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CHAOTIC ORDER AMONG MEANS OF POSITIVE OPERATORS
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ABSTRACT. M. Fujii and R. Nakamoto discuss the monotonity of the operator function
F(r) = (1 — p)A” + pBr)% (r € R) for given A/B > 0 and p € [0,1]. They
proved it under the usual operator order: F(r) < F(s) if 1 <r < sorl <s < 2r.
Furthermore, they proved it under the chaotic order: F(r) <« F(s) if r < s and
consequently s — lim, 0 F(r) = A {,B, where {, is the chaotic geometric mean
defined by A &, B = ell—#)log Atulog B
The aim of this paper is to generalize the above mentioned as follows:

Let J\I,ET](A;w) = (Z§:1 w; AN (r € R\{0}) be weighted power mean of posi-
tive operators A;, Sp(A4;) C [m,M] (j = 1,... k), 0 < m < M and w; € Ry,
2;721 wj = 1. Let A/IJEOJ(A; w) be the corresponding chaotic geometric mean. If r <'s
then real constants a; and a1 such that LVZJW,ES](A; w) < JW,ETJ (A;w) < uflAM,[cS](A; w),
are determined, when r & (=1,1), »r # 0 or s & (—1,1), s # 0. Furthermore, if
r < s then real constant A such that AAM,?] (Aw) K€ ]VI,ET] (Asw) € A/I}ESJ(A; w), is

determined.

1 Introduction. Let B(H) be the C*-algebra of all bounded linear operators on a
Hilbert space H, B4+ (H) be the set of all positive operators of B(H) and Sp(A) be the
spectrum of the operator A. We denote by > the usual order among self-adjoint operator
on H (ie. A>Bif A— B € By(H)). We denote by > the chaotic order among invertible
operators of B4 (H) (i.e. for A,B >0, A>» B iflogA > log B).

M. Fujii and R. Nakamoto [2] discuss the monotonity of the operator function F(r) =
((1 = p)A” 4+ uB")* (r € R) for given A, B > 0 and p € [0,1]. They do it under the usual
operator order:

Lemma A (M.Fujii-R.Nakamoto). Let A,B > 0 and p € [0,1] be given. Then the
operator function F(r) = ((1 — p)A” 4+ ,uB’“)% (r € R) is monotone increasing on [1,00),
ie. F(r) < F(s)ifl<r <s. Inaddition F(r) < F(s) if 1 < s < 2r, and F(r) is not

monotone increasing on (0,1] in general.

Next, they do it under the chaotic order:

Lemma B (M.Fujii-R.Nakamoto).  The operator function F(r) is monotone in-
creasing under the chaotic order, i.e. F(r) < F(s) ifr < s. In particular, s—lim,_o F(r) =
A OuB, where & is the chaotic geometric mean defined by A &, B = e(1—#n)log Atplog B

We consider the following weighted power means of positive operators (see [6, 4, 1]). Let
A; € By(H) with Sp(4,) C [m,M],0 <m < M, (j =1,... k) and w; € Ry such that
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2521 wj = 1. We define

(Thow 4" i rer\o),
(1) MV (A w) =

exp (Efﬂ w;j log Aj) it r=0.
The limit
s — lim M (A w) = MO (A w)
r—

exists (see [1] or Lemma 7) and A’f,[co} (A; w) reduces to the usual geometric mean in the case

of commuting operators. To remind, we define usual geometric mean by G(A;w) = A}g/z
—1/2 ,1/2 —1/2 1/2 ( —1/2  ,—1/2\"" ,1/2 ,—1/2\"? 12/712%_1/12
(Ak / Ak/—1"' (As / Az/ (Az / Ard, / ) A‘z/ Ay / ) "'Ak/—1Ak / ) Ak/

where uj; =1 — w]-+1/2{;1 wi(g=1,...,k—1).
The aim of this paper is to generalize the above results of Fujii-Nakamoto as follows:
We shall determine real constants a; and a7 such that

ars MEN (A w) < MIT(Aw) < oy MV (A w),
holdsif r < s, r ¢ (—1,1), r #0 or s € (—1,1), s # 0.
Furthermore, we shall determine real constant A such that
AMI (A w) < MIT(A;w) < M (A w),

holds if r < s.

2 The usual operator order among means. In this section we discuss the usual
operator order among power means (1) when r € R\{0}.

