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ABsTRACT. We investigate relations between denotational semantics of Ap-calculus
and syntactic interpretation by the so-called CPS-translation. It is shown that con-
tinuation denotational semantics of Ap-calculus has a simulation relation to direct
denotational semantics following the CPS-translation.

1 Introduction Parigot [Pari92, Pari97] introduced the Ap-calculus from the viewpoint
of classical logic, and established an extension of the Curry-Howard isomorphism [How80,
Grif90, Murt91]. From the motivation of universal computation, we study denotational
semantics of type-free Au-calculus [Fuji02]. Given domains U x U 2 U = [U — U] such as
in Lambek-Scott [LS86], first we introduce continuation denotational semantics of the Au-
calculus. Next we define a syntactic translation, called a CPS-translation in the similitude of
Plotkin [Plot75], from Au-calculus to A-calculus, and then give direct denotational semantics
& la Scott [Scot72] of type-free A-calculus. Finally we show that a simulation relation holds
between the continuation denotational semantics and the CPS-translation followed by the
direct denotational semantics.

2 \u-calculus We give the definition of type free Au-calculus [BHF99, BHF01]. The
syntax of the Au-terms is defined from variables denoted by z, A-abstraction, application,
p-abstraction over names denoted by «, or named term in the form of [o]M.
ApsM:u=a| M| MM | pa.N
N == [a]M
We write Ay to denote the set of Au-terms. The set of reduction rules consists of the
following rules:

Definition 1 (Au-calculus)
) (/\l 47\11)47\1—2 — ]\/.[1[1 = AIQ]
) Ae.Ma - M ifx ¢ FV(M)

13) [al(uB.N) = N[8 := o]

(B

(n)

(1) (po.N1)My — po.Ni[o < My)
(

() pofa]lM — M if o ¢ FN(M)

FV(M) stands for the set of free variables in M, and FN(M) for the set of free names in
M. The Ap-term Mi[a < M,] denotes a term obtained by replacing each subterm of the
form [o]M in M, with [a](MMs). This operation is inductively defined as follows:
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1. 2la <= M] ==

2. (\e.Mi)[a <= M] = \e.Mi[o < M]

3. (MyMs)[a < M] = (Mo < M])(Ms[a < M)
4. (uB.N)la <= M] = uf.Nja < M]

— [B](Mi]a < M])M), fora=p
5. ([B]My)le = M] = { [B)(M;[a < M]), otherwise

The binary relation =, over Ay denotes the symmetric, reflexive and transitive closure
of the one step reduction relation, i.e., the equivalence relation induced from the reduction
rules.

The A-calculus together with surjective pairing is defined in the following:

AO S M=z | dae.M | MM | 7i(M) | 7o(M) | (M, M)

We write AU for the set of A-terms. The reudction rules of AO are defined as follows:

Definition 2 (A-calculus with surjective pairing)
(8) (MNae.My)My; — M|z := M;)
() \e.Mz — M if = & FV(M)
(i) mi(My, M) — M; fori=1,2
(sp) (mi M, msM) — M

We employ the notation =) to indicate the symmetric, reflexive and transitive closure of
the one step reduction of AQ.

3 Denotational semantics Along the line of denotational semantics such as in Stoy
[Stoy77], a semantic function will interpret Au-terms as elements in domain D of a cpo:
(1) there exists a least element L € D;
(2) for every directed X C D the supremum UX € D exits.
We say that a map f: D — D' is continuous if f(UX) = Uf(X) for any directed X C D.
Given cpo’s (Dy,C;) and (Dg,Cy), we define a cpo [Dy — Ds] def {f : Dy = Dy |
f continuous}. Clearly [Dy — Ds] is a poset under the partial order f C ¢ iff Vo €

D, .f(z) C3 g(z). For readability we sometimes write DQD1 instead of [Dy — D»].

