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ON THE SPAN OF STARLIKE CURVES

K.T. HALLENBECK

Received March 9, 2001; revised June 22, 2001

ABSTRACT. We prove that the dual monotone span of a starlike curve X is not smaller
than the infimum, £(X), of the set of positive numbers m such that a chain with mesh
m covers X.

1 Introduction. We review the definitions introduced by A. Lelek in [2] and [3]. Let X
be a nonempty connected metric space. The span (X ) of X is the least upper bound of
the set of real numbers r, r > 0, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions f,¢: Y — X such
that

(1) FY) =g(Y)

and dist[f(y), g(y)] > r for every y € Y.

Relaxing the requirement posed by equality (1) to the inclusion f(Y') C ¢(Y') produces
the definition of the semispan go(X) of X. Requiring that ¢ be onto gives the definitions of
the surjective span o*(X) and the surjective semispan o (X).

It was pointed out in [3] that

0<o(X) <oo(X) < diam(X).

It follows from a more general result of Lelek [3, Th.2.1, p39] that when X is a continuum
then og < e(X). A different, direct, proof can be found in [1].

In this paper we concentrate on the case when X is a simple closed curve in the plane.
Notice that in this case o*(X) = o(X) and o (X) = 0g(X). Next, we review the definitions
introduced in [1], starting with the monotone span o (X) of X.

Definition 1. If X is a simple closed curve then

(X)) = inf || £(t) — g(t)],
om(X) Sﬁftéfé,uuf() g@®)ll

where f,g :[0,1] — X are continuous on [0, 1], monotone on [0, 1), and f([0,1]) = X =
9([0.1]).
Next we define the dual monotone span 7, (X) of X.

Definition 2. If X is a simple closed curve then

T (X) = inf sup [h(t) — k()]
hyk telo,1)

where h,k : [0,1] — X are continuous on [0,1], monotone on [0,1), h([0,1]) = X =

k([0,1]), h(0) = k(0), there exists a point t' € (0,1) such that h([0,#']) N k([0,#']) = {h(0)}

and neither h([0,#']) nor k([0,#]) is a singleton.
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Finally, we define the dual effectively monotone span Tepm (X).
Definition 3. If X is a simple closed curve then

Fem(X) = inf sup [h(t) — k(2)]
hkyeoa]

where h,k :[0,1] = X are continuous, h([0,1]) = X = k([0, 1]), h(0) = k(0), there exists a
point t, € (0,1) such that h(t,) = k(t,) # h(0) and R([0,%,]) Nk(]0,1,]) = {R(0),h(t,)}.
(X

)

The span of X is equal to £(X) when X is the boundary of a convex region (see [4]).

It was proven in [1] that Tep(X) <

2 Dual monotone span and starlike curves. Recall that a starlike curve is a simple
closed curve whose every point can be seen from a fixed point in the bounded component
of its complement. Thus, X is starlike if there is a point 0 in the bounded component D of
C\X such that D D 0P\{P} for each point P € X.

For a pair of two distinct points A, B € X we denote the counterclockwise are on X,

with the endpoints A and B, by AB™.

We shall prove that (X) < 7,,(X) for any starlike curve X. First, we need another
definition and several auxiliary lemmas.

Definition 4. Let X be a starlike polygon, let A,k : [0, 1] — X be the functions described
in Definition 3, and let B = h(0) = k(0), E = h(t,) = k(t,), where t, € (0,1) meats
the conditions of Definition 3 as well. Let BE~ = h([0,t,]), EB~ = Ek([0,t,]). For each
point P € BE~(EB"™), let t, be the number in (0,t,) such that h(¢t,) = P(k(t,) = P) and
YVt € (tp,to) h(t) # P(k(t) # P). For any pair of points P,Q € X\{B, E} we say that P
precedes ) (written P <« @) if and only if t, < tg. For any P € X\{B,E}, BK P< E.

