $t' \in (0,1)$ such that $h([0,t']) \cap k([0,t']) = \{h(0)\}$ and neither h([0,t']) nor k([0,t']) is a singleton.

²⁰⁰⁰ Mathematics Subject Classification. 54.

Key words and phrases. span, mesh, starlike curve.

Finally, we define the dual effectively monotone span $\overline{\sigma}_{em}(X)$.

Definition 3. If X is a simple closed curve then

$$\overline{\sigma}_{em}(X) = \inf_{h,k} \sup_{t \in [0,1]} \|h(t) - k(t)\|,$$

where $h, k : [0, 1] \to X$ are continuous, h([0, 1]) = X = k([0, 1]), h(0) = k(0), there exists a point $t_o \in (0, 1)$ such that $h(t_o) = k(t_o) \neq h(0)$ and $h([0, t_o]) \cap k([0, t_o]) = \{h(0), h(t_o)\}$.

It was proven in [1] that $\overline{\sigma}_{em}(X) \leq \varepsilon(X)$.

The span of X is equal to $\varepsilon(X)$ when X is the boundary of a convex region (see [4]).

2 Dual monotone span and starlike curves. Recall that a starlike curve is a simple closed curve whose every point can be seen from a fixed point in the bounded component of its complement. Thus, X is starlike if there is a point 0 in the bounded component D of $\mathbb{C}\setminus X$ such that $D \supset 0P \setminus \{P\}$ for each point $P \in X$.

For a pair of two distinct points $A, B \in X$ we denote the counterclockwise are on X, with the endpoints A and B, by AB^{\sim} .

We shall prove that $\varepsilon(X) \leq \overline{\sigma}_m(X)$ for any starlike curve X. First, we need another definition and several auxiliary lemmas.

Definition 4. Let X be a starlike polygon, let $h, k : [0, 1] \to X$ be the functions described in Definition 3, and let B = h(0) = k(0), $E = h(t_o) = k(t_o)$, where $t_o \in (0, 1)$ meats the conditions of Definition 3 as well. Let $BE^{\sim} = h([0, t_o])$, $EB^{\sim} = k([0, t_o])$. For each point $P \in BE^{\sim}(EB^{\sim})$, let t_p be the number in $(0, t_o)$ such that $h(t_p) = P(k(t_p) = P)$ and $\forall t \in (t_p, t_o) \ h(t) \neq P(k(t) \neq P)$. For any pair of points $P, Q \in X \setminus \{B, E\}$ we say that Pprecedes Q (written $P \ll Q$) if and only if $t_p \leq t_Q$. For any $P \in X \setminus \{B, E\}$, $B \ll P \ll E$.

Lemma A. Let X be a polygon, let h and k be as described in Definition 2, and let B, E and t_o be as described in Definitions 3 and 4. There exists a sequence $\{W_jW_j'\}_{j=1}^N$ of line segments with the following properties:

- 1(A) $\forall 1 \leq j \leq N_0 \quad W_j \in BE^{\sim}, \ W_j' \in EB^{\sim}$ and $\exists t \in (0, t_o) \ni W_j = h(t), \ W_j' = k(t)$
- 2(A) $\forall 1 \le j < N_0 \quad W_j \ll W_{j+1}, \ W_j' \ll W_{j+1}'$
- 3(A) If $V \in X \setminus \{B, E\}$ is a vertex then $\exists j, 1 \leq j \leq N_o \ni V = W_j$ or $V = W_j'$.

Proof. Let $\{V_m\}_{m=1}^M$ be the increasing sequence in the order \ll of all vertices on $X \setminus \{B, E\}$. Let $\{t_m\}_{m=1}^M$ be the corresponding non-decreasing sequence of numbers in $(0, t_o)$ such that $\forall 1 \leq m \leq M$ $t_m = t_{V_m}$ (see Definition 4). We use induction to define $\{W_j, W_j'\}_{j=1}^{N_0}$ as follows. Put $W_1 = h(1)$, $W_1' = k(t_1)$. Soppose W_{j-1}, W_{j-1}' are defined and suppose $W_{j-1} = h(t_{m-1})$ or $W_{j-1} = k(t_{m-1})$ for some m, 1 < m < M. If $V_m = h(t_{m-1})$ or $V_m = k(t_{m-1})$ then put $W_j = h(t_{m+1})$ and $W_j' = k(t_{m+1})$; otherwise put $W_j = h(t_m)$.

