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A WEIGHTED VERSION OF OZEKI’S INEQUALITY
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ABSTRACT. As an extension of Ozeki’s inequality we give an inequality which estimates
the difference

Zpkai Epkbi - (Zpkakbk)z
k=1 k=1 k=1

derived from the weighted Cauchy-Schwartz inequality for n-tuples a = (a1,...,a,), b =
(b1,...,b,) and p = (p1, ..., pn) of positive numbers under certain conditions. We discuss
the upper bound of the difference not only in the general case but also in the special
cases that @ and b are monotonic in the opposite sense and in the same sense.

1 Introduction As a complement of Cauchy-Schwartz inequality, the following inequal-
ity was given in [4] (cf. [7, p. 121]) which was originally presented by Ozeki [8]: If a =
(a1, ...,ay) and b = (by,...,b,) are n-tuples of positive numbers satisfying

my SakSA’L, m,ggbkg./yfg (k:l,Z,...,n),
0< my < _Af[l and 0 < mg < _ZM'Q,

(2) ai bi — (Z (lkbk)Z S %(Afllﬂ\/fz — m1m2)2.
k=1 k=1 k=1

Put T(a,b) the left-hand side of the above inequality, then T'(a,b) is considered as
a function on the product [mq, M1]™ X [ma, M3]" of n-dimensional cubes [m, M;]" and
[mo, M3]". Then it is Ozeki’s idea to make use of the following two facts in order to prove
the inequality (2) (and the technique was also useful for further results in [3], [5]):

(1) T(a,b) is a separately convex function with respect to a and b, so that its maximum
is attained at an extreme point, namely, vertex of 2n-dimensional rectangle [y, M;]™ x
[m27 A’IQ]" .

(ii) Denote by ¢ = (¢q,...,¢,) and € = (¢1,...,¢y) the rearrangements of a nonnegative
n-tuple ¢ = (e1,...,¢,) in nonincreasing order and in nondecreasing order, respectively.
Then for @ and b, Y a, by = > arb, < 3. arby [2, p. 261], so that

(3) T(a,b) =T(a,b) > T(a,b).

As a result, from (3) the inequality (2) was obtained by considering T'(a,b) for a and b
such that they are monotonic in the opposite sense.
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Now let D(a,b) =n> ;_, arby — > p_, ax > p—; bk, which is n* times of the covarience
between a and b. As an estimation of D(a,b), Biernacki, Pidek and Ryll-Nardzewski [1] (cf.
[7, p. 299]) presented the following result:

|D(a,b)| < {g] (n — [g}) (My —my)(My —my)  (for (a,b) satisfying (1)).
In particular, taking D(a,b) for a and b such that they are monotonic in the same sense,
(say, a = @ and b = b), we obtain an inequality, which is nothing but a complement of the
well-known Cebysev’s inequality, a kind of Griiss type inequalities.

It is a problem to estimate T'(a,b) with the restriction that ¢ and b are monotonic in the
same sense, likely to the above consideration and several works [6], [9], [10], etc. related to
Griiss’ inequality.

Now to consider the problem more generally, define by

(4) T(a,b;p) = Zpka,i Zpkbi - (Z pkakbk)2
k=1 k=1 k=1

the difference derived from the weighted Cauchy-Schwartz inequality with a positive n-
weight (n-tuple) p = (p1,..sPn)y dopey Pk = 1. Then unlike T(a,b) the equality-inequality
T(a,b;p) = T(a@,b;p) > T(a,b;p) corresponding to (3) are false in general. (For example,
ifa =(1,1,1), b = (2,1,2) and p = (13—5,%7%) then T(a,b;p) = %, T(a,b;p) = %
and T(a,b;p) = %) This means that rearrangements of @ and b to be monotonic in the
opposite sense are not effective to obtain the maximum of T,(a,b) = T(a,b;p). However,
the calculation of the maximum for such a and b yields, in a sense, an extension of (2).

In this paper, using Ozeki’s technique on convex functions, we give upper bounds of
(4) not only in the general case for @ and b, but also in the special cases that ¢ and b are

monotonic in the opposite sense and in the same sense.

2  Preliminaries We prepare some useful facts for our discussion. Let I, = {1,...,n}
and define an index set A'in I2 = I,, x I,, by
(5) A={(.j)ely;i<j}.

Now we state a weighted version of Lagrange’s formula (cf. [7, p. 84]), which we can prove
easily.

