THE RADIUS OF β-CONVEXITY FOR THE CLASSES OF λ-SPIRALLIKE ORDER α FUNCTIONS

OH SANG KWON AND SHIGEYOSHI OWA

Received April 21, 2001; revised September 7, 2001

Abstract

Some subclasses of analytic functions in the open unit disk \mathbb{D} are considered. The object of the present paper is to derive sharp bounds for the radius of β-convexity for the classes of λ-spirallike of order α functions and p-fold λ-spirallike of order α functions.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
s(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. And let \mathcal{S} denote the subclass of \mathcal{A} consisting of analytic and univalent functions $s(z)$ in \mathbb{D}.

A function $s(z)$ in \mathcal{S} is said to be starlike if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z s^{\prime}(z)}{s(z)}\right\}>0 \quad(z \in \mathbb{D}) \tag{1.2}
\end{equation*}
$$

We denote by \mathcal{S}^{*} the class of all starlike functions. A function $s(z)$ in \mathcal{S} is said to be convex if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z s^{\prime \prime}(z)}{s^{\prime}(z)}\right\}>0 \quad(z \in \mathbb{D}) \tag{1.3}
\end{equation*}
$$

Also we denote by \mathcal{K} the class of all convex functions.

Definition 1.1. A function $s(z)$ in \mathcal{S} is said to be λ-spirallike if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \lambda} z \frac{s^{\prime}(z)}{s(z)}\right\}>0 \quad(z \in \mathbb{D}) \tag{1.4}
\end{equation*}
$$

for some real $\lambda\left(|\lambda|<\frac{\pi}{2}\right)$. The class of these functions is denoted by $\mathcal{S}_{\lambda}^{*}$.

Definition 1.2. A function $s(z)$ in \mathcal{S} is said to be λ-spirallike of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \lambda z} \frac{s^{\prime}(z)}{s(z)}\right\}>\alpha \cos \lambda \quad(z \in \mathbb{D}) \tag{1.5}
\end{equation*}
$$

[^0]for some real $\lambda\left(|\lambda|<\frac{\pi}{2}\right)$ and $\alpha(0 \leq \alpha<1)$. We denote by $\mathcal{S}_{\lambda}^{*}(\alpha)$ all such functions which satisfy (1.5).

The above classes were introduced by Spacek ([11]). For $\lambda=0$ in (1.4), a function $s(z)$ in the class $\mathcal{S}_{0}^{*}(\alpha)$ is a starlike function of order α.

Definition 1.3. Let F denote a non-empty collection of functions $s(z)$ each of which is univalent in \mathbb{D}, and let β be given $0 \leq \beta \leq 1$. Then the real number

$$
\begin{equation*}
R_{\alpha}(F)=\sup \{R|\operatorname{Re}\{J(\beta, s(z))\}>0,|z|<R, s(z) \in F\} \tag{1.6}
\end{equation*}
$$

is called the radius of β-convexity of F, where $J(\beta, s(z))$ is defined by the relation,

$$
\begin{equation*}
J(\beta, s(z))=(1-\beta) z \frac{s^{\prime}(z)}{s(z)}+\beta\left(1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right) \tag{1.7}
\end{equation*}
$$

The radius of β-convexity was introduced by Miller, Mocanu and Reade ([4]). For $\beta=0$ and $\beta=1$ in (1.7), we define a starlike function (1.2) and a convex function (1.3), respectively.

Definition 1.4. Consider a function $s(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ which is univalent in \mathbb{D}. Then the function defined by the relation.

$$
\begin{equation*}
f(z)=\left(s\left(z^{p}\right)\right)^{\frac{1}{p}}=z+\sum_{n=1}^{\infty} a_{n p+1} z^{n p+1} \tag{1.8}
\end{equation*}
$$

is also univalent in \mathbb{D}, and $f(z)$ is called a p-fold univalent function. If the function $f(z)$ defined by the relation (1.8) satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \lambda} z \frac{f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathbb{D}) \tag{1.9}
\end{equation*}
$$

then the function $f(z)$ is called a p-fold λ-spirallike function in \mathbb{D}, for some real $\lambda\left(|\lambda|<\frac{\pi}{2}\right)$ ([1]), and the class of these functions is denoted by $\mathcal{S}_{\lambda p}^{*}$. And also we can define the class of p-fold λ-spirallike functions of order α in \mathbb{D}, denoted by $\mathcal{S}_{\lambda p}^{*}(\alpha)$.