Theorem 1. Let A; € B4 (H) with Sp(4;) C[m,M], 0<m <M, (j=1,...,k) and

w; € Ry such that Zle wj=1 Ifr,s € R, r <s, then

(2) ars M (Asw) < MY (A w) < oy M (A w),
e (i) or (i) o (i)
_ . . 1 of (1) or (i) or (iil),
o= A af (vi), ar= { A g (iv) or (v),

and

B r(s® — k") % s(k" — K®) v M
A_{(S—r)(ﬁr—l)} {(r—S)(KS—l)} ST
Here we denote intervals from (i) to (vi) as on the Table 1 (see Figure 1).

Remark 2. B. Mond and J. Peéarié [6, 4] proved the following inequalities

MV Asw) < MENAsw)  if (1) or (i) or (i),
ME A w) < ATMT(Aw) i ().
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(i) s>r, s € (=11), rZ(-1,1),
(i1) s>1>r>1/2,
(iii) r<—-1<s<-1/2,
(iv) s>1, —1<r<1/2, r#0,
(v) r<—1, —=1/2<s<1, s#0,
(vi) s>r, s¢(=1,1), r#0 or r¢ (—1,1),
Table 1: Intervals from (i) to (vi)
(i) (iv) (iv) [ (i) (1)
1
(v)
®) - -
(iii)
11
(i)

Figure 1

99

For the proof of Theorem 1 we need some results. If Jensen’s inequality and Mond-

Pecari¢ method applied, then the following two theorems hold:

Theorem J ([6, Theorem 1]). Let J C R be an interval. Let A; € BL(H) with
Sp(A;) C T (j=1,... k) and wj € Ry such that Zle w; = 1. If f s a operator conves
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function on J, then

(3) f ijAj Szwj.f(Aj)~

Theorem MP ([5, Theorem 5]). Let A; € BL(H) with Sp(A;) C [m, M], 0 <m<

M, (7 =1,...,k) and w; € Ry such that Zle wj = 1. Let f be a strictly convez twice
differentiable function on [m, M]. Suppose in addition that either of the following conditions
holds (i) f >0 on [m,M] or (ii) f <0 on [m,M]. Then the following inequality

k k
(4) Y owif(4) <af | w4
j=1 j=1

holds for some o > 1 in case (1) or 0 < a < 1 in case (ii).

More precisely, a value of o for (4) may be determined as follows: Let uy = (f(M) —
fm)) /(M —m). If uy =0, let t =t, be the unique solution of the equation f'(t) =0 (m <
to < M); then a = f(m)/f(to) suffices for (4). If uy # 0, let t = t, be the unique solution
of the equation pysf(t) — f'(t) (f(m) + pp(t —m)) = 0; then a = pyp/f'(t,) suffices for (4).

Corollary 3. Let A; € B (H) with Sp(4;) C[m,M], 0 <m < M, (j =1,... .k)
and w; € Ry such that Ele wj=1 IfpeR, then

k r k P
(5) oD Zu)jAj < ijA‘; < aq ijAj
J=1 J=1 J=1
with
o — AL if p< =1 or p>2, o — A if p<0 or p>1,
R | if —1<p<0or1<p<?2, Tl 1 if 0<p<i,
A if 0<p<l,
where
% MmP — mM? 1—p MP—m? P
A = C M:p) =
(m, M; ) (I =p)(M —m) < p Mmp —mJWP>

R =

= n ((ﬁpl)(nf”l)){

%
(p—1)(k—-1) p(KP — K) m’

Remark 4. Note that

Mm? —mM? (1—p MP—m? \”
(6) Cv(m,jﬁ\/[p) - Mm m < p m )

(1 —=p)(M —m) p MmP — mMP?

is called Furuta’s constant [7] when p > 0.
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Proof of Corollary 3. We first consider a. If 0 < p < 1, then the function f(t) = ¢?
is operator concave and from the inequality (3) follows oy = 1. But, if p < 0 or p > 1, then
the function f(t) = ¢? is strictly convex (and f > 0). From the inequality (4) follows:

p mMP — MmP mP + M(to —m)

P Ry —— and ap = 1‘8 = A.

tog =

Next, we consider as. If 0 < p < 1, then the function f(¢) = ¢ is strictly concave and
it follows from inequality (4) that ay = A If—1<p<0orl<p<2, then the function
f(t) = t? is operator convex and from the inequality (3) follows a; = 1. If p< —1 or p > 2
then the function f(t) = # is strictly convex. Similar to Mond-Mond-Pecari¢ method, for
any s € [m,M] we have g5(t) = f(s) + f'(s)(t — s) < f(t) for all t € [m,M]. Then the
following inequality holds (see [3, Remark 4.13]):

k
. . g5<t)
) > u," A rith vg = } .
2 il = onf Z B s T Y 11
J
We choose s which is the unique solution of gf((;?) f(j\;[))' A simple calculation implies
(6 5] ::Ziil.