Lemma 2.1

(6) T(a,b;p) = Z pipj(aib; — ajbi)Q.
(1,5)€A

iFrom this lemma we can see the following:

Lemma 2.2 T,(a,b) = T(a,b;p) is a separately convex function on [my, Mq]" x [ma, M]"
with respect to a and b, that is,

Tpy(Aa+ (1= N)a',b) < A\Tp(a,b) + (1 — N)T,(a',b), X €][0,1]

and

Tp(avﬂb + (1 - M)[)/) < MTP(Gv b:) + (1 - /J':)Tp(a"/ b/)v H e [Ov 1]'
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Consequently, we see that T},(a,b) attains its maximum at a point (a,b) of [mq, M7]" x
[ma, M3]", with both a and b being vertices of [mq, M1]" and [ma, M>]", respectively. (Note
that a point v = (v1,...,v,) € [m, M]" is a vertex if (and only if) each v is equal to m or
M)

For two real numbers m, M, m < M, let
K={(zy,...,zn) e m M]" 21 <+ <ap}

and
L=A(z1,...,2q) €E[m,M]"00 >+ >a,}.

Then K and L are convex subsets in [m, M]". The following fact related to their extreme
points is easily seen, say, by the induction method.

Lemma 2.3 Every extreme point of K (L) is a vertez of [m, M]".

Now assume that A4, B,C > 0, and put

A=B+C—-A B=C+A-B, C=A+B—-C and

@) D =AA+BB+CC (=2AB +2BC +2CA— A* — B* - (7).

Then it is not difficult to see that
(1) at least two of A, B and C are positive, and

(ii) if all of A, B and C are positive then D > 0.

The following general fact (cf. [4]) is very useful for our discussion.

Lemma 2.4 With the same notations as above, consider the function
(8) u= f(r,y,z) = Avy + Brz + Cyz

under the condition

(9) z,y,2>0, z4+y+z=k>0 (kis a constant).

(1) If A, B,C >0, then D> 0 and

N . N 2 N
_ BB A cc D cc ABC ,
(10) wu=-C (y Dk)—|—2c($ Dk>} 4C<$ Dk) + ) k*,

so that

U < Umap(= the mazimum of u) = il A2

and Umay 18 attained at a point

CC. BB, AA
(2,,2) = <?’“ oD ) -

(ii) If one of A, B, C is nonpositive, say, B <0, (hence AC> 0), then

(11) u = —EJ:Z—I—AI(k—J:)—l—CZ(k—Z)
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and

U< Umay = —K>.
4
The value Uy 18 attained at
(0,9 2) = (1/2,0,:/2).
Proof. (1) Putting z = k — « — y, we have, from (8),
u=—Cy* — (ix — Ck) y — Ba? 4 Bka.
Taking the 4C' times of the both sides, we have

ACu = —4C%y* — 4C (Ax - Ck) y — 4BCa? + 4BCkz

k=

~ 2
~ 2 ) , 2
:7(20y+A:chk) D(:ccck> +4A§C

Hence we have

~ 2 ~ 2
Ax — Ck D AB
u__c<y+w_70> _/_<$_%k> | ABC,

2C 4C D D
. . N 2 N
BB A cc D cc ABC
= - - —k — - —k —— |- —k — k2
C{<y D>+20(x D)} 4C<x D)+ D
Now, if z = (jjé k, y= % k, (sothat z =k -2 —y= %k), then u = Upmar = % k2.
(i1) Putting y = k — = — z, we have, from (8),
w=—Brz+ Ax(k — 2) + Cz(k — 2).
. .T+z)2 k2 L k2 d ok k2 hav
Since vz < ( 5 ) < T,m(,—m)g - an z(k—2) < = > We have
1, 1, 1, 1,
<-B--k"+A-"k - —k* = -Bk".
= g AR e =g
Hence umar = in{ which is attained at (z,y,2) = (k/2,0,k/2). O

3 Weighted Ozeki’s inequality In this section we give an upper bound of T'(a,b;p)
without any assumption of monotony on positive n-tuples a and b. Let us define, for a
positive n-weight p = (p1,...,pn) with >0, pr = 1,

P(X)=> p for X C1I,
keX

say, as in [11]. Then we have:
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Lemma 3.1 Leta = (ay,...,an) andb = (by,...,b,) be n-tuples such that a, =1 or o and
bp=1orf (k=1,....n), and let p = (p1,...,pn) be a positive n-weight with >} _, pr = 1.
Put

Jo={ke€ly;ar =1} and Jy={k € I,;bp =1}.