The radius of β-convexity was introduced by Miller, Mocanu and Reade ([4]). There are many open problems about the radius of starlikeness, convexity and β-convexity for the classes \mathcal{S} (cf. [1]). So, we derive sharp bounds for the radius of β-convexity for the classes of λ-spirallike of order α and p-fold λ-spirllike of order α functions.
2. The radius of β-convexity

To discuss our problems, we need the following lemmas.

Lemma 2.1. ([5]) If $s(z) \in \mathcal{S}_{\lambda}^{*}(\alpha)$, then, for $|z|=r<1$,

$$
\begin{equation*}
\left|z \frac{s^{\prime}(z)}{s(z)}-\frac{1+\left\{2(1-\alpha) \cos \lambda e^{-i \lambda}-1\right\} r^{2}}{1-r^{2}}\right| \leq \frac{2(1-\alpha) r \cos \lambda}{1-r^{2}} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. ([10]) If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ is analytic in \mathbb{D}, and satisfies $\operatorname{Re} p(z)>0$ and $p(0)=1$. Then, for $|z|=r<1$,

$$
\begin{equation*}
\left|z \frac{p^{\prime}(z)}{p(z)}\right| \leq \frac{2 r}{1-r^{2}} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. ([7]) If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ is analytic in \mathbb{D}, and satisfies $\operatorname{Re} p(z)>0$, then, for $|z|=r<1$,

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \quad \text { for } \quad n \geq 1 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1-|z|}{1+|z|} \leq \operatorname{Re} p(z) \leq|p(z)| \leq \frac{1+|z|}{1-|z|} \tag{ii}
\end{equation*}
$$

Lemma 2.4. If $s(z) \in \mathcal{S}_{\lambda}^{*}(\alpha)$, then, for $|z|=r<1$,
(i) for $\lambda \neq 0$,

$$
\begin{array}{|l}
\left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-\frac{1+\left\{2(1-\alpha) \cos \lambda e^{-i \lambda}-1\right\} r^{2}}{1-r^{2}}\right| \tag{2.3}\\
\quad \leq \frac{2(1-\alpha) r\{1+r+(1-r)|\sin \lambda|\} \cos \lambda}{(1-r)^{2}(1+r)|\sin \lambda|}
\end{array}
$$

and
(ii) for $\lambda=0$,

$$
\begin{aligned}
& \left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-\frac{1+(1-2 \alpha) r^{2}}{1-r^{2}}\right| \\
\leq & \frac{4 r(1-\alpha)\{1+(1-\alpha) r\}}{\left(1-r^{2}\right)\{(1-\alpha)(1+r)+\alpha(1-r)\}}
\end{aligned}
$$

Proof. (i) For $\lambda \neq 0$, since $s(z) \in \mathcal{S}_{\lambda}^{*}(\alpha)$, then we can write

$$
\begin{equation*}
\frac{e^{i \lambda} \frac{z s^{\prime}(z)}{s(z)}-\alpha \cos \lambda-i \sin \lambda}{(1-\alpha) \cos \lambda}=p(z) \tag{2.4}
\end{equation*}
$$

where $p(z)$ is analytic in \mathbb{D}, and satisfies $\operatorname{Re} p(z)>0$ and $p(0)=1$. The logarithmic differentiation of (2.4) yields

$$
\begin{equation*}
1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-z \frac{s^{\prime}(z)}{s(z)}=\frac{z(1-\alpha) \cos \lambda p^{\prime}(z)}{(1-\alpha) \cos \lambda p(z)+\alpha \cos \lambda+i \sin \lambda} . \tag{2.5}
\end{equation*}
$$

