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Abstract. As an estimator of an estimable parameter, we introduce a new statistic

which is given by a linear combination of U-statistics. This statistic is identical with

the V-statistic for the kernel of degree 1 or 2. For the kernel of degree larger than

2, the new statistic and the V-statistic have no di�erence in the mean of the second

order eÆciency. We shall compare these two statistics by the fourth order eÆciency

and give two examples.
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1 Introduction Let �(F ) be a regular functional or an estimable parameter of a distri-

bution F and g(x1; :::; xk) be its kernel of degree k. In this paper we assume that the kernel

g is symmetric and not degenerate. Let X1; :::;Xn be a random sample of size n from the

distribution F . As an estimator of �(F ), Toda and Yamato (2001) introduces a linear com-

bination Yn of U-statistics as follows. Let w(r1; : : : ; rj ; k) be a nonnegative and symmetric

function of positive integers r1; : : : ; rj such that j = 1; : : : ; k and r1 + � � �+ rj = k, where

k is the degree of the kernel g and �xed. We assume that at least one of w(r1; : : : ; rj ; k)'s

is positive. For j = 1; : : : ; k, let g(j)(x1; :::; xj) be the kernel given by

g(j)(x1; : : : ; xj) =
1

d(k; j)

X+

r1+���+rj=k
w(r1; : : : ; rj ; k)g(x1; : : : ; x1| {z }

r1

; : : : ; xj ; : : : ; xj| {z }
rj

);

where the summation
P+

r1+���+rj=k is taken over all positive integers r1; :::; rj satisfying r1+

� � �+ rj = k with j and k �xed and d(k; j) =
P+

r1+���+rj=kw(r1; : : : ; rj ; k) for j = 1; 2; :::; k.

Let U
(j)
n be the U-statistic associated with this kernel g(j)(x1; : : : ; xj ; k) for j = 1; : : : ; k.

The kernel g(j)(x1; : : : ; xj ; k) is symmetric because of the symmetry of w(r1; : : : ; rj ; k). If

d(k; j) is equal to zero for some j, then the associated w(r1; : : : ; rj ; k)'s are equal to zero.

In this case, we let the corresponding statistic U
(j)
n be zero.

The statistics Yn is given by

Yn =
1

D(n; k)

kX
j=1

d(k; j)

�
n

j

�
U (j)
n ;(1.1)
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where D(n; k) =
Pk

j=1 d(k; j)
�
n

j

�
. Since w's are nonnegative and at least one of them is

positive, D(n; k) is positive. Note that U
(k)
n = Un for w(1; : : : ; 1; k) > 0, because of g(k) = g.

For example, let w be the function given by w(1; 1; : : : ; 1; k) = 1 and w(r1; : : : ; rj ; k) = 0

for positive integers r1; : : : ; rj such that j = 1; : : : ; k � 1 and r1 + � � � + rj = k. Then

d(k; k) = 1, d(k; j) = 0 (j = 1; : : : ; k � 1) and D(n; k) =
�
n

k

�
. Thus the corresponding

statistic Yn is equal to U-statistic Un, which is given by

Un =

�
n

k

�
�1 X

1�j1<���<jk�n

g(Xj1 ; : : : ;Xjk );(1.2)

where
P

1�j1<���<jk�n denotes the summation over all integers j1; : : : ; jk satisfying 1 � j1 <

� � � < jk � n.

Let w be the function given by w(r1; : : : ; rj ; k) = 1 for positive integers r1; : : : ; rj such that

j = 1; : : : ; k and r1 + � � � + rj = k. For the the equation r1 + � � � + rj = k with j and k

�xed, the number of its solutions is
�
k�1

j�1

�
. Hence we have d(k; j) =

�
k�1

j�1

�
for j = 1; : : : ; k,

and D(n; k) =
Pk

j=1

�
k�1

j�1

��
n

j

�
=
�
n+k�1

k

�
. Thus the kernel g(j)(x1; : : : ; xj) is equal to

�
k � 1

j � 1

�
�1X+

r1+���+rj=k
g(x1; : : : ; x1| {z }

r1

; : : : ; xj ; : : : ; xj| {z }
rj

):

