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Abstract. We investigate �nite presentability of monoids with �nitely presented

subgroups of �nite index. If such a monoid satis�es some additional conditions, we

can �nd a �nite presentation of it. As an application of the result, we exhibit a �nite

presentation of the braid inverse monoid. The braid inverse monoid naturally contains

the braid group as a subgroup of �nite index.

1 Introduction. The following result is well-known (see for example [3]).

Result 1.1 Let H be a subgroup of a group G of �nite index. If H is �nitely presented,

then G is also �nitely presented.

In the case of monoids, a similar result holds for very special submonoids. A submonoid

N of a monoid M such that M n N is a �nite set is called a large submonoid of M . The

following result can be found in [4].

Result 1.2 Let N be a large submonoid of a monoid M . If N is �nitely presented, then

M is also �nitely presented.

We are interested in generalizing the above results. For a submonoid N of a monoidM ,

N is said to have �nite right (resp. left) index in M , if there is a �nite subset C of M such

that M =
S
x2C

Nx (resp. M =
S
x2C

xN). Of course, subgroups of a group of �nite index

as well as large submonoids of a monoid have �nite right and left index.

In this paper we investigate �nite presentability of monoids with a �nitely presented

submonoid of �nite index in the above sense. In Section 2 we �rst exhibit a counter example

and see that we cannot simply generalize Results 1.1 and 1.2 to monoids with submonoids

(more strongly subgroups) of �nite right (or left) index. Next we give a result (Theorem

2.2) which generalizes Result 1.1 by adding some conditions. In Section 3 we consider the

monoid of partial braids which contains the braid group as a subgroup of �nite index and

give an explicit �nite presentation of it by con�rming that it satis�es the conditions given

in Theorem 2.2.

2 Monoids with a submonoid of �nite index. We consider the following problem.

Let N be a submonoid of a monoidM of �nite right (or left) index. If N is �nitely presented,

then is M also �nitely presented? First we give a negative answer to this problem by

exhibiting an example.
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Let H be a �nitely generated group and F be a �nitely generated free group with an

epimorphism � : F ! H. We may assume that F \H = ;. Set M = F [ H and de�ne a

multiplication � on M as follows. Let x; y 2 M . If x; y 2 F or x; y 2 H, then x � y is just

the product xy in F or H. If x 2 F and y 2 H (resp. x 2 H and y 2 F ), then x � y is the

product �(x)y (resp. x�(y)) in H. Let e be the identity element of F . It is easy to see that

(M; �) is a monoid with the identity element e.

Lemma 2.1 In the above situation, we have the following.

(1) M = F [ F � �(e) = F [ �(e) � F , that is, F has �nite right and left index.

(2) M is �nitely presented if and only if H is �nitely presented.

Proof. (1) For any x 2 H, there is a 2 F such that x = �(a). Therefore, x = x�(e) = a �
�(e) 2 F ��(e). Similarly x 2 �(e)�F . Thus, we haveM = F[H = F [F ��(e) = F [�(e)�F .

(2) ()) Assume that M has a �nite monoid presentation (A;R), and let f : A� ! M

be the natural surjection where A� is the free monoid generated by A. Set B = A\ f�1(F )
and C = A \ f�1(H). De�ne a homomorphism  : A� ! H by

 (a) =

(
� Æ f(a) if a 2 B

f(a) if a 2 C:

Choose z 2 A� such that f(z) = �(e). Let R0 = f(az; a) j a 2 Bg and set S = R0 [R. We

claim that (A;S) is a monoid presentation of H under the homomorphism  .

Let x = x1x2 � � � xk 2 A�. Since F \H = ;, F � F � F and F �H = H � F � H in M ,

the following condition is satis�ed.

(y) f(x) 2 H if and only if some of xi's is in C, and if f(x) 2 H, then f(x) =  (x).

The above condition shows that  is surjective, that is, A generates H. Next we shall

show that, for any u; v 2 A�,  (u) =  (v) in H if and only if u =S v, where =S is the

congruence on A� generated by S. First for any a 2 B,  (az) =  (a) (z) = �(f(a))�(e) =

�(f(a)) =  (a). Next for (u; v) 2 R, we have f(u) = f(v) in M . Here, if f(u); f(v) 2 H,

then by condition (y),  (u) = f(u) = f(v) =  (v). On the other hand, if f(u); f(v) 2 F ,

then  (u) = �(f(u)) = �(f(v)) =  (v). Thus, u =S v implies  (u) =  (v) in H.