3.1 Direct denotational semantics Due to Scott [Scot72], domains for interpreting
A-terms can be constructed by the inverse limit of an inverse system of cpo’s, so that one
obtains recursive domains D such that D = [D — D]. In order to simplify our discussion
we assume that recursively defined domains are already given together with isomorphisms,
as follows [LS86]:

DxD=D=[D — D]

with ¢ : [D x D — D] and ¢ : [[D — D] — D]

Let f be a function. Then f(2:d) is an updated function as follows:

o d fory=u=x

fazd) iy = { fly)  foryta
We write p for an environment of semantics such that

p: {.1?0,331,I2,. .. 7}\/31‘ U {ao,al,ag., C. a}l\lame — D.
Then the following semantic function D[—] defines direct denotational semantics of A

D[-]: AV x Env — D
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Definition 3 (Direct denotational semantics of A®)

1. D[=], = p(z)

2. D[\e.M], = (A € D.DIM] (40

3. DM Ms], = ¢! D[Mi], D[M:],

4. D[(Mq, Ms)], = c((D[M1],, D[M:],))

5. D[ri(M)], = (Mdy,d2) €D x D.d;) (e~ (D[M]))

Proposition 1 For any My, My € AV, if we have My =y M, then D[M,], = D[M],.

Proof. See [Scot72, Bare84].

3.2 Continuation denotational semantics A continuation semantics provides a deno-
tation which is a function sending the rest of the computation, called a continuation, to the
final result. Let U be a continuation semantics domain, i.e., domains for our denotations.
Then we should have U = [ — R}, where K is a domain for continuations and R is for final
results. Following the discussion in [Fuji0l], we consider continuations K such as infinite
lists K = U x K. For continuation denotational semantics, we have to construct recursive
domains such that U = [ — R] and K = U x K. Due to [SR98], for non-empty R the
recursive domain equation K = R" x I can be solved by an inverse limit, so that one finally
obtains RY = R with R = [Ree — Roo] of Scott domain [Scot72]. For continuation
denotational semantics of Ay, it is enought to assume again the recursive domains and the
isomorphisms [LS86]:

UxU=2U=[U—-U]

with 0 : [U xU = U] and ¢ : [[U = U] = U]
By the isomorphisms, we define continuous functions ¥ and ¥—!:

g\ g c UV ap(d oo™ ) [[UxU — U] — U]

1 N\ e Uy d)oo:[U—=[UxU —U]

Then functional compositions of them constitute identity functions by the definitions:

Vol = 1dy_u and UloWw = id[UxU—>U}—>[U><U—>U]-

We write e to denote an environment for continuation semantics, such that

€ {"L‘07‘,L‘17"E23 s 7}Var U {a07a17a27' R 7}1\lame — [DY xU — (J]
Then continuation denotational semantics is defined by the semantic function C[—], see also
[HS97, SRI8, Seli01]:

C[-]:Ap x Env — [U x U — U]

Definition 4 (Continuation denotational semantics of Apu)
1. Clz]e = e(=)

2. C[Az.M]. = lam (MUY .C[M].(s.a))

3. C[MiM,]. = app C[Mi]. C[M:].

4. Cpe.N]e = Lam(Ad€ UY <Y C[N].(a-a))

5. C[[B]M]e = app C[M]. (e(3))

where
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(i) lam = Af.\(dy,do).f (¥71(dy)) (67 (dp)) : [[UY*Y — UVXV] - pUxU]
for f € [UYV  UY*V] and dy,dy € U.

(i) app = A\fAg k. f (U(g),a(k)) : [UV*V — [UV*V — pUxU]]
for f,ge[UxU —=Uland ke U xU.

(iii) Lam = Af AL U(f(T 1 (ok))) : [UY*Y — UV*U] — UgUxY)
for f e [UVV UV V] and ke U x U.

(iv) app = \fAg. U (f(o7 ! (Tg))) : [UV*V — [UV<V -yt
for fog:[UxU — U]

Lemma 1 All of the following functions are identity functions:
lamoapp =id: [[Ux U - U] = [U x U = U]]
app 0 lam = id : [[UV*V — UUVXU] o [UVXV - UV
LamoApp =¢d : [[U x U = U] = [U x U — U]]
App o Lam = id : [UVXV — UVXV] o [UUXV 5 pUxU]]
Proof. By the definitions of lam, app, Lam, and App. O
Lemma 2 (i) C[A’L [”C = ./Lfg]ﬂe = C[[A/[1]]e(z:(3[[lwz}]e)
(ii) C[Mila < M;]le = C[Mi]c(a:r) where K = (U7 o o)(T(C[M:]e), T(e(a)))

Proof. By induction on the structure of My. We show only the case My of [a]M for (ii).