Lemma A. Let X be a polygon, let h and k be as described in Definition 2, and let B,FE
and t, be as described in Definitions 3 and 4. There exists a sequence {W; W’/ v, of line
segments with the following properties:

1(A) V1<j<N, W;eBE~, W;/c¢ EB~ and
3t € (0,t,) > W; = h(t), W;' =k(t)

2(A) V1<j<No W; < Wi, Wy < Wi
3(A) IfV e X\{B,E}isavertex then 35,1 <j< N, 2V =W or V =W,

Proof. Let {V,,}M_, be the increasing sequence in the order < of all vertices on X\{B, E}.
Let {t,» }M_, be the corresponding non-decreasing sequence of numbers in (0,%,) such that
Vvl < m < M t, = tv, (see Definition 4). We use lnductlon to define {W;, W; /}NO

as follows. Put Wy = h(y), W, = k(t1). Soppose W;_1, W;_ 1" are defined and suppose
Wi_1 = h(tm-1) or Wj_1 = k(tm—1) for some m, 1 < m < M. If Vi, = h(tm-1) or
Vim = k(tm—1) then put W; = h(ty,41) and I/Vj' = k(tm+1); otherwise put W; = h(t,,) and
W;' = k(tn). ]

Lemma B. If QPCB is a convex quadrilateral with diagonals QC' and PB then ||BQ| +
[PC| < lQC| +|IPBI|

Proof follows from the law of cosines or the triangle inequality.
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Lemma C. Suppose P is a simple closed polygonal line with at least four vertices, and
let A,B,C and D be vertices of P such that P D AB, P D CD, ABNCD = (. Let
AC~, DB~ be polygonal lines such that ABUAC~UCDUDB™~ = P, AC*N DB~ =,
and let d > ¢ > 0. If diamAC™~ < d and diamDB~ < d then there exists a sequence
{Akck}f:o of pairwise disjoint polygonal lines such that

1(¢) VE=0,...,K Ay €AB, Cy€CD,
Ao:Av CO:C, AI(:Bv CR':D

2(c) YO<k<K diamA,Cpy <d

3(¢) VO<k< K diamP; <d+ 4§, where Py, is the polygon whose boundary consists of
Ak_lck_1~, Ck_le, CrLAL™ and AkAk_lN, k= 1,... ,IX’.

Theorem 1. If X is a starlike curve then e(X) < 7, (X).

Proof. Suppose X is a starlike polygon, B and E are two distinct points on X. Let h, k :
[0,1] = X be continuous on [0, 1], monotone on [0,1), h(0) = k(0) = B, h(t,) =k(t,) = FE
for some t, € (0,1), h([0,t,]) = BE™, k(]0,t,]) = EB™. Suppose {W/’jVV]"}};’O is a sequence
of line segments described in Lemma A. Let § > 0. We shall define a chain of closed polygons
{R; }]M:l that satisfy the following conditions:

1(1) U R, DX

=1
2(1) ViI<j<N R;jNRj; C aR]‘ N 8Rj+1 £
NN |k—j|>1=>RjﬁRk=®

3(1) V1<j< N diamR; <7,(X)+4.

Without loss of generality, we can assume that B is a vertex. It follows from Lemma
A that Wy # B, W' # B, Wy € BE~, Wy’ € EB~. We choose two points Wy and
W,' so that B € W,W,', W,W,' n WiW;' = 0 and |W,W,’|| < &,(X). Without loss of
generality, we shall assume that V1 < j < N, ||[W;_1'W,'|| <7 (X), |Wj—1W;|| < Tpm(X).
To make the notation shorter, we give the working name @); to the polygon with vertices
Wi 1, W, W'\ W;_y', j = 1,...,N,, after eliminating W;_;W;_1’ from the sequence
whenever W;W;" O W;_;W;_1'. These polygons will be modified in the course of our

construction.

Let n be the largest natural number such that @, D U Q;.

J=1
If n > 1 then we put @y = Qp, relabel the remaining line segments in {W;W,'} in the
consecutive manner as WoW,', W3 W3, ... | and let Q; be the polygon with the new vertices
W,_1,W;,W,',W;_,' for each j. Suppose the line segments W;W,’, j =1,..., N, are not
pairwise disjoint and let m be the natural number such that
m—1 -1
A1) W' n () Q;#DandVji=2,....m—1 W;w;/'n|]Qi=0
j=1 =1

Counsider the following cases:
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m—1

L W, Wa'e | Q

i=1

m—1
. W, Wa' ¢ | Q;

=1

m—1 m—1
ML W, e |J Qjand W' ¢ |J Q-
J=1 Jj=1

m—1 m—1
Note that the argument in the case when W, € U Q; and W, ¢ U Q; would be
j=1 =1
symmentric to the one we will offer in III.

In case I, let m, be the largest number, m, > m, such that Vj = m,... ,m, W;W;’ €
m—1
U Q. Relabel the line segments W; W, for j > m, as follows. Put W, = Wy, 41, Wy’ =
=1
Wonoat'soo o s Woai = Winowivts, Wimai' = Witit1s-.. , and consider case 1T or TIT if
necessary.