Proof of Theorem 1. We prove this by a similar method as in [3, Theorem 5.7]. We
shall consider only the case when s # r.
Suppose that s > 1. If 0 < r < 1 then m"ly < A7 < M"ly (j = 1,... k) implies
m"ly < Z —wjA] < M"1p. Putting p = # in Corollary 3 (for 1 <p<2orp>2)and
1ep1a(€d A;j bx 4 we have

s/r s/r

k [
YowiAl ] <Y wAR < C(m Mr Z%A’“
j=1 j=1

ifs/2<r<lor
. i s/r i . s/r
C(m",M"; ;)_1 ijA; < ijA; < C(m A/[r Zw]AT
7=1 j=1

if 0 <r < s/2, where

Clm", M"52) = = m!(M7)7 — M (m")7 (E(__ D((M7)7 = (m")7)

<% 0T =) "(M")E = M7 (m T>?>>

s ()

The function f(t) = t+ is operator increasing if s > 1 and it follows that

1/r i 1/s 1/r

k
> wAs <D w4 <C(m" MT' Vs Zw-y
j=1 7=1
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ifs/2<r<1lor

1/r . 1/s . 1/r
C(m", M"; ‘— —/s Z_u AT < ;MV,A; <C(m", M"; 'r)l/b ;ij;
1 _1
if 0 < r < s/2, where C(m", M"; $)!/* = {(ﬁf;@fl)}s {(,.“L(Z;(Z-f?l)} T=ATh
Furthermore, consider the case of s = 1. Then for 1 < 1/r < 2 we have

1r
(Zle ij;) < ijl wjAj, so for s > 1 we have

. 1/r E k 1/s k Lr
Dowidi | <Y wid < | Y widy | <ATH Y wid
=1 j=1 =1 =1
if1/2<r<1or
o ) 1/s . 1/r

k k
D wiAs <Y wid; <D w4 <A wiAy
Jj=1 J=1 Jj=1 j=1

if 0 < r < 1/2. Then we obtain desired inequalities for 1/2 <r <1 or 0 <r < 1/2.
If r < 0 then M"1y < Zf:] w;A7 < m"ly and Corollary 3 (for -1 <p<O0orp<

—1), with the fact that the function f(t) = t* is operator increasing, gives

. 1/r . 1/s 1/r
3 wiAj <D w,As < C(M",m"; )M Zw]
j=1 j=1
if r < -—sor
. f 1/r f 1/s A 1/r
C(M",m", ;)*1/3 > wiAf <D w4 <C(M",m" )1/5 > wiAf
j=1 =1 =1

if —s < r <0, where C(M", m"; %)1/5 = {(;’E“;;;f;l)) } ' {(f,(fg_)(,;ﬁs_;})} T =ATL

Therefore, similarly to above mentioned case s = 1 we have
1/r 1/s 1/r
/ / ' /

k k :
ijA; Z i < Z%A* <AL ZWJA;
j=1 j=1 j=1

itr <-—1or
1/r x 1/s X 1/r

k k
Zu}jA; S Zw]‘A]‘ S Zw]‘Aj S A71 Zw]A;
=1 J=1 J=1

if =1 < r < 0. Then we obtain desired inequalities for r < —1 or —1 < r < 0.
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Next, suppose that 1 < r < s. In this case we put p = Z. Then Corollary 3 (for
0 < p < 1), with the fact that the function f(t) = ¢ is operator increasing, gives

B 1/s A 1/r . 1/s
(0 S 7s. r 1/r CAS AT L AS
C(m*, M ,g) / z;w]Aj < z;w]Aj < z;w]Aj ,
J= J= J=

where C'(m?®, M*; f)l/” =A.

Therefore, we obtain the desired results on the intervals (ii), (iv) and the part of (i) in
case s > 1 and r < s.

Secondly, suppose that s < 1. Then it follows that » < —1. Similarly, due to the mirror
reflection direction s = —r, we obtain the desired results on the intervals (iii), (v) and the
part of (i) in case s < 1 and r < s.

