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ON THE SPAN OF STARLIKE CURVES

K.T. Hallenbeck

Received March 9, 2001; revised June 22, 2001

Abstract. We prove that the dual monotone span of a starlike curve X is not smaller

than the in�mum, "(X); of the set of positive numbers m such that a chain with mesh

m covers X:

1 Introduction. We review the de�nitions introduced by A: Lelek in [2] and [3]. Let X

be a nonempty connected metric space. The span �(X) of X is the least upper bound of

the set of real numbers r; r � 0; that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions f; g : Y ! X such

that

(1) f(Y ) = g(Y )

and dist[f(y); g(y)] � r for every y 2 Y:

Relaxing the requirement posed by equality (1) to the inclusion f(Y ) � g(Y ) produces

the de�nition of the semispan �0(X) of X: Requiring that g be onto gives the de�nitions of

the surjective span ��(X) and the surjective semispan ��0(X):

It was pointed out in [3] that

0 � �(X) � �0(X) � diam(X):

It follows from a more general result of Lelek [3, Th.2.1, p39] that whenX is a continuum

then �0 � "(X): A di�erent, direct, proof can be found in [1].

In this paper we concentrate on the case when X is a simple closed curve in the plane.

Notice that in this case ��(X) = �(X) and ��0(X) = �0(X): Next, we review the de�nitions

introduced in [1], starting with the monotone span �m(X) of X:

De�nition 1. If X is a simple closed curve then

�m(X) = sup
f;g

inf
t2[0;1]

kf(t) � g(t)k;

where f; g : [0; 1] ! X are continuous on [0, 1], monotone on [0, 1), and f([0; 1]) = X =

g([0; 1]):

Next we de�ne the dual monotone span �m(X) of X:

De�nition 2. If X is a simple closed curve then

�m(X) = inf
h;k

sup
t2[0;1]

kh(t) � k(t)k;

where h; k : [0; 1] ! X are continuous on [0; 1]; monotone on [0; 1); h([0; 1]) = X =

k([0; 1]); h(0) = k(0); there exists a point t0 2 (0; 1) such that h([0; t0]) \ k([0; t0]) = fh(0)g

and neither h([0; t0]) nor k([0; t0]) is a singleton.
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Finally, we de�ne the dual e�ectively monotone span �em(X):

De�nition 3. If X is a simple closed curve then

�em(X) = inf
h;k

sup
t2[0;1]

kh(t)� k(t)k;

where h; k : [0; 1]! X are continuous, h([0; 1]) = X = k([0; 1]); h(0) = k(0); there exists a

point to 2 (0; 1) such that h(to) = k(to) 6= h(0) and h([0; to]) \ k([0; to]) = fh(0); h(to)g:

It was proven in [1] that �em(X) � "(X):

The span of X is equal to "(X) when X is the boundary of a convex region (see [4]).

2 Dual monotone span and starlike curves. Recall that a starlike curve is a simple

closed curve whose every point can be seen from a �xed point in the bounded component

of its complement. Thus, X is starlike if there is a point 0 in the bounded component D of

C nX such that D � 0PnfPg for each point P 2 X:

For a pair of two distinct points A;B 2 X we denote the counterclockwise are on X;

with the endpoints A and B; by AB�:

We shall prove that "(X) � �m(X) for any starlike curve X: First, we need another

de�nition and several auxiliary lemmas.

De�nition 4. Let X be a starlike polygon, let h; k : [0; 1]! X be the functions described

in De�nition 3, and let B = h(0) = k(0); E = h(to) = k(to); where to 2 (0; 1) meats

the conditions of De�nition 3 as well. Let BE� = h([0; to]); EB
� = k([0; to]): For each

point P 2 BE�(EB�); let tp be the number in (0; to) such that h(tp) = P (k(tp) = P ) and

8t 2 (tp; to) h(t) 6= P (k(t) 6= P ): For any pair of points P;Q 2 XnfB;Eg we say that P

precedes Q (written P � Q) if and only if tp � tQ: For any P 2 XnfB;Eg; B � P � E:

Lemma A. Let X be a polygon, let h and k be as described in De�nition 2, and let B;E

and to be as described in De�nitions 3 and 4. There exists a sequence fWjWj

0gN
j=1 of line

segments with the following properties:

1(A) 81 � j � N0 Wj 2 BE�; Wj

0 2 EB� and

9t 2 (0; to) 3Wj = h(t); Wj

0 = k(t)

2(A) 81 � j < N0 Wj �Wj+1; Wj

0 �Wj+1
0

3(A) If V 2 XnfB;Eg is a vertex then 9j; 1 � j � No 3 V =Wj or V =Wj

0:

Proof. Let fVmg
M

m=1 be the increasing sequence in the order� of all vertices on XnfB;Eg:

Let ftmg
M

m=1 be the corresponding non-decreasing sequence of numbers in (0; to) such that

81 � m � M tm = tVm (see De�nition 4). We use induction to de�ne fWj;Wj

0gN0

j=1

as follows. Put W1 = h(1); W1
0 = k(t1): Soppose Wj�1;Wj�1

0 are de�ned and suppose

Wj�1 = h(tm�1) or Wj�1 = k(tm�1) for some m; 1 < m < M: If Vm = h(tm�1) or

Vm = k(tm�1) then put Wj = h(tm+1) and Wj

0 = k(tm+1); otherwise put Wj = h(tm) and

Wj

0 = k(tm): 2

Lemma B. If QPCB is a convex quadrilateral with diagonals QC and PB then kBQk +

kPCk < kQCk+ kPBk:

Proof follows from the law of cosines or the triangle inequality.
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Lemma C. Suppose P is a simple closed polygonal line with at least four vertices, and

let A;B;C and D be vertices of P such that P � AB; P � CD; AB \ CD = ;: Let

AC�; DB� be polygonal lines such that AB [AC� [CD [DB� = P; AC� \DB� = ;;

and let d > Æ > 0: If diamAC� � d and diamDB� � d then there exists a sequence

fAkCkg
K

k=0 of pairwise disjoint polygonal lines such that

1(c) 8k = 0; : : : ;K Ak 2 AB; Ck 2 CD;

Ao = A; Co = C; AK = B; CK = D

2(c) 80 � k < K diamAkC
�

k
� d

3(c) 80 < k < K diamPk � d+ Æ; where Pk is the polygon whose boundary consists of

Ak�1Ck�1
�; Ck�1Ck; CkAk

� and AkAk�1
�; k = 1; : : : ;K:

Theorem 1. If X is a starlike curve then "(X) � �m(X):

Proof. Suppose X is a starlike polygon, B and E are two distinct points on X: Let h; k :

[0; 1]! X be continuous on [0; 1]; monotone on [0; 1); h(0) = k(0) = B; h(to) = k(to) = E

for some to 2 (0; 1); h([0; to]) = BE�; k([0; to]) = EB�: Suppose fWjWj

0gNo
j=0 is a sequence

of line segments described in Lemma A. Let Æ > 0:We shall de�ne a chain of closed polygons

fRjg
N

j=1 that satisfy the following conditions:

1(1)

N[
j=1

Rj � X

2(1) 81 � j < N Rj \Rj+1 � @Rj \ @Rj+1 6= ;

8j; k jk � jj > 1) Rj \Rk = ;

3(1) 81 � j � N diamRj � �m(X) + Æ:

Without loss of generality, we can assume that B is a vertex. It follows from Lemma

A that W1 6= B; W1
0 6= B; W1 2 BE�; W1

0 2 EB�: We choose two points W0 and

Wo

0 so that B 2 WoWo

0; WoWo

0 \W1W1
0 = ; and kWoWo

0k � �m(X): Without loss of

generality, we shall assume that 81 < j � No kWj�1
0Wj

0k � �m(X); kWj�1Wjk � �m(X):

To make the notation shorter, we give the working name Qj to the polygon with vertices

Wj�1;Wj ;Wj

0;Wj�1
0; j = 1; : : : ;No; after eliminating Wj�1Wj�1

0 from the sequence

whenever WjWj

0 � Wj�1Wj�1
0: These polygons will be modi�ed in the course of our

construction.