Lemma B. If QPCB is a convex quadrilateral with diagonals QC and PB then ||BQ|| + ||PC|| < ||QC|| + ||PB||.

Proof follows from the law of cosines or the triangle inequality.

Lemma C. Suppose P is a simple closed polygonal line with at least four vertices, and let A, B, C and D be vertices of P such that $P \supset AB$, $P \supset CD$, $AB \cap CD = \emptyset$. Let AC^{\sim} , DB^{\sim} be polygonal lines such that $AB \cup AC^{\sim} \cup CD \cup DB^{\sim} = P$, $AC^{\sim} \cap DB^{\sim} = \emptyset$, and let $d > \delta > 0$. If diam $AC^{\sim} \leq d$ and diam $DB^{\sim} \leq d$ then there exists a sequence $\{A_kC_k\}_{k=0}^K$ of pairwise disjoint polygonal lines such that

- $$\begin{split} \mathbf{1}(\mathbf{c}) \quad \forall k = 0, \ldots, K \quad A_k \in AB, \ C_k \in CD, \\ A_o = A, \ C_o = C, \ A_K = B, \ C_K = D \end{split}$$
- $2(\mathbf{c}) \quad \forall 0 \leq k < K \quad \mathrm{diam} A_k C_k^{\sim} \leq d$
- 3(c) $\forall 0 < k < K$ diam $P_k \leq d + \delta$, where P_k is the polygon whose boundary consists of $A_{k-1}C_{k-1}^{\sim}$, $C_{k-1}C_k$, $C_kA_k^{\sim}$ and $A_kA_{k-1}^{\sim}$, $k = 1, \ldots, K$.

Theorem 1. If X is a starlike curve then $\varepsilon(X) \leq \overline{\sigma}_m(X)$.

Proof. Suppose X is a starlike polygon, B and E are two distinct points on X. Let $h, k : [0,1] \to X$ be continuous on [0,1], monotone on [0,1), h(0) = k(0) = B, $h(t_o) = k(t_o) = E$ for some $t_o \in (0,1)$, $h([0,t_o]) = BE^{\sim}$, $k([0,t_o]) = EB^{\sim}$. Suppose $\{W_j W_j'\}_{j=0}^{N_o}$ is a sequence of line segments described in Lemma A. Let $\delta > 0$. We shall define a chain of closed polygons $\{R_j\}_{j=1}^N$ that satisfy the following conditions:

$$1(1) \quad \bigcup_{j=1}^{N} R_j \supset X$$

- $\begin{array}{ll} 2(1) & \forall 1 \leq j < N \quad R_j \cap R_{j+1} \subseteq \partial R_j \cap \partial R_{j+1} \neq \emptyset \\ & \forall j,k \quad |k-j| > 1 \Rightarrow R_j \cap R_k = \emptyset \end{array}$
- 3(1) $\forall 1 \leq j \leq N \quad \text{diam} R_j \leq \overline{\sigma}_m(X) + \delta.$

Without loss of generality, we can assume that B is a vertex. It follows from Lemma A that $W_1 \neq B$, $W_1' \neq B$, $W_1 \in BE^{\sim}$, $W_1' \in EB^{\sim}$. We choose two points W_0 and W_o' so that $B \in W_o W_o'$, $W_o W_o' \cap W_1 W_1' = \emptyset$ and $||W_o W_o'|| \leq \overline{\sigma}_m(X)$. Without loss of generality, we shall assume that $\forall 1 < j \leq N_o ||W_{j-1}'W_j'|| \leq \overline{\sigma}_m(X)$, $||W_{j-1}W_j|| \leq \overline{\sigma}_m(X)$. To make the notation shorter, we give the working name Q_j to the polygon with vertices $W_{j-1}, W_j, W_{j'}, W_{j-1}', \quad j = 1, \ldots, N_o$, after eliminating $W_{j-1}W_{j-1}'$ from the sequence whenever $W_j W_{j'} \supset W_{j-1} W_{j-1}'$. These polygons will be modified in the course of our construction.

Let n be the largest natural number such that $Q_n \supset \bigcup_{j=1}^n Q_j$.