In terms of the U-statistic U
(j)
n associated with this kernel for j = 1; : : : ; k, the statistic Yn

given by (1.1) is written as

�
n+ k � 1

k

�
�1 kX

j=1

�
k � 1

j � 1

��
n

j

�
U (j)
n ;

which is equal to the LB-statistic Bn given by

Bn =

�
n+ k � 1

k

�
�1 X

r1+���+rn=k

g(X1; : : : ;X1| {z }
r1

; : : : ;Xn; : : : ;Xn| {z }
rn

);(1.3)

where
P

r1+���+rn=k denotes the summation over all non-negative integers r1; :::; rn satisfy-

ing r1 + � � �+ rn = k. (See Yamato (1977) and Nomachi and Yamato(2001).)

Let w be the function given by w(r1; : : : ; rj ; k) = k!=(r1! � � � rj !) for positive integers

r1; : : : ; rj such that j = 1; : : : ; k and r1 + � � � + rj = k. The Stirling number of the second

kind S(k; j) satis�es the relation j!S(k; j) =
P+

r1+���+rj=k k!=(r1! � � � rj !). Hence we have

d(k; j) = j!S(k; j) for j = 1; : : : ; k. Thus we have D(n; k) =
Pk

j=1 S(k; j)(n)j = nk since

S(k; j) satis�es the relation tk =
Pk

j=1 S(k; j)(t)j , where (t)j = t(t� 1) � � � (t� j +1). (For

Stirling number, see, for example, Charalambides and Singh (1988).) Therefore the kernel

g(j)(x1; : : : ; xj ) is equal to

1

j!S(k; j)

X+

r1+���+rj=k

k!

r1! � � � rj !
g(x1; : : : ; x1| {z }

r1

; : : : ; xj ; : : : ; xj| {z }
rj

):
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In terms of the U-statistic U
(j)
n associated with this kernel for j = 1; : : : ; k, the statistic Yn

given by (1.1) is written as

1

nk

kX
j=1

S(k; j)(n)jU
(j)
n ;

which is equal to the V-statistic Vn given by

Vn =
1

nk

nX
j1=1

� � �

nX
jk=1

g(Xj1 ; : : : ;Xjk ):(1.4)

(See Yamato and Toda (2001), Lee(1990), p.183-184 and Koroljuk and Borovskich (1994),

p.40). Nomachi and Yamato (2001) gives asymptotic comparisons of these statistics, that

is, U-statistic, V-statistic and LB-statistic, by de�ciency.

In Section 2, we introduce a new statistic Sn by choosing a weight function w di�erent

from the above. The weight function is based on the Stirling number of the �rst kind.

In Section 3, by using H-decomposition of U-statistic we derive an asymptotic expansion of

the statistic Yn. Making use of it, we evaluate the mean square error of Yn asymptotically.

For the kernel of degrees 1 and 2, the two statistics Vn and Sn are same. For the kernel of

degree lager than 2, these statistics have the same second order eÆciency or de�ciency. In

Section 4, we compare the statistics Vn and Sn by the fourth order eÆciency. We give two

examples.

2 New statistic As stated in Section 1, the LB-statistic is the Y-statistic determined

by the weight w(r1; : : : ; rj ; k) = 1 (j = 1; : : : ; k and r1 + � � � + rj = k), which is the uni-

form weight over all the set (r1; : : : ; rj )'s satisfying j = 1; : : : ; k and r1 + � � � + rj = k.

The V-statistic is the Y-statistic determined by the weight w(r1; : : : ; rj ; k) = k!=(r1! � � � rj !)

(j = 1; : : : ; k and r1 + � � � + rj = k), which gives more weight over the set (r1; : : : ; rj )

associated with large j than over the set associated with small j. Now we shall consider a

Y-statistic associated with an intermediate weight w between the above two weight func-

tions.