Let n be the largest natural number such that Qn �

n[
j=1

Qj :

If n > 1 then we put Q1 = Qn; relabel the remaining line segments in fWjWj

0g in the

consecutive manner asW2W2
0;W3W3

0; : : : ; and let Qj be the polygon with the new vertices

Wj�1;Wj ;Wj

0;Wj�1
0 for each j: Suppose the line segments WjWj

0; j = 1; : : : ;No are not

pairwise disjoint and let m be the natural number such that

4(1) WmWm

0 \

m�1[
j=1

Qj 6= ; and 8j = 2; : : : ;m� 1 WjWj

0 \

j�1[
i=1

Qi = ;:

Consider the following cases:
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I. Wm;Wm

0 2

m�1[
j=1

Qj

II. Wm;Wm

0 62

m�1[
j=1

Qj

IIII. Wm 2

m�1[
j=1

Qj and Wm

0 62

m�1[
j=1

Qj :

Note that the argument in the case when Wm

0 2

m�1[
j=1

Qj and Wm 62

m�1[
j=1

Qj would be

symmentric to the one we will o�er in III.

In case I, let mo be the largest number, mo � m; such that 8j = m; : : : ;mo WjWj

0 2
m�1[
i=1

Qi: Relabel the line segmentsWjWj

0 for j > mo as follows. PutWm =Wmo+1; Wm

0 =

Wmo+1
0; : : : ;Wm+i = Wmo+i+1; Wm+i

0 = Wmo+i+1; : : : ; and consider case II or III if

necessary.

Case II calls for the following distinction:

IIa WmWm

0 \

m�1[
j=1

WjWj

0 = ;

IIb WmWm

0 \

m�1[
j=1

WjWj

0 6= ;

In case IIa, there is exactly one t; 1 � t � m�1; such that Qt\WmWm

0 = ;: Let m = t;

and let Qm be the polygon with vertices Wt�1;Wm;Wm

0;Wt�1
0:

In case IIb, the procedure is as follows. Let i be the smallest number such that WiWi

0 \

WmWm

0 6= ;: If i < m � 1 then eliminate WjWj

0 for all j; i < j < m; for which WjWj

0 \

WmWm

0 = ; so that it can be assumed, without loss of generality, that either WiWi

0 \

WjWm

0 6= ; or WiWi

0 \Wj

0Wm 6= ; for j = i + 1; : : : ;m � 1: Recall that, by Lemma A,

kWiWj

0k = kh(tj) � k(tj)k � �m(X) for all j:

Suppose �rst that kWm�1Wm

0k � �m(X): Let n be the largest number such that n < i

and WnWn

0 \Wn+1Wm

0 = ;:

If 8j; n < j �m; kWjWm

0k � �m(X) then de�ne the new Qn+1 to be the polygon with

vertices Wn;Wn+1;Wm

0 and Wn

0; the new Qn+2 to be the triangle Wn+1Wn+2Wm

0; : : : ;

the new Qm to be the triangle Wm�1WmWm

0: Otherwise, let j be the largest number,

n < j < m � 1; such that kWjWm

0k > �m(X): Then, by Lemma B, kWj+1Wj

0k �

�m(X):; : : : ; kWmWj

0k � �m(X); and we de�ne the newQj+1 to be the triangleWjWj+1Wj

0;

the newQj+2 to be the triangleWj+1Wj+2Wj

0; : : : ; the newQm to be the triangleWm�1WmWj

0:

Suppose now that kWm�1Wm

0k > �m(X): Then, by Lemma B, kWmWm�1
0k � �m(X):

If int(WmWm�1
0)\BE� = ; then we de�ne our newQm to be the triangleWm�1WmWm�1

0:

Otherwise, we de�ne a new Wm�1 by chooseing a point on BE�; arbitrarily chose to

int(WmWm�1
0) \ BE� and preceding it, and if necessary, rede�ne each Wj that succeeds



ON THE SPAN OF STARLIKE CURVES 511

it in the order� on X; arbitrarily close to, and preceding, the new Wm�1: Here, Qm is the

quadrilateral Wm�1
0Wm�1WmWm

0:

We now turn to case III. First, we claim thatWmWm

0\Wm�1Wm�1
0 6= ;: This is clearly

true when Wm 2 Wm�1Wm�1
0: Suppose then that Wm 62 Wm�1Wm�1

0 and let D be the

bounded component of the complement of X and let 0 2 D be the point with respect to

which X is starlike. Let L be the line passing thorough Wm and Wm�1
0 and let V1 and

V2 be the open half planes such that V1 [ L [ V2 = C ; Wm�1 2 V2; V1 \ V2 = ;: Since

D � 0Wm�1nfWm�1g and D � 0Wm�1
0nfWm�1

0g; we have 0 2 V1; and hence Wm

0 2 V2:

It follows from the latter thatWmWm

0\Wm�1Wm�1
0 6= ;: If Wm 2Wm�1Wm�1

0 we de�ne

the new Qm to be the triangle WmWm

0Wm�1
0:

If kWm�1Wm

0k � �m(X) then de�ne the new Qm to be the triangle Wm�1Wm

0Wm�1
0:

Suppose now that kWm�1Wm

0k > �m(X): Assume , without loss of generality, that

Wm \

m�1[
j=1

WjWj

0 = ;: If the angle at Wm in the triangle Wm

0WmWm�1 is smaller than

�=2 then let C be the perpendicular projection of Wm

0 onto WmWm�1: Otherwise, put

C = Wm: Note that kWm

0Ck � �m(X): Also, kWm�1
0Ck � �m(X) since the angle at

C in the triangle Wm�1
0CWm�1 exceeds �=2 and kWm�1Wm�1

0k � �m(X): Let i be the

largest number, i < m � 1; such that WiWi

0 \ CWm

0 = ;: Choose a sequence of points

fCjg
m�2
j=i+1 such that the polygonal lines connecting Wj ; Cj and Wj

0; j = i + 1; : : : ;m �

2; are pairwise disjoint and do not intersect the polygonal line Wm�1
0CWm�1; Cj 6=

C; kCjCk < Æ; j = i + 1; : : : ;m � 2: Notice now that since for each j = i + 1; : : : ;m � 2

the angle at Cj in the triangle Wj

0CjWj exceeds �=2 and kWjWj

0k � �m(X) we have

kCjWj

0k < �m(X) and kCjWjk < �m(X): We de�ne the new Qi+1 to be the ploygon

with vertices Wi; Wi+1; Ci+1; Wi+1
0 and Wi

0; the new Qj to be the polygon with vertices

Wj�1; Wj ; Cj ; Wj

0; Wj�1
0 and Cj�1 for j = i + 2; : : : ;m � 2; the new Qm�1 to be the

polygon with vertices Wm�2; Wm�1; C; Wm�1
0; Wm�2

0 and Cm�2; and the new Qm to

be the triangle Wm�1
0CWm

0:

This concludes the description of the procedures applied in cases I, II and III.

We now put Ij = Qj\Qj+1; and letWj andWj

0 be the endpoints of Ij lying onBE
� and

EB�; respectively, 1 � j < m; except for Im�1 in case III when kWm�1Wm

0k > �m(X):

We de�ne Im to be the line segment WmWm

0 in cases I and IIa. We de�ne Im to be

the polygonal line connecting Wm; Wm�1
0 and Wm

0 in case IIb when kWmWm�1
0k �

�m(X) < kWm�1Wm

0k and int(WmWm�1
0) \ X = ;: If int(WmWm�1

0) \ X 6= ; while

kWmWm�1
0k � �m(X) < kWm�1Wm

0k then Im =WmWm

0:

In the case when kWm�1Wm

0k � �m(X) in IIb, we put Im = WmWm

0 provided that

for each j kWm�1Wm

0k � �m(X); n < j � m; and de�ne Im to be the polygonal line

connecting Wm; Wj

0 and Wm

0 otherwise, where j is the largest number, n < j < m � 1;

such that kWjWm

0k > �m(X):

Finally, in case III we de�ne Im to be the line segmentWm�1Wm

0 when kWm�1Wm

0k �

�m(X); and to be the line segment CWm

0 when kWm�1Wm

0k > �m(X): In the latter case

Im�1 is de�ned to be the polygonal line connecting Wm�1; C and Wm�1
0:

Suppose that fn : n > m; WnWn

0 \

n�1[
j=1

Qj 6= ;g 6= ;:

Let m1; m1 > m; be the smallest number such that
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5(1) WmWm

0 \

m1�1[
j=1

Qj 6= ;

We consider cases I, II, III, where m is replaced by m1; with the following modi�cation

of case II.