To show the converse, let u; v 2 A� such that  (u) =  (v) in H. If f(u); f(v) 2 H,

then, by condition (y),  (u) = f(u) and  (v) = f(v). Hence, f(u) = f(v) in M and so

u =R v, a fortiori u =S v. On the other hand, if f(u); f(v) 2 F , then f(uz); f(vz) 2 H

and  (uz) =  (vz) in H. So, by the above discussion, we see uz =S vz. Further, since

u =R0 uz and v =R0 vz, we have u =S v.

Hence, we have proved that H is presented by the �nite monoid presentation (A;S).

(() Assume that H has a �nite monoid presentation (A;R). Let g : A� ! H be

the natural surjection and B be a �nite monoid-generating set of F . Set C = A [ B.

We extend g to a homomorphism from C� to M by g(b) = b for all b 2 B. Let R1 =

f(bb�1; �); (b�1b; �) j b 2 Bg, where � is the empty word. For each b 2 B, choose x 2 A� such
that �(b) = g(x) and let R2 = f(ab; ax); (ba; xa) j a 2 A and b 2 Bg. Set S = R [R1 [R2.
We claim that (C;S) is a monoid presentation of M under the homomorphism g. Since

M = F [ H, C generates M . It remains to show that, for u; v 2 C�, g(u) = g(v) if and

only if u =S v. It is easy to see that g(x) = g(y) in M for each (x; y) 2 S. Hence for each

u; v 2 C�, u =S v implies g(u) = g(v) in M .

To show the converse, let u = u1u2 � � �uk; v = v1v2 � � � v` 2 C
� such that g(u) = g(v) in

M . As we see in condition (y), g(u); g(v) 2 H if and only if ui and vj are in A for some i and
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j. If g(u); g(v) 2 H, then u =R2
w, v =R2

w0 and g(w) = g(w0) in H for some w;w0 2 A�.
So, u =R2

w =R w0 =R2
v and we have u =S v. On the other hand, if g(u); g(v) 2 F , then

ui; vj 2 B [ f�g for all i; j. Hence, u =R1
v and u =S v. Thus, M is presented by the �nite

monoid presentation (C;S). �

The above lemma tells us that even if a monoid contains a �nitely presented submonoid

(more strongly subgroup) of �nite right and left index, it is not necessarily �nitely pre-

sented. In fact, take H to be �nitely generated but not �nitely presented, then M is not

�nitely presented though it contains the �nitely generated free subgroup F , which is �nitely

presented and of �nite index. So we cannot simply generalize Results 1.1 and 1.2, and we

need to consider additional conditions. The following result generalizes Result 1.1 in some

sense.

Theorem 2.2 Let H be a subgroup of a monoid M of �nite right index and C be a �nite

subset of M such that M =
S
x2C

Hx. If H is �nitely presented and, for every x 2 C,

the subgroup H(x) = fg 2 H j gx = x in Mg of H is �nitely generated, then M is �nitely

presented.

Proof. Let (B;S) be a �nite monoid presentation of H. Set B = fb1; b2; : : : ; bmg and

C = fx1; x2; : : : ; xng. It is easy to verify that the set A = B [ C generates M . Because

both B and C are �nite, M is �nitely generated.

Removing redundant elements from C, we may assume that xi 62 Hxj if i 6= j. First,

for each i; j with 1 � i � j � n, there is a unique k with 1 � k � n such that xixj 2 Hxk.
Choose u 2 B� such that xixj = uxk in M and de�ne a set R1 of relations with respect to

the generating set A of M by

R1 = f(xixj ; uxk) j 1 � i � j � ng:

Next, for each i; j with 1 � i � n and 1 � j � m there is a unique k with 1 � k � n

such that xibj 2 Hxk. Choose v 2 B� such that xibj = vxk in M and de�ne a set R2 of

relations with respect the generating set A of M by

R2 = f(xibj ; vxk) j 1 � i � n and 1 � j � mg:

Finally, for each i with 1 � i � n, let Di � B� be a �nite generating set of H(xi) and

de�ne a set R3 of relations with respect the generating set A of M by

R3 =

n[
i=1

f(dxi; xi) j d 2 Dig:

Set R = S [R1 [R2 [R3. We claim that (A;R) is a �nite monoid presentation of M .