Case II calls for the following distinction:

m—1
M W, W,'n | w;w;’ =

=1

m—1
b W, W' 0 | W, #0

Jj=1

In case Ila, there is exactly one t, 1 <t < m —1, such that Q. NW,,W,,,’ = 0. Let m = ¢,
and let @,, be the polygon with vertices Wy, Wy, Wa', W',

In case IIh, the procedure is as follows. Let ¢ be the smallest number such that W;W;' N
W W' # 0. If i < m — 1 then eliminate W,;W;’ for all j,i < j < m, for which W;W;' N
W,W,,' = 0 so that it can be assumed, without loss of generality, that either W;W;' N
W,W,," # 0 or WW,' "W,/ W,, # 0 for j =i+ 1,...,m — 1. Recall that, by Lemma A,
W5 || = Ik(t;) — k()] < om(X) for all j.

Suppose first that HW/m,ﬂ/Vm'H < Tm(X). Let n be the largest number such that n <
and W, W' "\ W, .1 Wy, = 0.

fVjin<j<m, |[W;Wp,'|<7n(X) then define the new Q,+1 to be the polygon with
vertices Wy, W1, Wy and W,,', the new Qni2 to be the triangle W, i WaioWh',. .. |
the new @Q,, to be the triangle W,, 1W,,Wy'. Otherwise, let j be the largest number,
n < j < m — 1, such that |W;W,,’'|| > &p(X). Then, by Lemma B, ||W;1,W;'|| <
T X)eyo oo, [WinW,'|| <Tp(X), and we define the new Q41 to be the triangle W; W, W;',
the new @42 to be the triangle W; 1 Wj4, W,',... , the new Q,, to be the triangle W,,, , T/VmT/Vj'.

Suppose now that |[W,—1 Wy'|| > T (X). Then, by Lemma B, ||[Wp, W1/ || < &m(X).
If int(W, W’mfl')ﬂBEN = () then we define our new @, to be the triangle W, 1 W, W,,,_1".
Otherwise, we define a new W,,_1 by chooseing a point on BE~™, arbitrarily chose to

int(W,Wi—1') N BE™ and preceding it, and if necessary, redefine each W; that succeeds
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it in the order < on X, arbitrarily close to, and preceding, the new W,,_;. Here, @, is the
quadrilateral Wy, —1 Wi Wi Wi

We now turn to case ITI. First, we claim that W, Wi O W1 Win—1' # (). This is clearly
true when W,, € Win—1 Wi_1'. Suppose then that W,, ¢ Wmn-1Wm_1" and let D be the
bounded component of the complement of X and let 0 € D be the point with respect to
which X is starlike. Let L be the line passing thorough W,, and W,,_;" and let V} and
V2 be the open half planes such that Vi UL UV, = C, W,,,_1 € V5, V3 N V3 = (. Since
DD>OW, 1 \{Wy_1} and D D OW’m,ll\{W’mfll}, we have 0 € Vi, and hence W,,, € V5.
It follows from the latter that W,, W, " W1 Wi_1' 0. W, € W1 W1 we define
the new Q,, to be the triangle W,,,W,,,’ Wy, 1.

If || Wt W' || < &m(X) then define the new ), to be the triangle W, —y Wy, Wiy

Suppose now that ||[W,,—1W,,'|| > 7, (X). Assume , without loss of generality, that

m—1
Wn 0O U I’Vjﬂfj' = (. If the angle at W,, in the triangle W,,'W,,,W,,_1 is smaller than
j=1
7/2 then let C' be the perpendicular projection of W,," onto W,,W,,_y. Otherwise, put
C = W,,. Note that |W,,'C|| < 7m(X). Also, [|[Win—1'C|| < 7mn(X) since the angle at
C in the triangle W,,—1'CW,,_1 exceeds /2 and [|Wy—1Wy—1'|| < &m(X). Let 7 be the
largest number, i < m — 1, such that W;W;' N CW,," = (. Choose a sequence of points
{C]‘}j":ii such that the polygonal lines connecting W;, C; and W', j =i +1,... ,m —

!