If n > 1 then we put $Q_1 = Q_n$, relabel the remaining line segments in $\{W_j W_j'\}$ in the consecutive manner as $W_2 W_2', W_3 W_3', \ldots$, and let Q_j be the polygon with the new vertices $W_{j-1}, W_j, W_j', W_{j-1}'$ for each j. Suppose the line segments $W_j W_j', j = 1, \ldots, N_o$ are not pairwise disjoint and let m be the natural number such that

4(1)
$$W_m W_m' \cap \bigcup_{j=1}^{m-1} Q_j \neq \emptyset$$
 and $\forall j = 2, \dots, m-1$ $W_j W_j' \cap \bigcup_{i=1}^{j-1} Q_i = \emptyset$.

Consider the following cases:

I.
$$W_m, W_m' \in \bigcup_{j=1}^{m-1} Q_j$$

II. $W_m, W_m' \notin \bigcup_{j=1}^{m-1} Q_j$
IIII. $W_m \in \bigcup_{j=1}^{m-1} Q_j$ and $W_m' \notin \bigcup_{j=1}^{m-1} Q_j$.

Note that the argument in the case when $W_m' \in \bigcup_{j=1}^{m-1} Q_j$ and $W_m \notin \bigcup_{j=1}^{m-1} Q_j$ would be symmetric to the one we will offer in III.

In case I, let m_o be the largest number, $m_o \ge m$, such that $\forall j = m, \ldots, m_o \quad W_j W_j' \in \bigcup_{i=1}^{m-1} Q_i$. Relabel the line segments $W_j W_j'$ for $j > m_o$ as follows. Put $W_m = W_{m_o+1}, W_m' = W_{m_o+1}', \ldots, W_{m+i} = W_{m_o+i+1}, W_{m+i}' = W_{m_o+i+1}, \ldots$, and consider case II or III if necessary.

Case II calls for the following distinction:

IIa
$$W_m W_m' \cap \bigcup_{j=1}^{m-1} W_j W_j' = \emptyset$$

IIb $W_m W_m' \cap \bigcup_{j=1}^{m-1} W_j W_j' \neq \emptyset$

In case IIa, there is exactly one $t, 1 \le t \le m-1$, such that $Q_t \cap W_m W_m' = \emptyset$. Let m = t, and let Q_m be the polygon with vertices $W_{t-1}, W_m, W_m', W_{t-1}'$.

In case IIb, the procedure is as follows. Let *i* be the smallest number such that $W_iW_i' \cap W_mW_m' \neq \emptyset$. If i < m-1 then eliminate W_jW_j' for all j, i < j < m, for which $W_jW_j' \cap W_mW_m' = \emptyset$ so that it can be assumed, without loss of generality, that either $W_iW_i' \cap W_jW_m' \neq \emptyset$ or $W_iW_i' \cap W_j'W_m \neq \emptyset$ for $j = i + 1, \ldots, m-1$. Recall that, by Lemma A, $||W_iW_j'|| = ||h(t_j) - k(t_j)|| \leq \overline{\sigma}_m(X)$ for all j.

Suppose first that $||W_{m-1}W_m'|| \leq \overline{\sigma}_m(X)$. Let *n* be the largest number such that n < i and $W_n W_n' \cap W_{n+1} W_m' = \emptyset$.

If $\forall j, n < j \leq m$, $||W_j W_m'|| \leq \overline{\sigma}_m(X)$ then define the new Q_{n+1} to be the polygon with vertices W_n, W_{n+1}, W_m' and W_n' , the new Q_{n+2} to be the triangle $W_{n+1}W_{n+2}W_m', \ldots$, the new Q_m to be the triangle $W_{m-1}W_m W_m'$. Otherwise, let j be the largest number, n < j < m - 1, such that $||W_j W_m'|| > \overline{\sigma}_m(X)$. Then, by Lemma B, $||W_{j+1}W_j'|| \leq \overline{\sigma}_m(X), \ldots, ||W_m W_j'|| \leq \overline{\sigma}_m(X)$, and we define the new Q_{j+1} to be the triangle $W_j W_{j+1} W_j'$, the new Q_{j+2} to be the triangle $W_{j+1} W_{j+2} W_j', \ldots$, the new Q_m to be the triangle $W_{m-1} W_m W_j'$.