Then

T(a,b;p) = P(J, O Jp)P(J. N JE)(1 = B)* 4+ P(J, N Jp)P(JE N Jp)(1 — a)?
(12)  + P(J.NJ)P(JN T a = B)* + P(J, N JE)P(JE N Tp)(1 — af)?

+ P(J, N IOP(IENTHF (1 — ) + P(JSN ) P(JEN JE)a* (1 — B)2.

Proof. First note that I, is devided into the four subsets
Ji=JdJa Ny, Jo=J,NJy, Js=J;NJyand Jg = J, N Jy,
so that A = {(i,7) € I?;i < j} is devided into the ten subsets
Apr=Jdgx J, 1<k<I<4

Let Y A, , = Z(i.j)eAk  pipj(aib;— a;b;)?. Then we see that T'(a, b; p) is the totality of sums
Yon, o <k <1 <4Dby Lemma 2.1. We can easily see that >, = 0. It is also easy to
compute ZAk ,» for k <I: say, for k =1,1 = 2 we have

o= > pipilaib —ajb)® = P(J)P()(1 — B)°.
Az (4j)€Nx T2
Consequently, we have

T(abip) = +> +D +> +3 +>

Ar2 A1z Ara Azs Azy  Agy
_ PP - B + PUDPI)(1— o) + PP 0 - )
b P(I)P(T)(L — aB)? + PI)P(I)GA(1 — ) + P(Jy)P(Jy)a(1 — §)2.

Now we have the following extension of Ozeki’s inequality (cf. [4, Theorem 2.1]).

Theorem 3.2 Let a and b be positive n-tuples satisfying (1) and let p be a positive n-weight
with .7 _, pr = 1. Assume that o = my /My > ma /My = 3. Then

T(a,b;p)
13 _ 1 — af)?
(1) < 224 g { L2 - P+ (- pPPOO - P
Proof. We may assume that M; = M, = 1 (and then write @ = my, § = may) for

convenience. In order to obtain the maximum or the best upper bound of T,(a,b) =
T(a,b; p), we have to calculate, by convexity of T'(a,b;p), its value for a and b such that
ai=1lora, bj=1or 8 (i=1,..,n). Hence we may apply the preceding lemma. Put

A= (1-0a)’, B=(1-0app C=a’(1-p)
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E=(1-8)? F=(a—-p)? G=(1-a)’,
and furthermore put
x=P(J,NJ), y=PI:NJg), z=P(J;NJy) and w=P(J,NJp).
Then we have
rt+yt+z+w=1 (z,y,z,w >0)
and from (12)
u:=T(a,b;p) = Azy + Baxz + Cyz + Ezw + Fyw + Gzw.
First note that for positive numbers A, B, C' we have
B=C+A-B=a(1-58)"+p5*1-a)*—(1-ap)?
=—(1-a)1-8)1+a+8—af) <0,
because 0 < o < 1 and 0 < § < 1. Hence since z + y + z = 1 — w, we have, by Lemma 2.4
(i),
Axzy 4+ Baz + Cyz < g(l —w)?.
Next from the assumption o > 3, we see E > F, G, so that
Erxw+ Fyw + Gzw < Ew(z +y + 2) = Ew(l — w).
Hence we have

B ,
(14) T(a,b;p) < Z(l —w)? + Ew(l — w),

from which we obtain the desired inequality (13). O
Now we obtain the following result [4, Theorem 4.1] from the preceding theorem.

Theorem 3.3 With the same notations and the same assumptions as in Theorem 3.2,

1 1
T(a,b;p) < ngMg(l —af)? = g(MlMQ — myms)>.

Proof. As before we may assume M; = M, = 1. Write g(w) the right-hand side of (14).
Then it suffices to show that

glw)< B (0<w<1).

1
3 Sw<
Since E < B < 4F and

we have, by an elementary computation,

b

0<w<1 = it 2F < B < 4F.