Cl([e] M) <= M:]]e

= Cla]((M[o < M3])M>)].

= App (app C[M[o < M:]]. C[M:].) (e(a))

= App (M\EC[M[a <= Ms]]. (T(C[M2]e),0(k))) (e (a)

H(MRCIM[e < Mol (R(CIML). (k) (071 (¥ (e())

= UHC[M]o < My]]. (¥(C[M>].), ¥(e(a))))
THCIM]e(aire) (B(CIMa].), ¥(e(a))))

where K = (07! 0 0 )(¥(C[M:].), ¥(e(a))) by the induction hypothesis

“HC[M]e(a:ry (07 0 T)(e(a : K)(a))))

= App C[M]e(a:r) (el K)(a))

= C[[[Q]A/[ﬂe(azk') 0

Proposition 2 For any My, My € Ay, if we have My =x, My then C[M;]. = C[M]..

Proof. By induction on the derivation of =3, together with the lemma above. We show
some of the base cases.
Case of (f):

C[[(/\x.]\/fl)]\/fﬂ}e

= app (lam(Ad.C[Mi]e(ray)) CIM:]e

= (M.C[M]¢(p:0))C[M2]e by Lamma 1

= C[M]e(zepma).)
= C[M;[z := M:]]e by Lemma 2
Case of (u):

Cl(pa.N)YM].
= app (Lam(/\d C[[N]]e(a d))) C[[A/[]]e
= app (M. T((ALC[N]e(aia)) (¥ (o(R))))) C[M]e
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= app (Ak.W(C[N]e(aw-1(o(r)))) C[M]e

= 20O B(CTN earas o)) (HCEMLL), o)

= A U(C[N]c(a:k)) where K = (¥~ 0 o)(U(C[M]e),0(a))

= AW (C[NTe(amw=1(a(a)) (1)) ,

where L = (U7 0 0 )(¥(C[M]ciamw-1(o(a))))s T (T (o (a))))

= (I\;/*I oo )(U(C[M]e),o(a)) since o & FN(M)
=K

= AQ\I/(C[[]V[Q/ = A/[]]]e(a:‘l/_l(a(a)))) by Lemma 2

— MEU((CIN o = Mgy} (9 (o(E)))

= Lam(/\d.C[[N[a < J\/fﬂ]e(a:d))

= Clpa.N[o < M]]. O

4 CPS-translation As an extension of Plotkin [Plot75], see also [Fuji01] for the essential
distinction, we next define a syntactic translation called a CPS-translation from Ay to A%:

Definition 5 (CPS-translation from Ay to AQ)
1. 2z = \k.2k

2. MM = Ne. M(myk)[x := m k]
3. MMy = Mk .My (M, E)

4. pa.N = da.N

5. [a]M = Ma

Lemma 3 (i) M;[z = M) =x Mi[z := M;]
(i) Mifo < My] = Mifa := (My, )]

Proof. By induction on the structure of M;. We show the case My of [o]M for (ii).
([a]M)][e = M3] = [a](M[a < M;])M3)

= (\e.M[a = My)(My, F))a

=5 M[a < M,)(My, o)

=x Mo := (M, a)]{M,, o) by the induction hypothesis

— (Mo)fa = My, a)]

— [a]M]a = (M, a)] o

Proposition 3 For any My, M, € Ay, if we have My =, My then M, =) M,.

Proof. By induction on the derivation of =3, together with the lemma above. We show
some of the base cases.
Case of (f):

(Ae.My) Mz = Nk e . My (M, k)

g A My (mo{ My, k) = (M, k)]
=, M. Mik[z := M)
=3 M|
= M|
Case of (1)
(pa. N1 )My = Ne.pa. Ny (Ma, k)
= Me.(Na. Ny (M, k)
=3 A\k.Ni[a := (My, k)] = Aa.Ni[a =
=) Aa.Nj[a < M;] by Lemma 3 (ii)
= pa.Ni[a < M,] O

x = M>]
x:= M;] by Lemma 3 (i)

(Mo, )]
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5 Direct with CPS semantics Let p : Var U Name — D be an environment. Then
we define the following semantic function D[~] : Ay x Env — D, called direct with CPS
semantics here.