Suppose now that $||W_{m-1}W_m'|| > \overline{\sigma}_m(X)$. Then, by Lemma B, $||W_mW_{m-1}'|| \le \overline{\sigma}_m(X)$. If $\operatorname{int}(W_mW_{m-1}') \cap BE^{\sim} = \emptyset$ then we define our new Q_m to be the triangle $W_{m-1}W_mW_{m-1}'$. Otherwise, we define a new W_{m-1} by chooseing a point on BE^{\sim} , arbitrarily chose to $\operatorname{int}(W_mW_{m-1}') \cap BE^{\sim}$ and preceding it, and if necessary, redefine each W_j that succeeds We now turn to case III. First, we claim that $W_m W_m' \cap W_{m-1} W_{m-1}' \neq \emptyset$. This is clearly true when $W_m \in W_{m-1} W_{m-1}'$. Suppose then that $W_m \notin W_{m-1} W_{m-1}'$ and let D be the bounded component of the complement of X and let $0 \in D$ be the point with respect to which X is starlike. Let L be the line passing thorough W_m and W_{m-1}' and let V_1 and V_2 be the open half planes such that $V_1 \cup L \cup V_2 = \mathbb{C}$, $W_{m-1} \in V_2, V_1 \cap V_2 = \emptyset$. Since $D \supset 0W_{m-1} \setminus \{W_{m-1}\}$ and $D \supset 0W_{m-1}' \setminus \{W_{m-1}'\}$, we have $0 \in V_1$, and hence $W_m' \in V_2$. It follows from the latter that $W_m W_m' \cap W_{m-1} W_{m-1}' \neq \emptyset$. If $W_m \in W_{m-1} W_{m-1}'$ we define the new Q_m to be the triangle $W_m W_m' W_{m-1}'$.

If $||W_{m-1}W_m'|| \leq \overline{\sigma}_m(X)$ then define the new Q_m to be the triangle $W_{m-1}W_m'W_{m-1}'$. Suppose now that $||W_{m-1}W_m'|| > \overline{\sigma}_m(X)$. Assume , without loss of generality, that m-1

 $W_m \cap \bigcup_{j=1} W_j W_j' = \emptyset$. If the angle at W_m in the triangle $W_m' W_m W_{m-1}$ is smaller than

 $\pi/2$ then let C be the perpendicular projection of W_m' onto $W_m W_{m-1}$. Otherwise, put $C = W_m$. Note that $||W_m'C|| \leq \overline{\sigma}_m(X)$. Also, $||W_{m-1}'C|| \leq \overline{\sigma}_m(X)$ since the angle at C in the triangle $W_{m-1}'CW_{m-1}$ exceeds $\pi/2$ and $||W_{m-1}W_{m-1}'|| \leq \overline{\sigma}_m(X)$. Let i be the largest number, i < m-1, such that $W_i W_i' \cap C W_m' = \emptyset$. Choose a sequence of points $\{C_j\}_{j=i+1}^{m-2}$ such that the polygonal lines connecting W_j , C_j and W_j' , $j = i + 1, \ldots, m-2$, are pairwise disjoint and do not intersect the polygonal line $W_{m-1}'CW_{m-1}$, $C_j \neq C$, $||C_jC|| < \delta$, $j = i + 1, \ldots, m-2$. Notice now that since for each $j = i + 1, \ldots, m-2$ the angle at C_j in the triangle $W_j'C_jW_j$ exceeds $\pi/2$ and $||W_jW_j'|| \leq \overline{\sigma}_m(X)$ we have $||C_jW_j'|| < \overline{\sigma}_m(X)$ and $||C_jW_j|| < \overline{\sigma}_m(X)$. We define the new Q_{i+1} to be the ploygon with vertices W_{i-1} , W_{i-1} , m-1, $C_i = i + 2, \ldots, m-2$, the new Q_{m-1} to be the polygon with vertices W_{m-2} , W_{m-1} , C, W_{m-1}' , W_{m-2}' and C_{m-2} , and the new Q_m to be the triangle $W_{m-1}'CW_m'$.

This concludes the description of the procedures applied in cases I, II and III.