IIa Wm1
Wm1

0 \

2
4

m[
j=1

Ij [

m1�1[
j=m+1

WjWj

0

3
5 = ;

The procedure in this case dose not change.

IIb1 Wm1
Wm1

0 \ Im = ; and

Wm1
Wm1

0 \

2
4
m�1[
j=1

Ij [

m1�1[
j=m+1

WjWj

0

3
5 6= ;

The procedure we follow in this case was described previously for case IIb.

IIb2 Wm1
Wm1

0 \ Im 6= ; and Wm1
Wm1

0 \WmWm

0 = ;

IIb3 Wm1
Wm1

0 \WmWm

0 6= ; and Wm1
Wm1

0 \Wm�1Wm�1
0 6= ;

IIb4 Wm1
Wm1

0 \WmWm

0 6= ; and Wm1
Wm1

0 \Wm�1Wm�1
0 = ;

Clearly, IIb2 can only happen if Im is the polygonal line WmWm�1
0Wm

0 (resulting

from the case IIb for m). Recall that then kWmWm�1
0k � �m(X) < kWm�1Wm

0k and

int(WmWm�1
0)\BE� = ;:Hence, the angle atWm

0 in the quadrilateralWm�1WmWm�1
0Wm

0

must be smaller than �=2; for otherwise Wm�1Wm�1
0 would constitute the longest side of

the triangleWm�1Wm�1
0Wm

0 and consequently, kWm�1Wm

0k < kWm�1Wm�1
0k � �m(X):

Similarly, the angle at Wm�1 in the same quadrilateral must be smaller that �=2 for oth-

erwise kWm�1Wm

0k < kWmWm

0k � �m(X): In the even when the angle at Wm�1
0 is also

smaller than �=2; we let W be the orthogonal projection of Wm�1 onto Wm

0Wm�1
0 and

let V be the intersection point of Wm�1W and the ray with the endpoint Wm�1
0 contain-

ing Wm�2
0: We replace Wm�1

0 with V: Notice that the angle at V in the quadrilateral

Wm�1WmVWm

0 is larger than �=2 and kWm�1V k < kWmWm�1
0k � �m(X): It follows

from the above argument that we can assume without loss of generality that the angle at

Wm�1
0 in the quadrilateralWm�1WmWm�1

0Wm

0 exceeds �=2; as dose the angle at Wm�1
0

in the triangle WmWm�1
0Wm

0:

Therefore, in case IIb2 we choose a point Z such that kWm�1
0Zk < Æ; Z 62

m[
j=1

Qj ;

and de�ne our new Qm+1 to be the polygon WmWm1
ZWm1

0Wm

0Wm�1
0 while Im+1 is the

polygonal line Wm1
ZWm1

0: Note that for suÆciently small Æ diamIm+1 � kWm1
Wm1

0k �

�m(X): Put m1 = m+ 1 and delete all WjWj

0 for m < j < m1:

The case IIb3 with Im 6=WmWm

0 is handled similarly to IIb2: In addition to the point

Z described in the latter, we choose a point Y such that kWmY k < Æ; Y 62

m[
j=1

Qj ;
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and de�ne our new Qm+1 to be the polygonWmWm1
Y ZWm1

0Wm

0Wm�1
0 while Im+1 is the

polygonal lineWm1
Y ZWm1

0: Note that for suÆciently small Æ diamIm+1 � kWm1
Wm1

0k �

�m(X): Put m1 = m+ 1 and delete all WjWj

0 for m < j < m1:

If Im =WmWm

0 then case IIb3 is handled the same way as case IIb1:

Consider the case IIb4: Delete all WjWj

0 from the sequence fWjWj

0gj<m such that

WjWj

0 \ WmWm

0 6= ; and WjWj

0 \ Wm1
Wm1

0 = ;: Either for all remaining j; j <

m; WjWj

0 \WmWm

0 = ; or there exists j; j < m� 1 such that WjWj

0 \WmWm

0 6= ; and

WjWj

0 \Wm1
Wm1

0 6= ;:

If the latter occurs, let m � i be the largest number, m � i < m � 1; such that

Wm�iWm�i

0 \WmWm

0 6= ; and Wm�iWm�i

0 \WmWm

0 6= ; and apply case IIb (described

previously for m) to m woth m� i in place of m�1; deletingWjWj

0 for m� i < j �m�1:

Then, apply case IIb3:

If the former occurs, we simply have case IIb and deal with it accordingly.

We now de�ne Ij ; Wj ; Wj

0 for j �m1 in the same way as described before for j � m;

and if fn : n > m1; WnWn

0 \

n�1[
j=1

Qj 6= ;g 6= ; then we let m2; m2 > m1; be the smallest

number such taht Wm2
Wm2

0 \

m2�1[
j=1

Qj 6= ;:

We thus construct a sequencem; m1; m2; : : : ; mM ; wheremM is the smallest number,

mM > mM�1; such that WmM
WmM

0 \

mM�1[
j=1

Qj 6= ; and fn : n > mM ; WnWn

0 \

n�1[
j=1

Qj 6=

;g = ;: An application of one of the cases I, IIa, IIb1; IIb2; IIb3; IIb4; III for each mn; n =

1; : : : ;M; results in the construction of a sequence fQjg
M

j=1 of closed polygons with the

following properties :

(i)

M[
j=1

Qj � X

(ii) diamIj � �m(X); Ij = Qj \Qj+1; j = 1; : : : ;M � 1

(iii) 81 � j < M either Ij \ Ij+1 = ; or Ij \ Ij+1 is a singleton and X � Ij \ Ij+1

(iv) 81 � j < k < M Qk \Qj 6= ; ) X �

k\
i=j

Qi = Qk \ Qj and

k\
i=j

Qi is a singleton

(v) 81 � j < M Qj \ BE
� (Qj \EB

�) is either a line segment or a point.

Our goal is to de�ne a sequence of closed polygons that satisfy conditions 1(1), 2(1) and

3(1). To this end, we modify Ij or Ij+1 for each j; 0 < j < M; for which Ij \ Ij+1 6= ;:

If Wj 2 Ij+1 (Wj

0 2 Ij+1) then choose a point Z 2 X such that dist(Z;Wj) <

Æ (dist(Z;Wj

0) < Æ); kZWj

0k � �m(X) + Æ (kWjZk � �m(X) + Æ) and ZWj

0 \ Ij+1 =

; (WjZ \ Ij+1 = ;): Then, de�ne the new Ij to be ZWj

0(WjZ):

If Wj+1 2 Ij (Wj+1
0 2 Ij) then choose a point Z 2 X such that dist(Z;Wj+1) <

Æ) (dist(Z;Wj+1
0) < Æ); kZWj+1

0k � �m(X)+Æ (kWj+1Zk � �m(X)+Æ) andZWj+1
0\Ij =

; (Wj+1Z \ Ij = ;): Then, de�ne the new Ij+1 to be ZWj+1
0(Wj+1Z):

In order to satisfy 3(1) we apply lemma C to each Qj with diameter exceeding �m(X)+Æ:

We put AB = Wj�1Wj ; CD = Wj�1
0Wj

0; CA� = Ij�1; BD
� = Ij : By Lemma C, Qj is
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partitioned into a �nite number of closed polygons Rj1; Rj2; : : : ; Rjm(j) with diameters

not exceeding �m(X) + Æ: Furthermore, ordering the indices of all polygons obtained this

way and including all non partitioned Qj

0s, results in a chain fRjg
N

j=1 of closed polygons

that satisfy 1(1){3(1). Since Æ > 0 was arbitrary and X has been chained with a chain

whose mesh does not exceed �m(X) + Æ; this concludes the proof of Theorem 1.
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