Definition 6 (Direct with CPS semantics)
1. DOLe], = pl)

2. DY[\z.M], = cur(A\d € D.D[M] (sa))

3. DY[M M), = ev DY[M;], D[ M.],

4. Dpa.N], = H(Ad€ D. D[N, (a:a))

5. DO[AIM], = ¢~ DCIM], (o(3))

where

(i) cur = \feDP.p(AED.4" (f(pi(od))) (palod))) : [[D = D] = D]
(i) ev=AfeDA\geD.H(Nde DY~ f (o{g,d))): [D — [D — D]]

(iii) ps = Md1,d2)eDxD.d; :[D xD — D] (i=1,2)

Lemma 4 Following functions are identity functions:
curoev =1id: [D — D]
evocur =id:[[D — D] — [D — D]]

Proof. By the definitions of cur and ev. O
Proposition 4 VM € Au. D[M], = D[M],

Proof. By straightforward induction on the structure of M. We show some of the cases
here.
Case M of \x.M;:
Dl x.Mq],
= D[Ak. My (mak)[x := mk]],
= (Ad.(v ™! D[Mi[x := mik]]yxa) Plrak]pra))
= P(Ad-(¥ ™! DIMi] (k) (e[ M aay) PLF2kDp(rea)))
= (A" DIMi]p(r:ay(epsto— (a))) (P2(07'(d)))))
= (A (7! D[Mi] p(aepi(o-1 (a))) (p2(07'(d))))) since k ¢ FV (M)
= cur(/\d.D[[%]]p(r:d))
cur(\d. DY [Mi]p(z:0)) by the induction hypothesis
= D[\x.M;i],
Case M of po.N:
Dlpa.N], = D[Aa.N],
= w(/\dp[[ﬂ]]p(ozd))
= (\d.D” [NTp(a:ay) by the induction hypothesis
= D [pa.N], O

In order to investigate relations between continuation denotational semantics and direct
denotational semantics with CPS-translation, from Proposition 4 we study relations between
C[—] and DE[—] in the next section.
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6 Relations between continuation denotational semantics and direct with CPS
semantics Let D' be [U x U — U]. We write Lp for the least element of the cpo D.
Along the line of Reynolds [Reyn74], we define a simulation relation 8 over c¢po’s D x D’
coinductively as follows:

Definition 7 (Simulation relation §)

(di S da)

if and only of

[(di = Lp) A(da = Lp)]

Y

E'fl,ff_). {[(dl = cur(fl)) A (d2 = lam(fz)) A (\V/de D,dIED/.(d S dl) - (fld S fzd’))]
V[(d = (1)) A (ds = Lan(f2)) A (Ve D.d' e D'(d S d') = (f1d S fod )]}

Y

Jay,az,a3,as. {[(d1 = ev a3 az) A (dy = app az as) A(ar S az) A(as S aq)]

Y [(dl == Lbil aj ag) A (dz == App ay Clr4) A (a1 S CLQ) N (CL3 S a,4)}}

It is obtained that the two semantic definitions C[—] and D[—] give denotations between
which the simulation relation holds if so does each environment.

Theorem 1 If (p(z) S e(x)) for any x € Var U Name, then we have (D[M], S C[M].).

Proof. From Proposition 4, we will prove (DY[M], S C[M].) by induction on the struc-
ture of M. We show only the case M of Az.M;. From the definitions of D¢[~] and C[~],
we have DC[[/\x.]Vfl]]p = cur(f1) and C[Az.M;]. = lam(f3) where f1 = M€ D.DC[[AMl]]p(r:d)
and fo = A€ UUXU.C[[]\L]]E(xzd). It is enough to prove that (fid; S fads) for any dy and
dy such that (dy S d2). Assume that (dy S da). Then (p(x : di)(y) S e(z : d2)(y)) for any
y € Var UName. Hence the induction hypothesis gives (D¢ [IMi]p(e:a) S CIM ]e(a:ds)), that
iS, (fldl S fzdz) O