We now put $I_j = Q_j \cap Q_{j+1}$, and let W_j and W_j' be the endpoints of I_j lying on BE^{\sim} and EB^{\sim} , respectively, $1 \leq j < m$, except for I_{m-1} in case III when $||W_{m-1}W_m'|| > \overline{\sigma}_m(X)$. We define I_m to be the line segment $W_m W_m'$ in cases I and IIa. We define I_m to be the polygonal line connecting W_m , W_{m-1}' and W_m' in case IIb when $||W_m W_{m-1}'|| \leq \overline{\sigma}_m(X) < ||W_{m-1}W_m'||$ and $\operatorname{int}(W_m W_{m-1}') \cap X = \emptyset$. If $\operatorname{int}(W_m W_{m-1}') \cap X \neq \emptyset$ while $||W_m W_{m-1}'|| \leq \overline{\sigma}_m(X) < ||W_{m-1}W_m'||$ then $I_m = W_m W_m'$.

In the case when $||W_{m-1}W_m'|| \leq \overline{\sigma}_m(X)$ in IIb, we put $I_m = W_m W_m'$ provided that for each $j ||W_{m-1}W_m'|| \leq \overline{\sigma}_m(X)$, $n < j \leq m$, and define I_m to be the polygonal line connecting W_m , W_j' and W_m' otherwise, where j is the largest number, n < j < m - 1, such that $||W_j W_m'|| > \overline{\sigma}_m(X)$.

Finally, in case III we define I_m to be the line segment $W_{m-1}W_m'$ when $||W_{m-1}W_m'|| \le \overline{\sigma}_m(X)$, and to be the line segment CW_m' when $||W_{m-1}W_m'|| > \overline{\sigma}_m(X)$. In the latter case I_{m-1} is defined to be the polygonal line connecting W_{m-1} , C and W_{m-1}' .

Suppose that $\{n: n > m, W_n W_n' \cap \bigcup_{j=1}^{n-1} Q_j \neq \emptyset\} \neq \emptyset.$

Let $m_1, m_1 > m$, be the smallest number such that

5(1)
$$W_m W_m' \cap \bigcup_{j=1}^{m_1-1} Q_j \neq \emptyset$$

We consider cases I, II, III, where m is replaced by m_1 , with the following modification of case II.

IIa
$$W_{m_1}W_{m_1}' \cap \left[\bigcup_{j=1}^m I_j \cup \bigcup_{j=m+1}^{m_1-1} W_j W_j'\right] = \emptyset$$

The procedure in this case dose not change.

$$\begin{aligned} \text{IIb}_1 \quad W_{m_1} W_{m_1}{'} &\cap I_m = \emptyset \text{ and} \\ W_{m_1} W_{m_1}{'} &\cap \left[\bigcup_{j=1}^{m-1} I_j \cup \bigcup_{j=m+1}^{m_1-1} W_j W_j{'} \right] \neq \emptyset \end{aligned}$$

The procedure we follow in this case was described previously for case IIb.

IIb₂ $W_{m_1}W_{m_1}' \cap I_m \neq \emptyset$ and $W_{m_1}W_{m_1}' \cap W_mW_m' = \emptyset$ IIb₃ $W_{m_1}W_{m_1}' \cap W_mW_m' \neq \emptyset$ and $W_{m_1}W_{m_1}' \cap W_{m-1}W_{m-1}' \neq \emptyset$ IIb₄ $W_{m_1}W_{m_1}' \cap W_mW_m' \neq \emptyset$ and $W_{m_1}W_{m_1}' \cap W_{m-1}W_{m-1}' = \emptyset$

Clearly, IIb₂ can only happen if I_m is the polygonal line $W_m W_{m-1}' W_m'$ (resulting from the case IIb for m). Recall that then $||W_m W_{m-1}'|| \leq \overline{\sigma}_m(X) < ||W_{m-1} W_m'||$ and $\operatorname{int}(W_m W_{m-1}') \cap BE^{\sim} = \emptyset$. Hence, the angle at W_m' in the quadrilateral $W_{m-1} W_m W_{m-1}' W_m'$ must be smaller than $\pi/2$, for otherwise $W_{m-1} W_{m-1}'$ would constitute the longest side of the triangle $W_{m-1} W_{m-1}' W_m'$ and consequently, $||W_{m-1} W_m'|| < ||W_{m-1} W_{m-1}'|| \leq \overline{\sigma}_m(X)$. Similarly, the angle at W_{m-1} in the same quadrilateral must be smaller that $\pi/2$ for otherwise $||W_{m-1} W_m'|| < ||W_m W_m'|| \leq \overline{\sigma}_m(X)$. In the even when the angle at W_{m-1}' is also smaller than $\pi/2$, we let W be the orthogonal projection of W_{m-1} onto $W_m' W_{m-1}'$ and let V be the intersection point of $W_{m-1}W$ and the ray with the endpoint W_{m-1}' containing W_{m-2}' . We replace W_{m-1}' with V. Notice that the angle at V in the quadrilateral $W_{m-1} W_m V W_m'$ is larger than $\pi/2$ and $||W_{m-1}V|| < ||W_m W_{m-1}'|| \leq \overline{\sigma}_m(X)$. It follows from the above argument that we can assume without loss of generality that the angle at W_{m-1}' in the quadrilateral $W_{m-1} W_m ''_m$ exceeds $\pi/2$, as dose the angle at W_{m-1}' in the triangle $W_m W_{m-1}' W_m'$.