By Lemma 2.2 and putting $\frac{1}{p(z)}=U+i V$, we have

$$
\begin{align*}
& \left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-z \frac{s^{\prime}(z)}{s(z)}\right| \tag{2.6}\\
& =\left|\frac{\frac{z p^{\prime}(z)}{p(z)}}{1+\frac{\alpha}{1-\alpha} \frac{1}{p(z)}+i \frac{1}{1-\alpha} \tan \lambda \frac{1}{p(z)}}\right| \\
& =(1-\alpha)\left|\frac{\frac{z p^{\prime}(z)}{p(z)}}{(1-\alpha)+\alpha \frac{1}{p(z)}+i \tan \lambda \frac{1}{p(z)}}\right| \\
& \left.\leq \frac{(1-\alpha) \frac{2 r}{1-r^{2}}}{(1-\alpha)+\alpha \frac{1}{p(z)}+i \tan \lambda \frac{1}{p(z)}} \right\rvert\, \\
& \leq \frac{(1-\alpha) \frac{2 r}{1-r^{2}}}{U|\tan \lambda|}
\end{align*}
$$

Using Lemma 2.3 and (2.6), we have

$$
\begin{equation*}
\left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-z \frac{s^{\prime}(z)}{s(z)}\right| \leq \frac{2(1-\alpha) r}{(1-r)^{2}|\tan \lambda|} . \tag{2.7}
\end{equation*}
$$

And by Lemma 2.3 and (2.7), we get

$$
\begin{gather*}
\left\lvert\, \begin{array}{l}
\left.1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-\frac{1+\left\{2(1-\alpha) \cos \lambda e^{i \lambda}-1\right\} r^{2}}{1-r^{2}} \right\rvert\, \\
\leq \frac{2(1-\alpha) r\{1+r+(1-r)|\sin \lambda|\} \cos \lambda}{(1-r)^{2}(1+r)|\sin \lambda|}
\end{array} .\right. \tag{2.8}
\end{gather*}
$$

(ii) For $\lambda=0$, from (2.4) we get

$$
\begin{equation*}
\frac{z s^{\prime}(z)}{s(z)}-\alpha=(1-\alpha) p(z) \tag{2.9}
\end{equation*}
$$

Using Lemma 2.2 and (2.9), by similar method as $\lambda \neq 0$,

$$
\begin{equation*}
\left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-z \frac{s^{\prime}(z)}{s(z)}\right| \leq \frac{2 r(1-\alpha)}{\{(1-\alpha)(1+r)+\alpha(1-r)\}(1-r)} \tag{2.10}
\end{equation*}
$$

¿From Lemma $2.1(\lambda=0)$, we get

$$
\begin{equation*}
\left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-\frac{1+(1-2 \alpha) r^{2}}{1-r^{2}}\right| \tag{2.11}
\end{equation*}
$$

$$
\leq \frac{4 r(1-\alpha)\{1+(1-\alpha) r\}}{\left(1-r^{2}\right)\{(1-\alpha)(1+r)+\alpha(1-r)\}}
$$

Theorem 2.1. If $s(z) \in \mathcal{S}_{\lambda}^{*}(\alpha)(\lambda \neq 0)$, then $s(z)$ is convex in $|z|<R(\lambda, \alpha)$, where $R(\lambda, \alpha)$ is the smallest positive root of the equation

$$
\begin{align*}
T(r)= & r^{3}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}-r^{2}\left[2 (1 - \alpha) \left\{\cos ^{2} \lambda|\sin \lambda|\right.\right. \tag{2,12}\\
& -(1-|\sin \lambda|) \cos \lambda\}-|\sin \lambda|]+r\{|\sin \lambda| \\
& +2(1-\alpha)(1+|\sin \lambda|) \cos \lambda\}-|\sin \lambda| .
\end{align*}
$$

The result is sharp.

Proof. ¿From Lemma 2.4, we obtain

$$
\begin{align*}
& \operatorname{Re}\left(1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right) \tag{2.13}\\
& \geq-\frac{r^{3}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}}{(1-r)^{2}(1+r)|\sin \lambda|} \\
&+\frac{r^{2}\left[2(1-\alpha)\left\{\cos ^{2} \lambda|\sin \lambda|-(1-|\sin \lambda|) \cos \lambda\right\}-|\sin \lambda|\right]}{(1-r)^{2}(1+r)|\sin \lambda|} \\
&-\frac{r\{|\sin \lambda|-2(1-\alpha)(1+|\sin \lambda|) \cos \lambda\}-|\sin \lambda|}{(1-r)^{2}(1+r)|\sin \lambda|} .
\end{align*}
$$