Since S, all Ri and all Dj are �nite, R is �nite, and it is clear that all the relations in R

hold in M . So the only thing we must prove is that, for any u; v 2 A�, if u = v in M ,

then it is a consequence of the relations in R. Assume that u = v in M . By using relations

in R1 [ R2, there exist w;w0 2 B� and i with 1 � i � n such that u =R1[R2
wxi and

v =R1[R2
w0xi. Since H is a group, we have w�1w0xi =S xi. So w

�1w0 2 H(xi) and there

exist d1; d2; : : : ; d` 2 Di such that w�1w0 =S d1d2 � � � d`. Hence,

v =R1[R2
w0xi =S ww

�1w0xi =S wd1d2 � � � d`xi =R3
wxi =R1[R2

u;

and we obtained u =R v. This completes the proof of the theorem. �

In the next section, we give a monoid (called the braid inverse monoid) which contains

the braid group and give a �nite monoid presentation of it by con�rming that it satis�es

the conditions in Theorem 2.2.
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3 Braid groups and Braid inverse monoids. The braid group Bn is a group de�ned

by the following �nite monoid presentation (see [1] or [2])

generators : ��11 ; ��12 ; : : : ; ��1
n�1; and

relations : (G0) �i�
�1

i
= 1 and ��1

i
�i = 1 for 1 � i � n� 1;

(G1) �i�j = �j�i for 1 � i; j � n� 1 such that i � j � 2 and

(G2) �i�i+1�i = �i+1�i�i+1 for 1 � i � n� 2:

The braid group has the following geometrical interpretation. A braid on n strings is

de�ned as a system of n strings in R2 � [0; 1] � R
3. It consists of disjoint intertwining n

strings which join n �xed points in the upper plane R2�f0g and n �xed points in the lower

plane R2 � f1g, and intersecting each intermediate plane R2� ftg in exactly n points. A

string attached to the upper plane at the i-th position is called the i-th string.

By B(n), we denote the set of isotopy classes of braids on n strings. We usually identify

a braid and its isotopy class. So, an element in B(n) is actually an isotopy class of braids,

but it is called simply a braid. B(n) has a group structure as follows. The product of two

braids �1 and �2, denoted by juxtaposition �1�2, is de�ned as follows. First attach �2 under

�1 identifying the upper plane of �2 and the lower plane of �1, and then remove the center

plane. The trivial braid is the braid in which all strings go straight from the upper plane to

the lower plane. And the inverse of a braid is de�ned as the mirror image of it with respect

to the vertical direction.

For each i with 1 � i � n � 1, let e�i be the braid in which the i-th string overcrosses

the (i+1)-th string once and all other strings go straight from the upper plane to the lower

plane.

The following result can be found in [1] or [2], and we identify B(n) with Bn.

Result 3.1 The groups Bn and B(n) are isomorphic under the mapping �i 7! e�i.
In the above discussion, we obtain a �nitely presented group Bn. Now we construct a

monoid containing Bn as a subgroup and satis�es the conditions in Theorem 2.2.

A partial braid on n strings is de�ned as a subsystem of a braid on n strings, that is, it

consists of disjoint intertwining m strings (0 � m � n) which join m points of the n �xed

points in the upper plane R2 � f0g and m points of the n �xed points in the lower plane

R
2�f1g, and intersecting each intermediate plane R2�ftg in exactly m points. Accordingly,

a partial braid on n strings can be obtained from a braid on n strings by removing some

(possibly all or no) strings. For example, in Fig.1, the right-hand side is a partial braid that

is obtained from the braid at the left-hand side by removing the fourth string. By BIn, we

denote the set of isotopy classes of partial braids.