Therefore, in case IIb₂ we choose a point Z such that $||W_{m-1}'Z|| < \delta$, $Z \notin \bigcup_{i=1}^{m} Q_i$,

and define our new Q_{m+1} to be the polygon $W_m W_{m_1} Z W_{m_1}' W_m' W_{m-1}'$ while I_{m+1} is the polygonal line $W_{m_1} Z W_{m_1}'$. Note that for sufficiently small δ diam $I_{m+1} \leq ||W_{m_1} W_{m_1}'|| \leq \overline{\sigma}_m(X)$. Put $m_1 = m + 1$ and delete all $W_j W_j'$ for $m < j < m_1$.

The case IIb₃ with $I_m \neq W_m W_m'$ is handled similarly to IIb₂. In addition to the point Z described in the latter, we choose a point Y such that $||W_m Y|| < \delta, \ Y \notin \bigcup_{j=1}^m Q_j$,

and define our new Q_{m+1} to be the polygon $W_m W_{m_1} Y Z W_{m_1} W_m W_{m-1}$ while I_{m+1} is the polygonal line $W_{m_1} Y Z W_{m_1}$. Note that for sufficiently small δ diam $I_{m+1} \leq ||W_{m_1} W_{m_1}'|| \leq \overline{\sigma}_m(X)$. Put $m_1 = m + 1$ and delete all $W_j W_j'$ for $m < j < m_1$.

If $I_m = W_m W_m'$ then case IIb₃ is handled the same way as case IIb₁.

Consider the case IIb₄. Delete all $W_j W_j'$ from the sequence $\{W_j W_j'\}_{j < m}$ such that $W_j W_j' \cap W_m W_m' \neq \emptyset$ and $W_j W_j' \cap W_{m_1} W_{m_1}' = \emptyset$. Either for all remaining j, j < m, $W_j W_j' \cap W_m W_m' = \emptyset$ or there exists j, j < m - 1 such that $W_j W_j' \cap W_m W_m' \neq \emptyset$ and $W_j W_j' \cap W_m W_{m_1}' \neq \emptyset$.

If the latter occurs, let m-i be the largest number, m-i < m-1, such that $W_{m-i}W_{m-i}' \cap W_m W_m' \neq \emptyset$ and $W_{m-i}W_{m-i}' \cap W_m W_m' \neq \emptyset$ and apply case IIb (described previously for m) to m woth m-i in place of m-1, deleting $W_j W_j'$ for $m-i < j \le m-1$. Then, apply case IIb₃.

If the former occurs, we simply have case IIb and deal with it accordingly.

We now define I_j , W_j , W_j' for $j \le m_1$ in the same way as described before for $j \le m$, and if $\{n : n > m_1, W_n W_n' \cap \bigcup_{j=1}^{n-1} Q_j \ne \emptyset\} \ne \emptyset$ then we let $m_2, m_2 > m_1$, be the smallest number such that $W_{m_2} W_{m_2}' \cap \bigcup_{j=1}^{m_2-1} Q_j \ne \emptyset$.