Let a : [D — D'] and 8 : [D' — D] be the least upper bounds, respectively defined
simultaneously in the following:

where
B

{ ao(d) = 1p ev(d)l

(077 d - lam apy O ev d o] /Bn N
+1(d) ( (d) o Bn) Lo e g
3 (d’) D —* - D
Mo\ = J—D ,
{ Brai(d) = cur(B, oapp(d)oay, lapp(d)
+1(d’) ( pp(d') o an) b

Moreover, let I'p and Jpr be the least upper bounds, respectively defined as follows:

Ip = mln Jpr = DJ”'
n=0 n=0

where
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{ Io(d) = 1p { Jo(d") Lo
In41(d) = cur(l,oev(d)ol,) Jnt1(d') = 1lam(J, oapp(d)o.J,)

Then one can show the following lemma:

Lemma 5 (1) Vd € D.(I,(d) S an(d))
(2) Vde D,Vd' € D'.(d § d') = I,(d) = B,(d")

Proof. By simultaneous induction on n.
Base cases:
From the definition we have that (Lp & Lp/) and In(d) = Lp = Bo(d").
Step case for (1):

. Loy (d) = cur(fy where fi = I, 0 ev(d) o I,;
We have that { an+1((d)) = lam((fg)) where fo = a, 0 ev((d)) o B,.
We will show that (fidi S fads) for any dy, ds such that (dy S d3). Assume that (di S da).
Then fads = ay,(ev(d)(Bn(da))) = an(ev(d)(L,(d1))) by the induction hypothesis of (2).
Hence from the induction hypothesis of (1), we have (I,,(ev(d)(I,(d1))) S an(ev(d)(I.(d1)))),
that iS, (f1 d1 S fzdg).
Step case for (2):

. Iyt1(d) = cur(fy where f; = I, o ev(d) o I;;
We have that { Bny1(d') = culE(fz)) where f; = 8, 0 ap(p()d') 0 orp.
It is enought to show that fia = fya for any a € D. The induction hypothesis of (1) gives
that (Ina S apa) for any a € D. Then we have that ((ev d (I,a)) S (app d’ (apa))) from the
assumption of (d § d'). Now the induction hypothesis of (2) proves that I (ev d (Ina)) =
Bn(app d' (ana)), and hence we have f; = fa, which gives Iny1(d) = Bn+1(d). |

For any n we have the following facts:
Fact 1 (i) I,o0l,=1,=0p0a, and J,oJ,=J,=a,0[,
(ii) In E In+1; ap E Apit1, /Bn E ,8n+17 and Jn E Jn+1

Let R be a relation between D and D’. Following Reynolds [Reyn74], R is called directed
complete (or admissible) if and only if R(z,y) whenever = wf Wz, |n>0}andy f U{yn |
n > 0} for two w-chains vg C 77 C w3 C -+ and yo = y3 C y2 C -+ such that R(zp,yn)
for any n.

Proposition 5 Assume that S is directed complete.
(1) Vd e D.(Ip(d) § «(d))
(2) Vde D,Vd' € D'.(d § d') = Ip(d) = g(d')
Proof. From Lemma 5. O

Proposition 6 Assume that S is directed complete.
(1) Vd' e D'.(B(d") S Jpi(d"))

(2) Yd € D,¥d' € D'.(d S d') = a(d) = Jpi(d')
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Proof. Following the similar pattern to the proof of Proposition 5. O

Now it can be shown that the functions a and 8 make the continuation denotational se-
mantics related to the direct denotational semantics following the CPS-translation:

CPS

M € Ap A s M
continuation direct
c[M] € D o ’ D > D[M]

The CPS-translation followed by the direct denotational semantics is essentially the same
as the continuation denotational semantics. The continuation denotational semantics es-
tablishes an interpretation which involves the effect of the CPS-translation at the syntactic
level, i.e., C[—] is a semantical counterpart of the syntactic interpretation by the CPS-
translation.

Theorem 2 Ip(D[M]ip0,) = B(C[M]ao,) and o(D[M]poc) = Jp(C[M] s, 0c), provided
that S is directed complete.

Proof. Ya € Var UNane. (Ip(p(x)) S a(p(x))) by Proposition 5
= (D[M]1,0p S C[M]aop) by Theorem 1
= Ip(D[M]rpop) = B(C[M]ao,) by Proposition 5

The another statement can be verified similarly by Theorem 1 and Proposition 6. O
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