� � � � � � � �

Fig.1 (a braid and a partial braid on 4 strings)

We de�ne the product of two partial braids �1 and �2, denoted by juxtaposition �1�2,

as follows. First attach �2 under �1 identifying the upper plane of �2 and the lower plane
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of �1. Then remove every string in �1 (resp. �2) that has no corresponding string in �2
(resp. �1). Lastly remove the center plane. For example, in Fig.2, we remove the second

string in �1, because it has no corresponding string in �2. We also remove the fourth string

in �2 for the same reason.

� � � � � � � � � � � � � � � �

Fig.2 (the product of two partial braids �1 and �2 on 4 strings)

Then BIn forms a monoid with this operation and contains Bn as a subgroup. In the

following, we shall show that Bn and BIn satisfy the conditions in Theorem 2.2.

For each i with 1 � i � n, let 
i be the partial braid that is obtained from the trivial

braid by removing the i-th string (see Fig.3).

� � � � � �

� �� � � � � � �

Fig.3

It is easy to verify that the following two types (I1-2) of relations hold in BIn.

(I1) 
2
i
= 
i for 1 � i � n;

(I2) 
i
j = 
j
i for 1 � i < j � n:

By En, we denote the submonoid of BIn generated by the set f
i j i = 1; 2; : : : ; ng.

Lemma 3.2 En is a �nite set and every partial braid can be expressed as �
 with � 2 Bn

and 
 2 En, that is, BIn =
S

2En

Bn
 and so Bn is �nite right index in BIn. Moreover,

for any �; �0 2 Bn and 
; 
0 2 En, if �
 = �0
0 in BIn, then 
 = 
0.

Proof. By relations in (I1-2), every element inEn can be expressed in the form 
�1
1

�2
2
� � � 
�n

n

where �i 2 f0; 1g for all i, and so En is �nite. Any partial braid can be obtained from a

braid by removing some strings and it is realized by applying an element of En to the braid.

Thus every partial braid expressed as �
 with � 2 Bn and 
 2 En. Finally, if �
 = �0
0

in BIn, then the same strings must be removed in the partial braids �
 and �0
0, and so


 = 
0. �

A string in a braid is called pure if it is attached to the upper and lower plane at the

same position and a braid is called pure if all the strings in it are pure. By PBn we denote

the set of pure braids on n strings. It is clear that PBn is a subgroup of Bn.

Result 3.3 (see [1] or [2]) The group PBn is generated by the set

fasr = �r�1�r�2 � � ��s+1�
2
s
��1
s+1

� � � ��1
r�2

��1
r�1

j 1 � s < r � ng (see Fig.4).
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� � � � � �

� �

Fig.4 (the pure braid asr)

Lemma 3.4 For any s; r and i with 1 � s < r � n and 1 � i � n, a�1
sr

i = 
ia

�1
sr

in BIn.

Further a�1
sr

i = 
i in BIn if and only if s = i or r = i.

Proof. Clearly, removing the s-th or r-th string from a�1
sr

yields the partial braid 
s or 
r
(see Fig.4). �

Lemma 3.5 For each 
 2 En, the subgroup PBn(
) = f� 2 PBn j �
 = 
 in BIng of

PBn is �nitely generated.

Proof. Let 
 = 
k1
k2 � � � 
k` 2 En with 1 � k1 < k2 < � � � < k` � n and � =

a�1
s1r1

a�2
s2r2

� � � a�h
shrh

2 PBn(
), where �j 2 f�1; 1g for all j. By Lemma 3.4, asjrj
 = 
asjrj
for each j with 1 � j � h, and asjrj
 = 
 if sj = ki or rj = ki for some i with 1 � i � `.