B i (E<)B<2E
max g(w):{%E—B if (B <)B<
1

Furthermore, it is not difficult to see that

B _lp (if E < B < 2E)
AE—B 37 \WE=T=sE

Hence we have the desired inequality. O
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4 The difference T(a,b;p) for oppositely ordered a and b In this section we give
an upper bound of T (a,b) = T(a,b; p) for a and b ordered oppositely. We confine ourselves
to the case that @ is ordered nonincreasingly and b is ordered nondecreasingly. Recall that
from Lemmas 2.2 and 2.3 the function Tp(a,b) is separately convex with respect to ¢ and
b, and attains its maximum at a point (a,b) such that

s n—s ¢ n—1t

—T—— e —— —— | m————
(15) a=(My,....,My,my,....,mq) and b= (mg,...,mz,Ms,..., M),
st el =1,U{0}.

Now we have

Lemma 4.1 Let a'®) and b9 be n-tuples of real numbers such that

s . t n—t
A, — ——
(16) =1, 1,6,...a) and BV =(3,...,81,....1),
s,t eI =1, {0},

and let p = (p1,-++ ,pn) be a positive n-weight with > i p; = 1. Write P, = Ef:1 pi, for
kel (Po=0). Then

PP, — P)(1 — 3)*+Py(1 — P)(1 — af)?
+(P, = P)(1 = P)(1 - a)?
f0<t<s<n,
P,(P; — P)3(1 — )’ +P,(1 = P)(1 — af)?
+(Py — Py)(1 — Pr)a(l - B)?
if 0 <s<t<n.

(17)  T(a™ " p) =

Proof.
CaseI:0<t<s<n.Rewriting a = a'®) and b = b" more precisely, we have
t s—t n—s 1 s—1 n—s
—— N —_—— N
a=(1,...,1,1,...,1,a,...,a), and b=(4,...,3,1,...,1,1,...,1)

Then with the same notations as in Section 3 we have
Jo={1,...,s} and Jy={t+1,...,n},
and A = {(4,7) € I?;i < j} is devided into the three subsets
JoNJy (= o), Ju0Jy (= J1) and J; N Ty (= Js).
Hence similarly as in Lemma 3.1 of Section 3, T(a,b;p) is the sum of ZJI , ZJI , and
ZJ2 \ - Note that P(J:) = Py, P(J1) = Ps — P, and P(J;) = 1 — P,. Hence we have
T(a,b;p) = P(J1)P(Jo)(1 — B)* + P(J1)P(J3)(1 — a)? + P(J2)P(J3)(1 — af3)?
= Py(Ps — P)(1 = B)* + Pi(1 — P)(1 —aB)” + (Ps — P)(1 — Ps)(1 — a)?,
Case II: 0 < s <t < n. By the similar argument as in Case I, we have
T(a), 5" p) = B°(1 — a)’P(Py — P) + (1 — aB)° P,(1 — Py)
+ (1 = B3)*(Ps — P,)(1 — Py).
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Summarizing Cases I and II, we obtain (17). O

Now we show the following result stronger than Theorem 3.2 with the restriction that
a and b are oppositely ordered.

Theorem 4.2 Let a and b be positive n-tuples satisfying
My >ay>-->a,>my and my <by <---b, < My,
and let p= (p1,...,pn) be an n-weight with > ;_, pr = 1. Put a = mq /My, 8= ma/M>,
A=(1=BP, B=(1-aBP, C=(1-a),
Ay =3%(1—a)*, By =B, C, =a*(1 - p3)%,

and define A, B,C and D similarly as (7). (Furthermore, correspondingly define Ay, By and
Cy.) Then

D={4—(1+a)1+8)}(1+a)1+8)(1—-a)1-p5)
(18) ABC (1—ap)?

and =

D “d-Q+a)(1+1+a)(1+5)

and the following results hold.
1) If (14 o)(1 4 8) <2, then

. ABC D 1
(19) T(a,b;p) < M M; max{T —-Cp? - E/\Q, B (Z — 1/2> }
(i) If (1 +a)(1 + B) > 2, then
20 T(a,b;p) < M}MZB 1 v,
( 05 P 1442 1
Here, A\, p and v are defined as follows:
A= minlgtgnfl P — % >
(21) p= mini<t<s<n—1 ‘(Ps—Pt)—Bqu-l-% (Pt—%é)‘ and

— 1
V= mini<i<n—1 ‘5 — Pt| .

Proof. We may assume that My = M, = 1, and write m; = a and my =  as in Theorem
3.2. Then by convexity of T'(a,b;p) = Tp(a,b) and Lemma 2.3 we may compute the max-
imum of T,(a,b) for (a,b) = (a®) b)), st € T*, where a{®) and bV are positive n-tuples
defined as (16). First we consider

Case I: 0 <t < s <n.Put

r=P, y=P;— P and z=1- P,
Then from (17) of Lemma 4.1

(u =) T(a(s),b(t);p) = Azy + Baz + Cyz.
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Now consider the two subcases I-(1) and I-(2) as follows.