We consider a new statistic Sn, as an estimator of � given by (1.1), by choosing

w(r1; : : : ; rj ; k) =
k!

r1 � � � rj
(2.1)

for positive integers r1; : : : ; rj such that j = 1; : : : ; k and r1 + � � � + rj = k. The Stirling

number of the �rst kind s(k; j) has the expression j! j s(k; j) j=
P+

r1+���+rj=k k!=(r1 � � � rj )

(see, for example, Charalambides and Singh (1988)). Hence we have

d(k; j) = j! j s(k; j) j; j = 1; : : : ; k:(2.2)

Thus we have

D(n; k) =

kX
j=1

j s(k; j) j (n)j :(2.3)
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Therefore the kernel g(j)(x1; : : : ; xj) is given by

g(j)(x1; : : : ; xj) =
1

j! j s(k; j) j

X+

r1+���+rj=k

k!

r1 � � � rj
g(x1; : : : ; x1| {z }

r1

; : : : ; xj ; : : : ; xj| {z }
rj

):

Since positive integers r1; : : : ; rk satisfying r1 + � � �+ rk = k are r1 = � � � = rk = 1, we have

g(k)(x1; : : : ; xk) = g(x1; : : : ; xk):

Since positive integers r1; : : : ; rk�1 satisfying r1 + � � � + rk�1 = k are fr1; : : : ; rk�1g =

f2; 1; : : : ; 1g,

g(k�1)(x1; : : : ; xk�1) =
1

k � 1

�
g(x1; x1; x2; : : : ; xk�1) + � � �+ g(x1; : : : ; xk�2; xk�1; xk�1)

�
:

We note that these two kernels are same for any weight w such that w(1; 1; : : : ; 1; k)

and w(2; 1; : : : ; 1; k) are positive.

In terms of the U-statistic U
(j)
n associated with this kernel for j = 1; : : : ; k, the statistic

Sn is given by

Sn =
1

D(n; k)

kX
j=1

j s(k; j) j (n)jU
(j)
n ;(2.4)

where D(n; k) is given by (2.3). For the degree k = 1; 2, the weight function w are same

for the V-statistic and S-statistic and so these two statistics are identical. For the degree

k = 3; 4, we have

D(n; 3) = n(n2 + 1); D(n; 4) = n(n3 + 4n+ 1):

In general, we can not write Sn in an explicit form, di�erently from the U-statistic, the

LB-statistic and the V-statistic given by (1.2), (1.3) and (1.4), respectively. But, in some

case we can write Sn in an explicit form. For example, let us consider the kernel of degree

k = 3. The corresponding S-statistic Sn is denoted as follows, using the V-statistic Vn.

Sn =
n2

n2 + 1
Vn +

1

n(n2 + 1)

nX
j=1

g(Xj ;Xj ;Xj):

Especially, for the third central moment of the distribution F , the new statistic Sn is given

by

Sn =
n

n2 + 1

nX
i=1

(Xi �
�X)3;

where �X is the sample mean of X1; : : : ;Xn (see Section 4.2). For this parameter, the

U-statistic Un, the V-statistic Vn and the LB-statistic Bn are

Un =
n

(n� 1)(n � 2)

nX
i=1

(Xi �
�X)3; Vn =

1

n

nX
i=1

(Xi �
�X)3;

Bn =
n

(n + 1)(n + 2)

nX
i=1

(Xi �
�X)3;
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respectively (see, Nomachi and Yamato (2001), p.96).

By the recurrence relation of absolute or signless Stirling number of the �rst kind which

is j s(n + 1; k) j=j s(n; k � 1) j +n j s(n; k) j, we can get the recurrence relation of D(n; k)

as follows.

D(n; k + 1) = nD(n � 1; k) + kD(n; k); n = k + 1; k + 2; � � � ; k = 1; 2; : : :(2.5)

The values of Stirling number of the �rst kind are, for example, s(k; k) = 1, s(k; k � 1) =

�k(k � 1)=2, s(k; k � 2) = k(k � 1)(k � 2)(3k � 1)=24, for k = 1; 2; : : : . By using these

values, we can get the following asymptotic evaluation of D(n; k),

D(n; k) = nk
h
1 +

k(k � 1)(k � 2)

6
n�2 + o(n�2)

i
:(2.6)