Let �0 be the pure braid obtained from � by deleting all a
�j

sjrj
such that sj = ki or rj = ki

for some i with 1 � i � `. Then, we have �0
 = �
 = 
. By the construction of �0,

the ki-th strings in �0 with 1 � i � ` go straight from the upper plane to the lower plane

and do not in
uence the other strings. Moreover, because �0
 = 
, the k-th strings in �0

with k 62 fk1; k2; : : : ; k`g do not essentially intertwine any other strings. So �0 must be

isotopic to the trivial braid in Bn. It follows that � can be isotopically deformed to the

braid in which only the ki-th strings with 1 � i � ` move and the other strings go straight

from the upper plane to the lower plane. Hence, � is written as a product of elements ofS
`

i=1
fa�1

ski
; a�1

kir
j 1 � s < ki < rg. It follows that the subgroup PBn(
) of PBn is �nitely

generated. �

Let Sn be the symmetric group on the set I = f1; 2; : : : ; ng and � : Bn ! Sn be the

natural mapping, that is, it sends ��1
i

to the transposition (i; i+1) for all i with 1 � i � n�1.
For p 2 Sn, let I(p) = fi 2 I j p(i) 6= ig. For each p 2 Sn, there is a braid �p such that

� (�p) = p and only the i-th string for i 2 I(p) moves and the other strings go straight from

the upper plane to the lower plane in �p. Choose one such braid �p for each p 2 Sn, and

set P = f�p j p 2 Sng. Clearly P is �nite.

Lemma 3.6 Let 
 2 En and � 2 Bn. If �
 = 
 in BIn, then there exist p 2 Sn such that

��p 2 PBn(
).

Proof. Let 
 = 
k1
k2 � � � 
k` with 1 � k1 < k2 < � � � < k` � n and p = � (��1) 2 Sn. Then,
we see I(p) � fk1; k2; : : : ; k`g, �p
 = 
 and ��p 2 PBn. Hence, we have ��p
 = �
 = 
.

�

Corollary 3.7 For each 
 2 Bn, the subgroup Bn(
) = f� 2 Bn j �
 = 
 in BIng of Bn

is �nitely generated.

Proof. By Lemma 3.5, PBn(
) is generated by some �nite set X = f�1; �2; : : : ; �mg. Let
Y = P \ Bn(
). We claim that that X [ Y generates Bn(
). Let � 2 Bn(
). By Lemma

3.6, there exists p 2 Sn such that �p 2 Y and ��p 2 PBn(
). So, ��p = ��1
k1
��2
k2
: : : ��`

k`
in

Bn for some �k1 ; �k2 ; : : : ; �k` 2 X and �j 2 f�1; 1g. Thus, � = ��1
k1
��2
k2
: : : �

�`

k`
��1
p

in Bn. �



MONOIDS WITH SUBGROUPS OF FINITE INDEX 7

By Lemma 3.2 and Corollary 3.7, Bn is a subgroup of BIn satisfying the conditions in

Theorem 2.2. Thus, we can obtain a �nite monoid presentation of BIn along the proof of

the theorem. Omitting the detail calculation here, we present a monoid presentation of BIn
in a simpli�ed form.

Theorem 3.8 The monoid BIn is de�ned by the generators ��11 , ��12 , : : : , ��1
n�1 and 
1,


2, : : : , 
n, and the relations

(G0) �i�
�1

i
= 1, ��1

i
�i = 1 for 1 � i � n� 1,

(G1) �i�j = �j�i for 1 � i; j � n� 1 such that i � j � 2,

(G2) �i�i+1�i = �i+1�i�i+1 for 1 � i � n� 2,

(I1) 
2
i
= 
i for 1 � i � n,

(I2) 
i
j = 
j
i for 1 � i < j � n,

(I3) 
i+1�i = �i
i for 1 � i � n� 1,

(I4) 
i�i = �i
i+1 for 1 � i � n� 1,

(I5) 
j�i = �i
j for 1 � i � n� 1 and 1 � j � n such that j 6= i; i + 1,

(I6) �2
i

i = 
i for 1 � i � n� 1 and

(I7) �i
i
i+1 = 
i
i+1 for 1 � i � n� 1.

Remark 3.9 The relations in Theorem 3.8 are related to the sets R1, R2 and R3 of relations

which are used in the proof of Theorem 2.2. In fact, relations (I1-2) come from R1, relations

(I3-5) from R2, and relations (I6-7) from R3.

Remark 3.10 The monoid BIn forms an inverse monoid with the semillatice En of idem-

potents and is called the braid inverse monoid on n strings. Actually, for any partial braid,

the unique inverse is the mirror image of it in the vertical direction in the same way as

ordinary braids.
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