Since $T(0)<0$ and $T(1)>1$, there exists a real root of $T(r)=0$ in $(0,1)$. Let $R(\lambda, \alpha)$ be the smallest positive root of $T(r)=0$ in $(0,1)$. Then $s(z)$ is convex in $|z|<R(\lambda, \alpha)$. Sharpness is attained for the function,

$$
\begin{equation*}
s(z)=\frac{z}{(1-z)^{2(1-\alpha) \cos \lambda \exp (-i \lambda)}} \tag{2.14}
\end{equation*}
$$

Remark 1. In the case $\lambda=0$, from Lemma 4(ii), we get

$$
\begin{align*}
& \operatorname{Re}\left(1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right) \tag{2.15}\\
& \geq \frac{1+(1-2 \alpha) r^{2}}{1-r^{2}}-\frac{4 r(1-\alpha)\{1+r-\alpha r\}}{\{(1+r)(1-\alpha)+\alpha(1-r)\}\left(1-r^{2}\right)} \\
&=\frac{(1-2 \alpha)^{2} r^{3}-\left(4 \alpha^{2}-6 \alpha+3\right) r^{2}+(2 \alpha-3) r+1}{\left(1-r^{2}\right)\{(1-\alpha)(1+r)+\alpha(1-r)\}}
\end{align*}
$$

We have $s(z)$ is convex in $|z|<R(\alpha)$, where $R(\alpha)$ is the smallest positive root of the equation

$$
\begin{equation*}
T(r)=(1-2 \alpha)^{2} r^{3}-\left(4 \alpha^{2}-6 \alpha+3\right) r^{2}+(2 \alpha-3) r+1 \tag{2.16}
\end{equation*}
$$

Remark 2. If $\alpha=0$ in (2.16), we get $r=2-\sqrt{3}$. This result is obtained by Libera [2].

Theorem 2.2. If $s(z) \in \mathcal{S}_{\lambda}^{*}(\alpha)(\lambda \neq 0)$, then $s(z)$ is β-convex in $|z|<R(\lambda, \alpha, \beta)$, where $R(\lambda, \alpha, \beta)$ is the smallest positive root of the equation

$$
\begin{align*}
T(r)= & r^{3}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}-r^{2}\left[2 (1 - \alpha) \left\{\cos ^{2} \lambda|\sin \lambda|\right.\right. \tag{2.17}\\
& -(\beta-|\sin \lambda|) \cos \lambda\}-|\sin \lambda|] \\
& +r\{2(1-\alpha) \cos \lambda(\beta+|\sin \lambda|)+|\sin \lambda|\}-|\sin \lambda| .
\end{align*}
$$

The result is sharp.

Proof. ¿From the inequatlity (2.1), we have

$$
\begin{equation*}
\operatorname{Re} z \frac{s^{\prime}(z)}{s(z)} \geq \frac{\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\} r^{2}-2(1-\alpha) r \cdot \cos \lambda+1}{1-r^{2}} . \tag{2.18}
\end{equation*}
$$

For $0 \leq \beta \leq 1$, if we multiply both sides of (2.18) by $(1-\beta)$ and of (2.13) by β, then

$$
\begin{align*}
& \operatorname{Re} J(\beta, s(z)) \tag{2.19}\\
& \geq \frac{-r^{3}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}+r^{2}\left[2 (1 - \alpha) \left\{\cos ^{2} \lambda|\sin \lambda|\right.\right.}{(1-r)^{2}(1+r)|\sin \lambda|} \\
& \frac{-(\beta-|\sin \lambda|) \cos \lambda\}-|\sin \lambda|]-r\{2(1-\alpha) \cos \lambda(\beta+|\sin \lambda|)}{(1-r)^{2}(1+r)|\sin \lambda|} \\
& \frac{+|\sin \lambda|\}+|\sin \lambda|}{(1-r)^{2}(1+r)|\sin \lambda|}
\end{align*}
$$

Since $T(0)<0$ and $T(1)>0$, there exist a real root of $T(r)=0$ in $(0,1)$. Let $R(\lambda, \alpha, \beta)$ be the smallest positive root $T(r)=0$ in $(0,1)$. Then $s(z)$ is β-convex in $|z|<R(\lambda, \alpha, \beta)$. We obtain the sharpness for the extremal function given by (2.14).

