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SPECHT'S RATIO IN THE YOUNG INEQUALITY
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Abstract. The Young operator inequality is represented for � 2 [0; 1] as follows

A51�� B � A ]1�� B

for positive invertible operators A and B with 0 < m � A;B � M , m < M . In this

note we show the following converse inequality of the Young operator inequality on the

ratio, independent of �:

S(h)A ]1�� B � A51�� B (� A ]1�� B);

where the constant S(h) = h

1
h�1

e log h
1

h�1

(h = M

m
) is Specht's ratio. Moreover we show

another converse inequality of it on the di�erence:

L(1; h) log S(h)A � A51�� B � A ]1�� B (� 0);

where L(m;M) = M�m

logM�logm
is the logarithmic mean.

1. Introduction

We cite the Young inequality which is considered as the �-weighted arithmetic-geometric

mean inequality as follows:

The Young inequality . Let a and b be positive numbers. Then the inequality

(1 � �)a+ �b � a1��b�(1.1)

holds for every � 2 [0; 1].

In this note, an operator means a bounded linear operator acting on a complex Hilbert

space H. The inequality (1.1) is extended to an operator version by the following two

means. Let A and B be positive invertible operators. For every � 2 [0; 1], we denote by 5�

the �-weighted arithmetic mean as follows:

A5� B := (1 � �)A + �B;(1.2)

and by ]� the �-weighted geometric mean as follows:

A ]� B := A
1
2 (A�

1
2BA�

1
2 )�A

1
2 :(1.3)

The �-weighted geometric mean is introduced by F.Kubo and T.Ando in [3]. The following

arithmetic mean - geometric mean inequality is regarded as an operator version of the Young

inequality:
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The Young operator inequality . Let A and B be positive invertible operators. Then

the inequality

A51�� B � A ]1�� B(1.4)

holds for every � 2 [0; 1].

For the sake of convenience, we recall some constants as follows: Let m and M be real

numbers with 0 < m <M . Then the logarithmic mean L(m;M) (cf. [2]) is de�ned by

L(m;M) =
M �m

logM � logm
:

Next the constant S(h) de�ned by

S(h) =
h

1
h�1

e log h
1

h�1

(h > 1)

is called Specht's ratio [1], [4], which is the best upper bound of the arithmetic mean by the

geometric one for positive numbers: For xi 2 [m;M ] with M >m > 0 (i = 1; 2; � � � ; n), the
following inequality holds

S(h) n
p
x1x2 � � � xn �

x1 + x2 + � � �+ xn

n
(� n

p
x1 � � �xn);(1.5)

where the constant h = M

m
is called a condition number in the sense of Turing [5].

In this note, we show converse inequalities of the Young operator inequality (1.4). First

we show the following converse inequality of (1.4) on the ratio independent of � 2 [0; 1]:

For positive invertible operators A and B with 0 < m � A;B �M and h = M

m
(> 1)

S(h)A ]1�� B � A51�� B (� A ]1�� B):

Moreover we show the following converse inequality of (1.4) on the di�erence:

L(1; h) logS(h)A � A51�� B �A ]1�� B(� 0):

>From two inequalities stated above, we can recognize that Specht's ratio plays the impor-

tant role in the converse of the Young operator inequality (1.4).

2. Converse ratio inequality in the Young operator inequality

In this section, we show a converse ratio inequality of the Young operator inequality

(1.4), i.e., a ratio inequality of A51�� B by A ]1�� B as follows:

Theorem 2.1. Let A and B be positive invertible operators with 0 < m � A;B � M and

h = M

m
> 1. Then the inequality

S(h)A ]1�� B � A51�� B (� A ]1�� B)(2.1)

holds for every � 2 [0; 1].

As in (1.5) which is considered as a converse ratio inequality of the Young inequality (1.1),

Specht's ratio is used in (2.1) which is a converse ratio inequality of the Young operator

inequality (1.4). To prove Theorem 2.1, we need some results cited as Lemmas 2.2 and 2.3.