3 H-decomposition and MSE In the followings we consider the kernel g of degree

k � 3. For the kernel g(j)(x1; : : : ; xj ) (j = 1; : : : ; k) associated with the Y-statistic given

by (1.1), we put

�j = Eg(j)(X1; : : : ;Xj);

and

 (j);c(x1; : : : ; xc) = E
�
g(j)(X1; : : : ;Xj) j X1 = x1; : : : ;Xc = xc

�
; c = 1; :::; j:

We note that if w(1; : : : ; 1; k) > 0 then by the reason stated in Section 2 we have g(k)(x1; : : : ;

xk) = g(x1; : : : ; xk) and so �k = �. For j = 1; : : : ; k and c = 2; 3; :::; k, we put

h
(1)

(j)
(x1) =  (j);1(x1)� �j ;

h
(c)

(j)
(x1; : : : ; xc) =  (j);c(x1; : : : ; xc) �

c�1X
i=1

X
1�l1���<li�c

h
(i)

(j)
(xl1 ; : : : ; xli) � �j :

Let H
(c)

(j);n
be the U-statistic associated with the kernel h

(c)

(j)
, that is,

H
(c)

(j);n
=

�
n

c

�
�1 X

1�l1<���<lc�n

h
(c)

(j)
(Xl1 ; : : : ;Xlc):(3.1)

Then, the U-statistic U
(j)
n associated with the kernel g(j) can be written as follows,

U (j)
n = �j +

jX
c=1

�
j

c

�
H

(c)

(j);n
:

This form is known as H-decomposition in the context of U-statistics, because it is due to

Hoe�ding (see, for example, Lee (1990), p.26). In general, this kind of decomposition is

well-known as ANOVA decomposition (see, for example, Efron (1982), p.22). Using this



100 Toshifumi NOMACHI, Masao KONDO and Hajime YAMATO

H-decomposition to the right-hand side of (1.1), the statistic Yn can be written as follows.

Yn � � =
1

D(n; k)

kX
j=1

d(k; j)

�
n

j

�
(U (j)

n � �j + �j � �)

=
d(k; k)

D(n; k)

�
n

k

���
k

1

�
H

(1)

(k);n
+

�
k

2

�
H

(2)

(k);n
+

�
k

3

�
H

(3)

(k);n

�

+
d(k; k � 1)

D(n; k)

�
n

k � 1

���
k � 1

1

�
H

(1)

(k�1);n
+

�
k � 1

2

�
H

(2)

(k�1);n
+ �k�1 � �

�

+
d(k; k � 2)

D(n; k)

�
n

k � 2

���
k � 2

1

�
H

(1)

(k�2);n
+ �k�2 � �

�
+R1;n;

where R1;n is the residual term.

We assume that d(k; k) = w(1; : : : ; 1; k) > 0. Since
Pk

j=1 d(k; j)
�
n

j

�
=D(n; k) = 1, we can

write the ratios d(k; j)
�
n

j

�
=D(n; k) (j = k; k � 1; k � 2) such that

d(k; k)

D(n; k)

�
n

k

�
= 1�

�1

n
+
�21

n2
+ o(

1

n2
);(3.2)

d(k; k � 1)

D(n; k)

�
n

k � 1

�
=
�1

n
+
�22

n2
+ o(

1

n2
);(3.3)

d(k; k � 2)

D(n; k)

�
n

k � 2

�
=
�2

n2
+ o(

1

n2
);(3.4)

where �1(� 0), �2(� 0), �21, and �22 are constants and �2 + �21 + �22 = 0. For the U-

statistic Un given by (1.2), we have �1 = �2 = �21 = �22 = 0. For the LB-statistic Bn given

by (1.3),

�1 = k(k � 1); �21 =
1

2
k2(k � 1)2;

�22 = �k(k � 1)3; �2 =
1

2
k(k � 1)2(k � 2):

For the V-statistic Vn given by (1.4),

�1 =
1

2
k(k � 1); �21 =

1

24
k(k � 1)(k � 2)(3k � 1);

�22 = �

1

4
k(k � 1)2(k � 2); �2 =

1

24
k(k � 1)(k � 2)(3k � 5):

For the new statistic Sn given by (2.1),

�1 =
1

2
k(k � 1); �21 =

1

24
k(k � 1)(k � 2)(3k � 5);

�22 = �

1

4
k(k � 1)2(k � 2); �2 =

1

24
k(k � 1)(k � 2)(3k � 1):

For the V-statistic Vn and the new statistic Sn, the corresponding �1 and �22 are same,

and �21 and �2 are di�erent. Using the relations (3.2), (3.3) and (3.4), we can write Yn� �

asymptotically as follows.