I-(1): Assume (14 a)(1 + 8) < 2. Then
B=C+A-B=(1-a)’+(1-8)2-(1-ap)?=2—(1+a)(1+p) >0

(Note that (1 4+ a)(1+3) < 2 is equivalent to B >0.) For A and C, since B = (1 — af)? >
(1—)? = A, we have A = B4+ C — A > 0, and similarly C' > 0. BV Lemma 2.4 (cf. (10))

we can write

. ~ ~ 2 - 2
__c _BBY A _CCNl D (. CC) | ABC
= Y™ 20 \"" D o \"" D D

Hence from the above defintion of A and p, we have

Here, it is an elementary computation to show that D and ABC/D are expressed as (18)
in a and 3.

I-(2): Assume (1 +a)(1 4 3) > 2. Then B < 0, so that A,C > 0. By Lemma 2.4 (cf.
(11)) we can write

uw=—Bzz + Ar(l —2)+ Cz(1 — z),
and since

‘ 1 1 S|
$2_$(1_$_y)§$(1—$)—4<2x> <l

2(l—z2) <> =0 (cf. v is defined in (21)),

< (— B+A+C)(4—zx°>—B<i—zx2>.

Case IT: 0 < 5 <t < n. Put

AM'—‘

we then have

x=Py,, y=P— P, and z2=1-P;.
Then similarly as Case I, from Lemma 4.1
U= T(a(5)7 b(t);p) = Ajay + Braz + Cyyz,

and furthemore

o

1‘11 :B1+C17A1 :(1701’/3)2—)—&2(
=(1-p){1+a?
=C1—|—A1—Blz—(l—a) ,8 1+0[+6—Q8)

1 a)?

(1-8)+28(1 —a)} >0,
(1=5) <0

él:Al—l—Bl—Cl:(l—a){(1+62)(1—a)+2a(1—3)} > 0.

Hence by Lemma 2.4 (ii)
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so that
1
T(a,b;p) < M} M; B (Z - uz) .
We notice that the constant v is independent from A, B, ..., so that it is identical in Cases
I and II. Summarizing the two cases, we obtain the desired facts (i) and (ii). O

Considering the special cases A = p =0 and v = 0 in the preceding theorem, we have:

Theorem 4.3 With the same notations and the same assumptions as in Theorem 4.2, the
following results hold.
1) If 14+ a)(1+5) <2, then

MIM3ABC MM} (1 — afB)?
D A4+ )L+ a)(148)

T(a,b;p) <

If there are integers s = so, t =19 (sg > to) such that

Pto:% and PSO_Pto:%ﬂ
D D
then s
, M{Ms5ABC
Taz (= the mazimum of Ty(a,b) = T(a,b;p)) = %,
which is attained at (a,b) such that
S0 n—so to n—ig
—_—~— — _——
a:(]\/fh...,1\4’1,m17...,m1) and b:(mz,...,m271T\/[2,...,47\112).

(i) If (1 + a)(1 + ) > 2 then

MIM;B  MEM3(1—af)?

T(a,b:p) < —
(a,b;p) < 1 1

If there 1s an integer t = to such that P,, = 1/2, then

o MIMEB
mar =
which is attained at (a,b) such that
to n—to to n—to

Proof. By Theorem 4.2 it suffices to see that

ABC
D

B
>77
— 4

which is easily obtained, say, from (18). o
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5 The difference T'(a,b;p) for similarly ordered a¢ and b We here give an upper
bound of T,(a,b) = T(a,b;p) under the condition that a and b are similarly ordered. We
may confine ourselves for the case that both ¢ and b are nondecreasingly ordered.