In our seminar talk, J.I. Fujii gave the following properties by considering Specht's ratio

S(t) as a function for t > 0:
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Lemma 2.2. A function S(t) is strictly decreasing for 0 < t < 1 and strictly increasing for

t > 1. Furthermore the following equations hold

S(1) = 1 and S(t) = S(
1

t
) for all t > 0:

Proof. We have by L'Hospital's theorem

lim
t!1

logS(t) = lim
t!1

log
t

1
t�1

e log t
1

t�1

= lim
t!1

�
log t

t� 1
� 1� log

log t

t� 1

�

= lim
t!1

�
1

t
� 1� log

1

t

�
= 0;

and so S(1) = 1. Moreover the equation ( 1
t
)

1
1
t
�1 = t

t

t�1 = t � t
1

t�1 implies the equation

S(
1

t
) =

(1
t
)

1
1
t
�1

e log(1
t
)

1
1
t
�1

=
t � t

1
t�1

e log t
t

t�1

=
t

1
t�1

e log t
1

t�1

= S(t):

Furthermore we have by a di�erential calculation

d

dt
logS(t) =

d

dt

�
log t

t� 1
� 1� log

log t

t� 1

�
=

1
t
(t � 1)� log t

(t� 1)2
�
t� 1

log t

1
t
(t� 1)� log t

(t � 1)2

=
(log t� t+ 1)(1� 1

t
� log t)

(t� 1)2 log t
:

So for any t > 1, a function S(t) is strictly increasing from
d

dt
logS(t) > 0 by the Klein

inequality (1 � 1
t
� log t � t � 1 for any t > 0) and log t > 0. On the other hand, for

0 < t < 1 we see that a function S(t) is strictly decreasing.

In the following lemma, we show a converse ratio inequality of the Young inequality (1.1):

Lemma 2.3. Let a be a positive number. Then the inequality

S(a)a1�� � (1� �)a + � (� a1��)(2.2)

holds for every � 2 [0; 1].

Consequently, for a; b > 0 the inequality

S(
a

b
)a1��b� � (1� �)a + �b (� a1��b�)(2.3)

holds for every � 2 [0; 1].

Proof. Let a 6= 1. We put a function fa(�) derived from the Young inequality (1.1) in the

case b = 1 as follows:

fa(�) :=
(1� �)a + �

a1��
=

(1 � a)� + a

a1��
= (

1� a

a
�+ 1)a�:

Then we obtain the constant S(a) = a

1
a�1

e log a
1

a�1

as the maximum of fa(�) for � 2 [0; 1].

Indeed, we have by an elementary di�erential calculation

f 0a(�) =

�
1� a

a
+ (

1� a

a
�+ 1) log a

�
a�;
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and so the equation f 0a(�) = 0 has the following unique solution � = �a:

�a =
a

1� a
(
a � 1

a log a
� 1) =

a

a� 1
�

1

log a
(2 [0; 1]):

In fact, the Klein inequality ensures �a 2 [0; 1]. Furthermore it is easily seen that

f 0
a
(�) > 0 for � < �a and f 0

a
(�) < 0 for � > �a:

Therefore a maximum of fa(�) takes at � = �a, and moreover we have

max
0���1

fa(�) = fa(�a) =

a�1
log a

a�
1

a�1
+ 1

log a

=
a

1
a�1

e log a
1

a�1

= S(a):

In the case of a = 1, the inequality (2.2) is ensured by Lemma 2.2 (S(1) = 1).

The desired inequality (2.3) is obtained by replacing a with a

b
in (2.2). Hence the proof

of Lemma 2.3 is complete.

We show Theorem 2.1 by considering the operator version of Lemma 2.3 as follows:

Proof of Theorem 2.1. Let C be a positive operator with 0 < m � C �M , m < M . Then

by using the functional calculus in the inequality (2.2), the inequality

max
m�t�M

S(t) C1�� � (1� �)C + � (� C1��)

holds for every � 2 [0; 1]. Moreover since the maximum of S(t) in t 2 [m;M ] is given by

maxfS(m); S(M)g from Lemma 2.2, we have

maxfS(m); S(M)g C1�� � (1� �)C + � (� C1��):(2.4)

Here we replace C with A�
1
2BA�

1
2 in (2.4). Then we obtain m

M
� A�

1
2BA�

1
2 � M

m
, i.e.,

1
h
� A�

1
2BA�

1
2 � h. Hence we have for any � 2 [0; 1]

S(h)(A�
1
2BA�

1
2 )1�� � (1 � �)A�

1
2BA�

1
2 + �

by S(h) = S( 1
h
) in Lemma 2.2. Multiplying both sides by A

1
2 , we have

S(h)A
1
2 (A�

1
2BA�

1
2 )1��A

1
2 � (1� �)B + �A;

and hence we have the desired inequality (2.1).