Yn � � = (1�
�1

n
+
�21

n2
)

��
k

1

�
H

(1)

(k);n
+

�
k

2

�
H

(2)

(k);n
+

�
k

3

�
H

(3)

(k);n

�
(3.5)



HIGHER ORDER EFFICIENCY OF ESTIMATORS 101

+

�
�1

n
+
�22

n2

���
k � 1

1

�
H

(1)

(k�1);n
+

�
k � 1

2

�
H

(2)

(k�1);n
+ �k�1 � �

�

+
�2

n2

��
k � 2

1

�
H

(1)

(k�2);n
+ �k�2 � �

�
+R�2;n;

where

E[R�2;n] = O(
1

n4
):

Therefore, for k � 3 we can evaluate the mean squared error of Yn asymptotically which is

given by the following. Its proof is given in Appendix.

Proposition 3.1 We suppose that E[g(Xi1 ; : : : ;Xik)]
2 < 1 for 1 � i1 � � � � � ik � k

and w(1; : : : ; 1; k) > 0. Then, for k � 3 the mean squared error of Yn given by (1.1) is

asymptotically given by

E(Yn � �)2 =
1

n
k2Æ2k;(1)

+
1

n2

�
� 2�1k

2Æ2k;(1) +
k2(k � 1)2

2
Æ2k;(2) + �21(�k�1 � �)2 + 2�1k(k � 1)�

(1)

k�1

	

+
1

n3

�
(�21 + 2�21)k

2Æ2k;(1) + k2(k � 1)2(
1

2
� �1)Æ

2
k;(2) + (k � 1)2�21Æ

2
k�1;(1)

+2k(k � 1)(�22 � �21)�
(1)

k�1 + k(k � 1)2(k � 2)�1�
(2)

k�1 + 2k(k � 2)�2�
(1)

k�2

+2�1�22(�k�1 � �)2 + 2�1�2(�k�1 � �)(�k�2 � �) +
k2(k � 1)2(k � 2)2

6
Æ2k;(3)

	
+O(

1

n4
)

where

Æ2c;(i) = V ar[h
(i)

(c)
(X1; : : : ;Xi)] for c = k; i = 1; 2; 3 and c = k � 1; i = 1;

�
(i)

k�j = Cov
�
h
(i)

(k)
(X1; : : : ;Xi); h

(i)

(k�j)
(X1; : : : ;Xi)

�
for i = 1; j = 1; 2 and i = 2; j = 1:

4 Higher order eÆciency

4.1 Fourth order eÆciency For the V-statistic and the S-statistic, the associated �1
and g(k�1) are identical, respectively. Therefore, by Proposition 3.1, their mean squared

errors are same up to the order n�2. Thus, the V-statistic and the S-statistic have no di�er-

ence in the mean of the limiting risk de�ciency. (For limiting risk de�ciency, see Lehmann

(1983) p.350 and Nomachi and Yamato (2001).) Or the V-statistic and the S-statistic have

no di�erence in the mean of the second order eÆciency. Therefore, we shall compare these

two statistics by the fourth order eÆciency (FOE). We shall de�ne FOE by taking the

second order eÆciency into consideration (for the second order eÆciency, see, for example,

Mikulski (1982)). Since we consider the eÆciency in the class of nonparametric distribu-

tions, we de�ne FOE as follows.