2, are pairwise disjoint and do not intersect the polygonal line W,,_1'CW,,_1, C; #
C, |IC;C|| <6, j=1+1,...,m — 2. Notice now that since for each j =¢+1,... ,m —2
the angle at C; in the triangle W,;'C;W; exceeds /2 and |[W;W;'|| < 7., (X) we have
IC;W'|| < 7m(X) and ||C;W;|| < @m(X). We define the new Qi1 to be the ploygon
with vertices Wi, Wiy1, Cir1, Wiyi' and Wy, the new (); to be the polygon with vertices
Wi_1, W;, C;, W', Wi—y' and Cj_4 for j =i+ 2,...,m — 2, the new Q1 to be the
polygon with vertices Wy,_o2, W1, C, Wi_1', Win_s' and Cp,_2, and the new Q,, to
be the triangle W,,_1'CW,,".
This concludes the description of the procedures applied in cases I, II and III.

We now put I; = Q;NQj+1, and let W, and W;’ be the endpoints of I; lying on BE™ and
EB~, respectively, 1 < j < m, except for I,,_1 in case III when |[W,_1Wy,'|| > o (X).
We define I, to be the line segment W,,W,," in cases I and Ila. We define I,, to be
the polygonal line connecting Wp,, Wy—1" and Wy, in case IIb when ||[W,,W,,—1'|| <
Tm(X) < [|WinoiWah'|| and int(W,, W) 0 X = 0. If int(W,,Wy,—1') N X # 0 while
W Wit || <Tm(X) < ||Wim—1Wy'|| then I, = W,,W,,".

In the case when ||[W,,—1W,,'|| < &m(X) in IIb, we put I, = W,,,W,,’ provided that
for each j |[Wome 1 Wo'|| < Tm(X), n < j < m, and define I,, to be the polygonal line
connecting W,,,, W;" and W,,,” otherwise, where j is the largest number, n < j < m — 1,

such that |[W,;W,,,| > 7 (X).

Finally, in case III we define I,,, to be the line segment W,,, 1 W,," when HW’m,lVVm'H <
Tm(X), and to be the line segment CW,," when ||W,,_1W.,,,’|| > 7., (X). In the latter case
I,,_1 is defined to be the polygonal line connecting W,,_1, C and W,,_,".

n—1
Suppose that {n :n > m, W, W,'nN U Q; # 0} #0.
=1
Let my, mi > m, be the smallest number such that
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mi—1

5(1) WaWu'n | Q; #0

J=1

We consider cases [, I, I1I, where m is replaced by mq, with the following modification
of case II.

mq—1
Mo W, Wi, 1 UI u J wwy| =0

j=m+1

The procedure in this case dose not change.

ITby Wy, W, NIy =0 and
mq— 1
Wi UIU U wiw,'| #0

j=m+1

The procedure we follow in this case was described previously for case IIb.
IThy Wo Wi, N1, #0 and W, W,,,' " W,,W,," =
ITby Wy, Wi, MWWy £ 0 and W W' O W i Wi—y' £ 0

by W, Wo, " OW, W, # 0 and Wy, Wy, " O Wy W' =10

Clearly, IIby can only happen if I, is the pOlVUOHal line W, Wo—1' W' (resulting
from the case IIb for m). Recall that then ||W,, W’m V< T (X) < [|[Wi-1W,'|| and
int(W’mT/Vm,ll)ﬂBEN = (). Hence, the angle at W,,," in the quadrilateral W, 1 W,,, W, 1 W,
must be smaller than 7 /2, for otherwise W, _4 W’m_l' would constitute the longest side of
the triangle W, 1 W,,,—1'W,,," and consequently, ||[Wo,—1 W' || < |[Wine1 Win—i'|| < 7m(X).
Similarly, the angle at W,,—1 in the same quadrilateral must be smaller that 7/2 for oth-
erwise [|Woo i Wo'|| < [WiWa'|| < @m(X). In the even when the angle at W,,—;' is also
smaller than 7/2, we let W be the orthogonal projection of W,,_; onto W' Won—y! and
let V be the intersection point of W,,,_1W and the ray with the endpoint W,,_1" contain-
ing Wm_s'. We replace W,,_;' with V. Notice that the angle at V in the quadrilateral
W1 Wi VW, is larger than 7/2 and |[Wy—1 V|| < [[WaWi—1'|| < om(X). It follows
from the above argument that we can assume without loss of generality that the angle at
W1’ in the quadrilateral Wo,—i Wy Wo—1 Wy, exceeds © /2, as dose the angle at W—1'
in the triangle W, W,,_1'W.,,".

Therefore, in case IIby we choose a point Z such that |[W,,—1'Z| < §, Z ¢ U Qj,

=1
and define our new @,,4+1 to be the polygon W,,W,, ZW’ml’W’ "W,,—1" while Ly is the
polygonal line W,,,, ZW,,,’. Note that for sufficiently small & d1am[m+1 < Won, W, '] <
Tm(X). Put mi = m + 1 and delete all W, W,’ for m < j < my.