Theorem 5.1 Let a and b be positive n-tuples satisfying
my <ar < <ap <My oand mo <by <--- < b, < My,

and let p = (p1,...,pn) be an n-weight with > ,_, px = 1. Put, for a = my/M;, 3 =
mQ/_LT\/IQ,

A=0*(1-05)?, B=(a—-p) C=(1-a)
B)?,

A1 :,82(1 70()27 B1 = B, C’1 = (1 — {

and define A, B. C and D, similarly as (7). (Furthermore, correspondingly define Ay, By
and Cy). Then

D=(1+a)(l+)(1-a)(1-08)°{3~pFa~1+7)}
(22) ABC a?(a — /3)2

and =

(
D ~ (1+a)1+B){B-Fa-(1+8)}

Further assume that

8 <a
and write . ! i
. — /[
o= 1'*'1\_/76 6 and 7:1_:2—;{52_
Then
(23) B<a<a<l

and the following results hold. (A, p and v are defined similarly as (21) in Therem 4.2).
() If (5 <) a<a, then

. 1
T(a,b;p) < MiM;Cy (4 - 1/2> .
(i) Ifa<a <@, then D >0 and

ABC D . 1
T(a,b;p) < MM max {T —Cpu? - E/\Z7 Ch (— — 1/2) } .

. 1 .
T(a,b;p) < M M;Cy (Z - 1/2> .

Proof. By Lemma 2.3, we have to compute the maximum or an upper bound of T,(a,b) =
T(a,b; p) at points (a,b) such that

s n—s P n—t

—_—— e
(24) a:(mlj...,ml,fw'l,...,Ml), ‘dﬂd b:(mz,...,mQ,J\JQ,...,A’IQ)./
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where s and ¢ are integers in I7}.

We may again assume that My = My = 1, so that m; = « and my = 3. It is essential
to consider the problem when § < «. Now the first case is

Case I: 0 <t <s <n. Let

t s—t n—s t s—t n—s
. ) —— PR
a(‘q):(a,...,a,a,...,a,l,...,l) and b(t):(ﬁ,...,,(?’,l,...,1,1,...,1).

Then by the similar argument as in Lemma 4.1 (cf. (17)), we have

T, 00 p) = a*(1 — B)*Pi(Py — P) + (o — 3)*P,(1 — Py)
+(1—a)*(Ps = P)(1 — Py)
= APi(P, — P;)+ BPi(1 — P,) + C(P, — P,)(1 — P,).

First note that A, B,C' >0 (cf. § < o) and by definition

A=B+C-A=(a-03)2+(1-a)P=a?(1-p)*
(1-a){1+5° = (1+28~p5%)a},

so that A > 0 if (and only if) 1 + 8% — (1 + 28 — 3%)a > 0, or equivalently

P 14 5?
o a—71+2/3_’82.

Here, it is not difficult to see 8 < @ < 1. Next we have
B=C+A-B=(1-a)1-{1+a)f+1-a}>0

and

C=A+B-C=(01-3){(1-p)a*+2a—-(1+0)},
so that C' > 0 if (and only if) (1 — 8)o? + 2o — (1 + ) > 0, or equivalently

—1+/2 - 32
T

1—

(I>a>a=

Here, by an elementary computation we can see o < & < 1, so that we have (23). Now
from Lemma 2.4 we have the following three subcases.

I-(1): If (8 <) a < a, then A, B >0, C <0, so that

1 . 1 .
T(a,b; p) SC(Z_VZ> < (Z—I/2>.

I-(2): If a < a < @, then A,B,C > 0, so that

AB
T(a,b;p) < ABC cp

.
D

4C

Here, by an elementary computation we can see that

D=(1+a)1+8)1-a)1=p)7*{3~PFa-(1+5)}
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and ) )
ABC a?(a—B)?

D T I+ o)1+ {B=Fa-1+5)}
I-(3): fa<a<1,then A<0, B> 0and C >0, so that

T(a,b;p) <A <——1/><C1<%—1/2>.

Case II: 0 < s <t < n. Let

—— —— () —_——
a,1,...,1,1,...,1) and bYW =(4,...,

Then similarly as in Case I, we have

T(a', 5 p) = 3*(1 — @)’ PPy — P,) + (a — §)*P,(1 — Py)
+(1=0)*(Pr = P)(1— P
— A Py(P, — P,) + BiP(1 — P.) + Cy(P. — P,)(1 — P,).

For the signs of the constants Ay, By and Cy, we have

A=B+C -4, =(1

—/3){1+a2—/3(1+2a—a2)}
>(1=p){l4+a’>—a(l+2a—a?)}
=(1=p)(1+a)(l—a) >0,

:Cl+441 7Bl :(17(}’)(17,6’)2 >0
and

Ci=A14+4B-Ci=(1-0a){-1+28+5 —a(l+5%)}

<(1—a){-1+28+p*—B(1+5%)}
=—(1-a)(1-8)(1-p* <0.