De�nition 4.1 Let the mean squared errors of two statistics Yi;n (i = 1; 2) be MSE(Yi;n)

(i = 1; 2), respectively. If there exists the �nite limit

lim
n!1

n2
n
1�

MSE(Y1;n)

MSE(Y2;n)

o
;

then we say that this limiting value is the fourth order eÆciency of Y2;n with respect to Y1;n,

which is denoted by FOE(Y2;n; Y1;n).
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Lemma 4.2 If the two statistics Yi;n; (i = 1; 2) have the mean squared errors given by

MSE(Yi;n) =
a1

n
+
a2

n2
+
a3;i

n3
+ o(

1

n3
); a1 6= 0;

then FOE of Y2;n with respect to Y1;n is given by

FOE(Y2;n; Y1;n) =
a3;2 � a3;1

a1
:

Let Y1;n and Y2;n be statistics given by (1.1) with di�erent weight function w's which

have the same value only for �1 in the relations (3.2) and (3.3). About the values used

in Proposition 3.1, the values associated with Y1;n are denoted by �2;1, �21;1, �22;1, �
(1)

k�2;1,

and �k�2;1. The values associated with Y2;n are denoted by �2;2, �21;2, �22;2, �
(1)

k�2;2, and

�k�2;2. For Y1;n and Y2;n having positive weights w(1; : : : ; 1; k)'s and w(2; 1; : : : ; 1; k)'s, the

associated g(k) is equal to g, and

g(k�1)(x1; : : : ; xk�1) = [g(x1; x1; x2; : : : ; xk�1)+� � �+g(x1; : : : ; xk�2; xk�1; xk�1]=(k�1).

Thus, the corresponding values of �k, �k�1 and �
(1)

k�1 are same, respectively.

Theorem 4.3 We suppose that E[g(Xi1 ; : : : ;Xik )]
2 < 1 for 1 � i1 � � � � � ik � k.

Let Y1;n and Y2;n be statistics given by (1.1) with di�erent weight function w's, where �1
have the same value in the relations (3.2) and (3.3), and the associated w(1; : : : ; 1; k)'s and

w(2; 1; : : : ; 1; k)'s are positive. Then, FOE of Y2;n with respect to Y1;n is given by

FOE(Y2;n; Y1;n) =
A

k2Æ2
k;(1)

;

where

A = 2
n
k2(�21;2 � �21;1)Æ

2
k;(1) + (�22;2 � �22;1)

�
k(k � 1)�

(1)

k�1 + �1(�k�1 � �)2
�

+k(k � 2)(�2;2�
(1)

k�2;2 � �2;1�
(1)

k�2;1) + �1(�k�1 � �)
�
�2;2(�k�2;2 � �) � �2;1(�k�2;1 � �)

�o
:

In case of k = 3, we have g(k�2)(x1) = g(1)(x1) = g(x1; x1; x1) for any w such that d(3; 1) =

w(3; 3) > 0. Thus we have �1;1 = �1;2 = �1. We have also �
(1)

1;1 = �
(1)

1;2 , which we denote by

�
(1)

1 . From Theorem 4.3 we have the following.

Corollary 4.4 Let the degree of the kernel g be k = 3. Let Y1;n and Y2;n be statistics given

by (1.1) with di�erent and positive weght function w's, where �1 have the same value in the

relations (3.2) and (3.3). Then,

FOE(Y2;n; Y1;n) =
2

9Æ2
3;(1)

n
9(�21;2 � �21;1)Æ

2
3;(1) + (�22;2 � �22;1)

�
6�

(1)

2 + �1(�2 � �)2
�

+(�2;2 � �2;1)
�
3�

(1)

1 + �1(�2 � �)(�1 � �)
�o
:

4.2 FOE of S-statistic with respect to V-statistic As stated at the �rst paragraph

of subsection 4.1, the V-statistic and the S-statistic have no di�erence in the mean of the

second order eÆciency. Since the V-statistic and the S-statistic have the same values for �1
and �22, by Theorem 4.3 we have the following.
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Proposition 4.5 For the kernel with the degree k � 3, we have

FOE(Sn; Vn) =
(k � 1)(k � 2)

24Æ2
k;(1)

n
2(k � 2)

�
(3k � 1)�

(1)

k�2;2 � (3k � 5)�
(1)

k�2;1

�

�8kÆ2k;(1)+ (k � 1)(�k�1 � �)
�
(3k � 1)�k�2;2 � (3k � 5)�k�2;1 � 4�

�o
;

where �
(1)

k�2;1 and �k�2;1 are the values associated with Vn and �
(1)

k�2;2 and �k�2;2 are the

values associated with Sn.