3. The converse difference inequality in the Young operator inequality

In this section, we show a converse di�erence inequality of the Young operator inequality

(1.4), i.e., the upper bound of A51�� B �A ]1�� B (� 0) as follows:

Theorem 3.1. Let A and B be positive invertible operators with 0 < m � A;B � M and

h = M

m
> 1. Then the inequality

L(1; h) logS(h)A � A51�� B �A ]1�� B (� 0)(3.1)

holds for every � 2 [0; 1].
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The logarithmic mean and Specht's ratio are used in a converse di�erence inequality (3.1)

of the Young operator inequality (1.4).

To prove Theorem 3.1, we show a converse di�erence inequality of the Young inequality

(1.1) in the following way:

Lemma 3.2. Let a be a positive number. Then the inequality

L(1; a) log S(a) � (1 � �)a+ �� a1�� (� 0)(3.2)

holds for every � 2 [0; 1].

Consequently, for a; b > 0 the inequality

L(a; b) log S(
a

b
) � (1 � �)a + �b � a1��b� (� 0)(3.3)

holds for every � 2 [0; 1].

Proof. Let a 6= 1. We put a function ga(�) derived from the Young inequality (1.1) in the

case b = 1 as follows:

ga(�) := (1� �)a + � � a1�� = (1 � a)� + a� a1��:

Then we want to determine the maximum of ga(�). We have by an elementary di�erential

calculation

g0a(�) = (1 � a) + a1�� log a(3.4)

and so the equation g0a(�) = 0 has the following unique solution � = �a:

�a = 1�
log a�1

log a

log a
= 1� loga

a� 1

log a
= loga

a log a

a� 1
=

log a log a
a�1

log a
:

By the Klein inequality, it follows that �a is included in [0; 1]. Since we have g00
a
(�) =

�a1��(log a)2 < 0 by (3.4), a maximum of ga(�) takes at � = �a, and moreover we have

max
0���1

ga(�) = ga(�a)

=
1� a

log a
log

a log a

a � 1
+ a�

(a � 1)

log a
=
a � 1

log a
(� log

a log a

a � 1
+
a log a

a� 1
� 1)

=
a� 1

log a
log

a
a

a�1

e log a
a

a�1

=
a� 1

log a
log

a
1

a�1

e log a
1

a�1

= L(1; a) log S(a):

In the case of a = 1, the inequality (3.2) is ensured by Lemma 2.2 (S(1) = 1) and a

property of mean ( lim
a!1

L(a) = 1).

The desired inequalitiy (3.3) is obtained by replacing a with a

b
in (3.2). Hence the proof

of Theorem 3.2 is complete.

We show Theorem 3.1 by considering the operator version of Theorem 3.2 as follows:

Proof of Theorem 3.1. Let C be a positive operator with 0 < m � C �M , m < M . Then

by using the functional calculus in the inequality (3.2), the inequality

max
m�t�M

L(1; t) log S(t) � (1 � �)C + �� C1�� (� 0)(3.5)

holds for every � 2 [0; 1]. Here we replace C with A�
1
2BA�

1
2 in (3.5). Then we have

m

M
� A�

1
2BA�

1
2 � M

m
, i.e., 1

h
� A�

1
2BA�

1
2 � h: Hence we have for any � 2 [0; 1]

L(1; h) logS(h) � (1� �)A�
1
2BA�

1
2 + �� (A�

1
2BA�

1
2 )1��
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by Lemma 2.2, that is,

L(1; h) logS(h)A � (1� �)B + �A�A
1
2 (A�

1
2BA�

1
2 )1��A

1
2 :

So we have the desired inequality (3.1).
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