The case [Iby with I,,, # W,,,W,," is handled similarly to IIb,. In addition to the point

Z described in the latter, we choose a point Y™ such that ||V, Y| <é, ¥V ¢ U Q;,
=1
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and define our new Q41 to be the polygon W, W,,, YZVle'W’m'VVm_l' while I, 41 is the
polygonal line W,,, Y ZW,,,". Note that for sufficiently small § diam/I,,41 < ||[Win, W, '|| <
Tm(X). Put my = m + 1 and delete all W,;W;’ for m < j < m.

If I, = Wi Wy then case ITbs is handled the same way as case IIb.

Consider the case IIb,. Delete all W’jW’j' from the sequence {W’]‘W’j’}j<m such that
W,W;' N W, W,,," # 0 and W;W;' N W,,,, W,,,” = 0. Either for all remaining j, j <
m, W;W;'nW,,W,," = 0 or there exists j, j < m — 1 such that W; W, nW,,W,," # 0 and
W,W;" N Wy, W, # 0.

If the latter occurs, let m — ¢ be the largest number, m — ¢ < m — 1, such that
WineiWin—i' "W W' # 0 and Wi ;W' N W, W,," # () and apply case 1Ib (described
previously for m) to m woth rm — 1 in place of m — 1, deleting W; W, for m—i < j <m—1.
Then, apply case IIbs.

If the former occurs, we simply have case IIb and deal with it accordingly.

We now define I;, W;, W;' for j < m; in the same way as described before for j < m,

n—1
and if {n:n>my, W,W,'N U Qj # 0} # 0 then we let mo, my > mq, be the smallest
=1
mo—1
number such taht W, Wp,,' N U Q; #0.
i=1
We thus construct a sequence m, my, mso, ..., mas, where mys is the smallest number,
mar —1 n—1
myr > ma—i, such that W, W, ' 0 | Q) # D and {n:n >mu, WaWo' 0 Q; #
j=1 j=1

)} = 0. An application of one of the cases I, ITa, IIby, ITbs, ITbs, IIby, III for each m,, n =
1,... , M, results in the construction of a sequence {Q]}}il of closed polygons with the
following properties :

M
i Yo ox

j=1
(ii) diaml; <7, (X), [ =Q;NQj41, j=1,... M -1
(i) V1< j < M either I; N Ij11 =0 or I; N 141 is a singleton and X D I; N Ij4q

k k
(iv) Vi<j<k<M QkﬂQj#@iXDﬂQi:QkﬁQj and sz is a singleton

i=j i=j

(v) V1<j< M Q;NBE~ (Q; N EB™) is either a line segment or a point.

Our goal is to define a sequence of closed polygons that satisfy conditions 1(1), 2(1) and
3(1). To this end, we modify I; or I,;4; for each j, 0 < j < M, for which I; N I;41 # 0.

If W; € Ijy1 (W;' € Ij41) then choose a point Z € X such that dist(Z, W;)
§ (dist(Z,W;") < &), |ZW|| < Tm(X) + 6 (|W;Z)| < Tp(X) +6) and ZW,' N 141 =
0 (W;Z 0 I;41 = 0). Then, define the new I; to be ZW,'(W;Z).

If Wisq1 € I; (Wjg1' € I;) then choose a point Z € X such that dist(Z, W;iq)
5) (diSt(ZjI/[/J;Fll) < 5), ‘ZVI/]‘+1’H S Em(JY)+5 (|H/1’7]+1Z|| S Em(X)+5) ELIld ZI/I/fj+1lij ==
0 (W;s1Z N 1; =0). Then, define the new Iy to be ZW;i1' (Wjq12).

In order to satisfy 3(1) we apply lemma C to each @Q; with diameter exceeding 7, (X ) +94.
We put AB =W, 1 W;, CD=W,;_'W,', CA~=1,_4, BD~ = I;. By Lemma C, Q; is

A

A
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partitioned into a finite number of closed polygons Rj1, Rja, ..., Rj, ;) with diameters
not exceeding 7, (X) + 4. Furthermore, ordering the indices of all polygons obtained this
way and including all non partitioned @;'s, results in a chain {R; }]N:l of closed polygons
that satisfy 1(1)-3(1). Since § > 0 was arbitrary and X has been chained with a chain
whose mesh does not exceed @, (X ) + §, this concludes the proof of Theorem 1.
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