Corollary 2.1. If $\beta=1$, then we obtain the radius of convexity for the class of λ spirallike of order α functions which is given in Theorem 2.1.

Corollary 2.2. If $\beta=0$, then

$$
r=\frac{(1-\alpha) \cos \lambda-\sqrt{1-\left(1-\alpha^{2}\right) \cos ^{2} \lambda}}{2(1-\alpha) \cos ^{2} \lambda-1}
$$

Remark 3. If $\alpha=0$ in Corollary 2.2, then

$$
r=\frac{1}{|\sin \lambda|+\cos \lambda}
$$

This is the radius of starlikness for λ-spirallike functions, which was obtained by Robertson [10] and Libera [2].

3. The radius of β-convexity for p-fold λ-Spirallike functions

Theorem 3.1. If $f(z) \in S_{\lambda p}^{*}(\alpha)(\lambda \neq 0)$, then $f(z)$ is β-convex in $|z|<R(\lambda, \alpha, \beta, p)$, where $R(\lambda, \alpha, \beta, p)$ is the smallest positive root of the equation

$$
\begin{align*}
T(r)= & r^{3 p}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}-r^{2 p}\left[2 (1 - \alpha) \left\{\cos ^{2} \lambda|\sin \lambda|\right.\right. \tag{3.1}\\
& -(\beta p-|\sin \lambda|) \cos \lambda\}-|\sin \lambda|] \\
& +r^{p}\{2(1-\alpha) \cos \lambda(\beta p+|\sin \lambda|)+|\sin \lambda|\}-|\sin \lambda|
\end{align*}
$$

Proof. ¿From the relation (1.8) we obtain

$$
1+z^{p} \frac{s^{\prime \prime}\left(z^{p}\right)}{s^{\prime}\left(z^{p}\right)}=\frac{1}{p}\left(1+z \frac{f^{\prime}(z)}{f(z)}\right)+\left(1-\frac{1}{p}\right) z \frac{f^{\prime}(z)}{f(z)}
$$

¿From a simple caculation of (1.8), (2.13) and (2.16), we obtain

$$
\begin{align*}
& \operatorname{Re}\left\{J\left(\frac{1}{p}, f(z)\right)\right\} \tag{3.2}\\
& \geq-\frac{r^{3 p}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
&+\frac{r^{2 p}\left[2(1-\alpha)\left\{\cos ^{2} \lambda|\sin \lambda|-(1-|\sin \lambda|) \cos \lambda\right\}-|\sin \lambda|\right]}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
&-\frac{r^{p}\{|\sin \lambda|+2(1-\alpha)(1+|\sin \lambda|) \cos \lambda\}-|\sin \lambda|}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|}, \\
& \operatorname{Re}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\} \geq \frac{\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\} r^{2 p}-2(1-\alpha) r^{p} \cos \lambda+1}{1-r^{2 p}} . \tag{3.3}
\end{align*}
$$

If we multiply both sides of (3.2) by γ and (3.3) by $1-\gamma$, and add the corresponding members, we obtain

$$
\begin{align*}
& \operatorname{Re}\left\{J\left(\frac{\gamma}{p}, f(z)\right)\right\} \tag{3.4}\\
& \geq-\frac{r^{3 p}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
&+\frac{r^{2 p}\left[2(1-\alpha)\left\{\cos ^{2} \lambda|\sin \lambda|-(\gamma-|\sin \lambda|) \cos \lambda\right\}-|\sin \lambda|\right]}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
&-\frac{r^{p}\{2(1-\alpha) \cos \lambda(\gamma+|\sin \lambda|)+|\sin \lambda|\}-|\sin \lambda|}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|}
\end{align*}
$$

where $0 \leq \gamma \leq 1$. If we take $\frac{\gamma}{p}=\beta$ the inequality (3.2) can be written in the form