In the following, we consider the kernel g of degree k = 3. Then we have

g(3)(x1; x2; x3) = g(x1; x2; x3);

g(2)(x1; x2) =
1

2

�
g(x1; x1; x2) + g(x1; x2; x2)

�
; g(1)(x1) = g(x1; x1; x1):

By the U-statistics U
(3)
n , U

(2)
n and U

(1)
n , associated with the kernel g(3), g(2) and g(1),

respectively, we have

Vn =
1

n2

�
U (1)
n + 3(n� 1)U (2)

n + (n� 1)(n� 2)U (3)
n

�
;

and

Sn =
1

(n2 + 1)

�
2U (1)

n + 3(n� 1)U (2)
n + (n� 1)(n � 2)U (3)

n

�
=

n2

n2 + 1
Vn +

1

n2 + 1
U (1)
n ;

where U
(1)
n =

Pn

j=1 g(Xj ;Xj ;Xj)=n. From Corollary 4.4, we have the following.

Proposition 4.6 For the kernel with the degree k = 3,

FOE(Sn; Vn) =
2

3Æ2
3;(1)

n
�
(1)

1 � 3Æ23;(1) + (�2 � �)(�1 � �)
o
;

where Æ2
3;(1)

= V ar[h
(1)

(3)
(X1)], �

(1)

1 = Cov[h
(1)

(3)
(X1); h

(1)

(1)
(X1)], h

(1)

(1)
(x1) = g(1)(x1) � �1,

h
(1)

(3)
(x1) = E[g(X1;X2;X3) j X1 = x1]� �, � = Eg(X1;X2;X3), �2 = Eg(X1;X1;X2), and

�1 = Eg(X1;X1;X1).

Now we shall give two examples of Proposition 4.6.

Example 1 We consider the probability weighted moments, � =
R
x[F (x)]2dF (x).

Since its kernel is g(x1; x2; x3) = Maxfx1 ; x2; x3g=3, for the S-statistic Sn and the V-

statistic Vn we have g(1)(x1) = g(x1; x1; x1) = x1=3, g(2)(x1; x2) = fg(x1; x1; x2) + g(x1; x2;

x2)g=2 =Maxfx1; x2g=3 (Lee(1990); p.9). Let U
(1)
n , U

(2)
n , and U

(3)
n be the U-statistics asso-

ciated with the kernels g(1)(x1) = x1=3, g(2)(x1; x2) = Maxfx1; x2g=3, and g(x1; x2; x3) =

Maxfx1 ; x2; x3g=3, respectively. The corresponding S-statistic Sn is

Sn =
(n� 1)(n � 2)

n2 + 1
U (3)
n +

2

n(n2 + 1)

nX
i=1

(i � 1)X(i) +
2

3(n2 + 1)
�X:

The corresponding V-statistics is

Vn =
(n� 1)(n� 2)

n2
U (3)
n +

2

n3

nX
i=1

(i� 1)X(i) +
1

3n2
�X;
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where X(1) < � � � < X(n) is the order statistics of the sample fX1; : : : ;Xng(Nomachi and

Yamato (2001)).

For the sample of size n from the uniform distribution U(��; � ), we have � = �=6,

�2 = �=9, �1 = 0, Æ2
3;(1)

= �2=252, �
(1)

1 = �2=90. Thus we get

FOE(Sn; Vn) =
64

45
:

In this example, Vn is prefer to Sn in the mean of fourth order eÆciency.

Example 2 We consider the third central moment, � =
R
1

�1
(x � �)3dF (x) where � is

the mean of the distribution F . Its kernel is given by

g(x1; x2; x3) =
x31 + x32 + x33

3
�

1

2

�
x21(x2 + x3) + x22(x3 + x1) + x23(x1 + x2)

	
+ 2x1x2x3

(Koroljuk and Borovskich (1994); p.18{19). Since g(x1; x2; x2) = �g(x1; x1; x2), g(x1; x1;

x1) = 0, g(2)(x1; x2) = 0, and g(1)(x1) = 0 for this kernel, we have U(2) = 0, U(1) = 0 with

probability one.