T(a,b;p) < Cy (i — U2) .

Summarizing Cases I and II, we obtain the desired facts in the theorem

Hence by Lemma 2.4 we have

Theorem 5.2 With the same notations and the same assumptions as i Theorem 5.1

4 4
If there is an integer t = to such that Py, = 1/2, then

T(a.bip) < M2MZC,  M2MZE(1— B)?
a,0,p) < = .

M?Z M2
Tmar(: the mazimum Of T(a_b‘ p)) — 1726(17

4
which is attained at (a',b') such that

n to n—tg

—— —_———
:(lﬂ\/[l,...,ﬂfl) and b/:(77'L2,...,m27jw—2,...,jw-2).
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Proof. By Theorem 5.1, we have only to show that if o < a < @, (or if A, Band C > 0)
then

ABC (4
9 27 o2
(25) o <1
or % < % because
B+C=(a-p8)P2+(1-a)Y <(1-3)*=0,.
Since

B+C ABC (B+C)D-4ABC
4 D 4D ’
we have to show (B 4+ C)D —4ABC > 0. Note that D = 4BC — A> and A= B +C — A

so that we have

(B+C)D —4ABC = (B + C)(4BC — A*) —4(B + C — A)BC
{4B+C (B—C)*}
A{A? - C)’} (cf. B+C > A)
= ABC >

Remark 5.3 Related to Theorem 5.2 (and also Theorem 4.3), we ask if the value T, (a”,b”) =
S M2M2ABC . » 1w :
T(a”,b”;p) = ——2—— at the point (a”,b") with

D
so n—=sp to n—tg
y e N “. — " PN el T
(1,'7:(Tnh....7’)71,[\/[1“.../]\/11) and b7 :(7’)7,2,...,TTIQ,J\JQ,...,AJQ)

is the mazimum of T,(a,b), whenever (iB,CN' > 0 and ) there are integers s = sg, t = tg
satisfying . .
cc BB
Pto:— and PSO_Pto:—-
D D

Unfortunately, this is not true. In fact, if Py, = % is ‘sufficiently near’ to 1/2, then for
the point (a',b") with
n to n—to
a':(]Wh...,JVfl) a,nd bl:(mz,...,mz,jw-g./...,ﬂfg)),

we have

Tpla' b)) = MZMZT(a'™ b0 p) = C1 Py, (1 — Py)

by the inequality (25).

Concernig the preceding remark, as a numerical example, let My = M, =1, m; = a =

%andmzzﬁ:%,thenA:%,B—Z— C—m ) = Dziéggj...Ifweput

1
4
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7337%) = (loat Lot 14T phen for s = 2, o = 1,

n =3 and p = (p1,p2,ps) 22957 2295 2295

that is, for a” = (1"0, 10 1), ¥ = (%

Il
~—~
c|°,

9

» b7 —
T(a p) = "D 6375
On the other hand, for sg = 0, ¢ = 1, that is, for o’ = (1,1,1), ¥’ = (%7 1,1), we have

, 4031 ABC
T(d',b:p) = C P, (1 —P)) = —— = 0.0619... .
(a',b'sp) = C1Py( 1) 5095 0.0619... >

Corollary 5.4 With the same notations and the same assumptions as in Theorem 5.1, in
particular, if the weight p = (p1,...,pn) is uniform, that is, py = --- =p, = 1/n, and if n
1s even, then

MEMZ2(1 — 3)*

Tmar =
4

6 A concluding remark We can show corresponding continuous or measurable versions
of all results in this paper. For example, corresponding to Theorem 3.2, we obtain the

following;:

Theorem 6.1 Let [ and g be positive measurable functions on a finite measure space (§2, 1)
with () = 1. Assume that my < f < My, me < g < My, 0 < my < My and 0 < ms <
Ms. Further assume that o = my /My > mo /My = 3. Then

[ ()

< aaatf aup {05200 0 )P 4 (1= P00 - () |

<< (]\’[1]\/12 — m1m2)2>
f— 3 .

To sketch the proof, let {Xy,..., X,,} be a decomposition of measurable sets in €2 and let
zp € Xi (k=1, ..., n). Then from Theorem 3.2 we have

n

D @) (X)) glan) u(X (Zf (zr)g(ar)u( XL))

< 217243 up { G200 )+ (1= PO - (XD |
XCQ

Taking the limit of the decomposition we obtain the desired inequality.
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