We thus construct a sequence m, m_1, m_2, \ldots, m_M , where m_M is the smallest number, $m_M > m_{M-1}$, such that $W_{m_M} W_{m_M}' \cap \bigcup_{j=1}^{m_M-1} Q_j \neq \emptyset$ and $\{n: n > m_M, W_n W_n' \cap \bigcup_{j=1}^{n-1} Q_j \neq \emptyset\} = \emptyset$. An application of one of the cases I, IIa, IIb₁, IIb₂, IIb₃, IIb₄, III for each $m_n, n = 1, \ldots, M$, results in the construction of a sequence $\{Q_j\}_{j=1}^M$ of closed polygons with the following properties :

(i) $\bigcup_{j=1}^{M} Q_j \supset X$

(ii) diam
$$I_j \leq \overline{\sigma}_m(X), \ I_j = Q_j \cap Q_{j+1}, \ j = 1, \dots, M-1$$

(iii) $\forall 1 \leq j < M$ either $I_j \cap I_{j+1} = \emptyset$ or $I_j \cap I_{j+1}$ is a singleton and $X \supset I_j \cap I_{j+1}$

(iv)
$$\forall 1 \leq j < k < M \quad Q_k \cap Q_j \neq \emptyset \Rightarrow X \supset \bigcap_{i=j}^k Q_i = Q_k \cap Q_j \text{ and } \bigcap_{i=j}^k Q_i \text{ is a singleton}$$

(v) $\forall 1 \leq j < M \ Q_j \cap BE^{\sim} (Q_j \cap EB^{\sim})$ is either a line segment or a point.

Our goal is to define a sequence of closed polygons that satisfy conditions 1(1), 2(1) and 3(1). To this end, we modify I_i or I_{j+1} for each j, 0 < j < M, for which $I_j \cap I_{j+1} \neq \emptyset$.

If $W_j \in I_{j+1}$ $(W_j' \in I_{j+1})$ then choose a point $Z \in X$ such that $\operatorname{dist}(Z, W_j) < \delta$ $(\operatorname{dist}(Z, W_j') < \delta)$, $||ZW_j'|| \leq \overline{\sigma}_m(X) + \delta$ $(||W_jZ|| \leq \overline{\sigma}_m(X) + \delta)$ and $ZW_j' \cap I_{j+1} = \emptyset$ $(W_jZ \cap I_{j+1} = \emptyset)$. Then, define the new I_j to be $ZW_j'(W_jZ)$.

If $W_{j+1} \in I_j$ $(W_{j+1}' \in I_j)$ then choose a point $Z \in X$ such that $\operatorname{dist}(Z, W_{j+1}) < \delta$ δ $(\operatorname{dist}(Z, W_{j+1}') < \delta)$, $\|ZW_{j+1}'\| \le \overline{\sigma}_m(X) + \delta$ $(\|W_{j+1}Z\| \le \overline{\sigma}_m(X) + \delta)$ and $ZW_{j+1}' \cap I_j = \emptyset$ $(W_{j+1}Z \cap I_j = \emptyset)$. Then, define the new I_{j+1} to be $ZW_{j+1}'(W_{j+1}Z)$.

In order to satisfy 3(1) we apply lemma C to each Q_j with diameter exceeding $\overline{\sigma}_m(X) + \delta$. We put $AB = W_{j-1}W_j$, $CD = W_{j-1}'W_j'$, $CA^{\sim} = I_{j-1}$, $BD^{\sim} = I_j$. By Lemma C, Q_j is partitioned into a finite number of closed polygons R_{j1} , R_{j2} , ..., $R_{jm(j)}$ with diameters not exceeding $\overline{\sigma}_m(X) + \delta$. Furthermore, ordering the indices of all polygons obtained this way and including all non partitioned Q_j 's, results in a chain $\{R_j\}_{j=1}^N$ of closed polygons that satisfy 1(1)-3(1). Since $\delta > 0$ was arbitrary and X has been chained with a chain whose mesh does not exceed $\overline{\sigma}_m(X) + \delta$, this concludes the proof of Theorem 1.

References

- K.T. Hallenbeck, Estimates of spans of a simple closed curve involving mesh, Houston Journal of Mathematics, vol.26, no.4 (2000), 741-745.
- [2] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
- [3] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
- K. Tkaczyńska (Hallenbeck), The span and semispan of some simple closed curves, Proc. Amer. Math. Soc., vol.III, no.1 (1991), 247-253.

DEPARTMENT OF MATHEMATICS WIDENER UNIVERSITY ONE UNIVERSITY PLACE CHESTER, PA 19013 USA

email: hall@maths.widener.edu