The corresponding V-statistics is

Vn =
1

n

nX
i=1

(Xi �
�X)3:

Since g(1)(x1) = 0, the corresponding S-statistic Sn is

Sn =
n

n2 + 1

nX
i=1

(Xi �
�X)3:

We consider a continuous distribution which is symmetric about mean and have the 6-th

moment. Then we have � = 0, �2 = 0, �1 = 0 and �
(1)

1 = 0. Since Æ2
3;(1)

= V ar[h
(1)

(3)
(X1)] is

�nite, we get

FOE(Sn; Vn) = �2:

In this example, Sn is prefer to Vn in the mean of fourth order eÆciency.

5 Appendix : Values of �'s The values of �'s, given in Section 3, for LB-statistic,

V-statistic and S-statistic can be derived as follows:

For LB-statistic,

d(k; j)

D(n; k)

�
n

j

�
=

(n)j

[n]k
�

k!

j!

�
k � 1

j � 1

�
; j = 1; 2; : : : ; k;

where [n]k = n(n+ 1) � � � (n+ k � 1) =
Pk

i=1 j s(k; i) j n
i.

For V-statistic,
d(k; j)

D(n; k)

�
n

j

�
=
S(k; j)(n)j

nk
; j = 1; 2; : : : ; k:

For S-statistic,
d(k; j)

D(n; k)

�
n

j

�
=
j s(k; j) j (n)j

D(n; k)
; j = 1; 2; : : : ; k;



HIGHER ORDER EFFICIENCY OF ESTIMATORS 105

where D(n; k) = nkf1+ [k(k� 1)(k � 2)=6]n�2 + o(n�2)g by (2.6). By applying the values

of the Stirling numbers to the above, we can get the values of �1, �21, �22, �2. The Stirling

numbers of the �rst kind s(k; k), s(k; k�1), s(k; k�2) (k = 3; 4; : : : ) are given immediately

before (2.6). For the Stirling numbers of second kind,

S(k; k) = 1; S(k; k � 1) =
k(k � 1)

2
; S(k; k � 2) =

k(k � 1)(k � 2)(3k � 5)

24
; k = 3; 4; : : :

Proof of Proposition 3.1 Any two components of H-decomposition are uncorrelated.

By the representation of covariance of U-statistics (see, for example, Koroljuk and Borovs-

kich (1994) and Lee(1990)) , we can get

Cov(H
(i)

(k);n
;H

(j)

(k�1);n
) = 0; i = 1; 2; 3; j = 1; 2 (i 6= j);

Cov(H
(i)

(k);n
;H

(1)

(k�2);n
) = 0; i = 2; 3;

and

Cov(H
(2)

(k�1);n
;H

(1)

(k�2);n
) = 0; Cov(H

(1)

(k�1);n
;H

(1)

(k�2);n
) = O(n�1):

We use these results to the right-hand side of the squared (3.5). Then we get

E(Yn � �)2

= (1�
�1

n
+
�21

n2
)2
��

k

1

�2

V ar(H
(1)

(k);n
) +

�
k

2

�2

V ar(H
(2)

(k);n
) +

�
k

3

�2

V ar(H
(3)

(k);n
)

�

+(
�1

n
+
�22

n2
)2
��

k � 1

1

�2

V ar(H
(1)

(k�1);n
) +

�
k � 1

2

�2

V ar(H
(2)

(k�1);n
) + (�k�1 � �)2

�

+2(1�
�1

n
+
�21

n2
)(
�1

n
+
�22

n2
)

��
k

1

��
k � 1

1

�
Cov(H

(1)

(k);n
;H

(1)

(k�1);n
)

+

�
k

2

��
k � 1

2

�
Cov(H

(2)

(k);n
;H

(2)

(k�1);n
)

�

+2(1�
�1

n
+
�21

n2
)
�2

n2

�
k � 2

1

��
k

1

�
Cov(H

(1)

(k);n
;H

(1)

(k�2);n
)+

+2(
�1

n
+
�22

n2
)
�2

n2
(�k�1 � �)(�k�2 � �) +O(

1

n4
):

By using the representation of variances and covariances of U-statistics (see, for example,

Lee(1990) and Koroljuk and Borovskich (1994)) to each terms of the right-hand side , we

can get Proposition 3.1. 2
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