$$
\begin{align*}
& \operatorname{Re}\{J(\beta, f(z))\} \tag{3.5}\\
\geq & -\frac{r^{3 p}|\sin \lambda|\left\{2(1-\alpha) \cos ^{2} \lambda-1\right\}}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
& +\frac{r^{2 p}\left[2(1-\alpha)\left\{\cos ^{2} \lambda|\sin \lambda|-(\beta p-|\sin \lambda|) \cos \lambda\right\}-|\sin \lambda|\right]}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|} \\
& -\frac{r^{p}\{2(1-\alpha) \cos \lambda(\beta p+|\sin \lambda|)+|\sin \lambda|\}-|\sin \lambda|}{\left(1-r^{p}\right)^{2}\left(1+r^{p}\right)|\sin \lambda|}
\end{align*}
$$

where $0 \leq \beta \leq 1$. Since $T(0)<0$ and $T(1)>0$, there exist a real root of $T(r)=0$ in $(0,1)$. Let $R(\lambda, \alpha, \beta, p)$ be the smallest positive root $T(r)=0$ in $(0,1)$. Then $f(z)$ is β-convex in $|z|<R(\lambda, \alpha, \beta, p)$. We obtain the sharpness because the extremal function is $f(z)=z /\left(1-z^{p}\right)^{2(1-\alpha) \cos \lambda \exp (-i \lambda) / p}$. This shows that the theorem is true.

Corollary 3.1. If $p=1$, then we obtain the radius of β-convexity for the class of λ spirallike of order α functions which is given in Theorem 2.1.

Corollary 3.2. If $\alpha=0$, then we obtain the radius of β-convexity for the class of λ spirallike functions.

Corollary 3.3. For $\beta=0$ we obtain

$$
r=\sqrt[p]{\frac{(1-\alpha) \cos \lambda-\sqrt{1-(1-\alpha) \cos ^{2} \lambda}}{2(1-\alpha) \cos ^{2} \lambda-1}}
$$

This is the radius of starlikeness for p-fold λ-spirallike functions. If we take $p=1, \alpha=0$ and $\beta=0$, we obtain $r=(|\sin \lambda|+\cos \lambda)^{-1}$, which was obtained by Roberston [8] and Libera [2].

Corollary 3.4. In the case $\lambda=0$, we obtain the radius of β-convexity for the class of p-fold starlike of order α functions. If we take $\alpha=0$ we obtain the radius of β-convexity for the class of p-fold starlike functions.

For $p=1, \beta=0, \lambda=0$ and $\alpha=0$, we obtain $r=2-\sqrt{3}$, which was obtained by Libera [2].

Acknowled gement.

The authors thankfully acknowledges the kind and helpful guidance of the referee.

References

[1] A. W. Goodman, Univalent functions, Mariner Comp. Publ. Tempa, Florida, 1983.
[2] R. J. Libera, Univalent α-spirallike functions, Canadian J. Math. 19(1967), $449-456$.
[3] T. H. MacGregor, The radius of convexity for starlike functions of order $\frac{1}{2}$, Proc. Amer. Math. Soc. 14 (1963), $71-76$.
[4] S. S. Miller, P. T. Mocanu and M. O. Reade, Bazilevic functions and generalized convexity, Rev. Rumaine Math. Pures Appl. 19(1974), 213 - 224.
[5] J. Patel, Radius of p-valently starlikeness for certain classes of analytic function, Bull. Cal. Math. Soc. 85(1993), 427 - 436.
[6] B. Pinchuk, On starlike and convex functions of order α, Duck. Math. J. 35(1968), 721 - 734.
[7] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der analysis, Springer, Berlin, 1954.
[8] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37(1936), 374-408.
[9] M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102(1962), 82 - 93.
[10] M. S. Robertson, Univalent functions $f(z)$ for which $z f^{\prime}(z)$ is α-spirallike, Michigan Math. J. 16(1969), $97-101$.
[11] L. Špaček, Contribution à la theorie fonctions univalentes, Casopis Pest. Mat. 62(1933), 12 - 19.

```
Oh Sang Kwon
Department of Mathematics
Kyungsung University
Pusan 608-736
Korea
e-mail:oskwon@star.kyungsung.ac.kr
```


Shigeyoshi Owa

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
e-mail:owa@math.kindai.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Radius of β-convexity, λ-srirallike order α function, p-fold univalent function.