3 The chaotic order among means. In this section we discuss the chaotic order
among power means (1).

Theorem 5. Let A; € By (H) with Sp(4;) C[m,M], 0<m <M, (j=1,...,k) and
w; € Ry such that Ele w; = 1. Denote k = M Ifr,s € R then

m

(7) Alrir, s)ME (A w) < MU (Ayw) < M (A w)
where
r(k®—k") - s(k"—k") B . .
{(s—r)(K,T—U} {(r—s)(ms—w} if r<s, rs#0,
(8)  Alsir,s) = i)
RPT v ,
(% if r=0<s=porr=p<s=0.
L N
Remark 6. Note that A(k;0,1)7" = M, (1) := —"—— (k = &) i5 called Specht’s
elogkn—1 )
ratio and
B T
(9) A(r;0,5)7° = My(s) = —————
elog k= =1

is the generalized Specht’s ratio [9, 8]. We remark that M, (1) = M,(r).
Also, note that limg_,0 A(r;0,s) = 1 by the Yamazaki-Yanagida result [9, Lemma 12]:
limyo{M(s)}+ = 1.

For the proof of Theorem 5 we need two more results.

kLemma 7. Let Aj € By(H), A; >0 (j = 1,....,k) and w; € Ry such that
i wj=1. Then

=1

s — lim M (A;w) = M (A; w).

t—0
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Proof. This limit was discussed in [1] for w; = 1/k and proved in [2, Lemma 2] for
k = 2. As a matter of fact, applying the concavity of log-function and Krein’s inequality
we have

k k k
1
ij logA; < ?log Z”iAE‘ — ij logA; (t — 40).
; — ;

So s — limy,4¢ M,[;] (A;w) = AII[CO](A; w). Besides, for ¢t > 0

1071 -1

k
M7 A w) = | [ S wiarh = fexp [ S wjlog(47h) — MOV (A;w).

So s — lim;_s_g M’,[:](A; w) = JW,[CO](A; w).
Lemma 8. Let M >m >0 and A(k;r,s) be defined by (8). Then

lim A(r;r,s) = A(k;r,0) and lim A(r;r, s) = A(k; 0, ).

s—0 r—0

For the proof of lemma 8 we need the following Yamazaki-Yanagida result [9, Proposition

14].

Lemma C (T.Yamazaki-M.Yanagida). Let C(m,M;p) and My(p) be defined by
(6) and (9), respectively. Then for p >0 and M > m > 0,

lim C(m®, M?; p)—‘Mn(P%

6——+0

_ M
where k= - > 1.

Proof of Lemma 8. We have the the first limit putting 6 = s and p = r in Lemma C
and applying the following relations:

C(m*, M?; )% = A(r;r,s) if s >0, C(M?,m? z) = C(m®, M?; l) if s <0,
s

S

[V R

and
L
C

Mi(r)™ = A(k;r,0).

Similarly, we obtain the second limit.

Proof of Theorem 5. We first show that for r,s € R\ {0}, r < s,
log (A(fi; r,s)l f,[cs](A; w)) <log ]Vf,[cr](A; w) < log ] f,[cs](A; w).

/e assume 0 < r < s. en mlg < A, < Mlg =1,..., mmplies m®ly <
W 0 Th 1 A; M1 j 1, , k) impli °1
- w; A < M?®1g. Putting p= < < p < 1)in Corollary 3 and replaced A; by A%, we
b wjAl < M1y, Putting p=Z (0 1) in Corollary 3 and replaced A; by AS

have
r/s r/s

k
C(m*, M*; - Zw] . <Y Wi AT <D wiAs
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where

S e N B
C( S M? S) (r — -“)(K,S - 1) <(g — 7‘)(/{7’ — 1)) )

As the function f(t) = logt is operator monotone on (0, 00) we have

1/s 1/s
k k k
rlog | C(m® M?; g)l/r ijA; <log ijA; <rlog ijA;
j=1 J=1 J=1
and so
(10) log (C(ms7 M7, g)”ﬂM}ﬂ(A; w)) <log Nf,[:](A; w) < log AI,ES}(A; w),

where C(m?®, M?; f)l/" = A(k;r,s).

Next, we assume r < s < 0. Then M"ly < A} < m"ly, (j = 1,...,k) and so
Mg < Ele w;A} < m"ly. Putting p = £ (0 < p < 1) in Corollary 3 and replaced A;
by A%, we have

s/r s/r
k ] k
C(M™,m"; ) ij A SijAj < Zw]f’l; ,
7=1 j=1 j=1
and so
(11) log (C(A/[T, m"; ;)I/SNIIET](A; w)) > log JMI[{S}(A; w) > log AI,ET}(A; w),

where C(M", m"; %)1/3 = A(r;r,s)7 L
Next, we assume r < 0 <s. f 0 < —r < sor0 < s < —r,weputp=Torp= 7 in
Corollary 3 (—1 < p < 0), respectively. Then we have

. r/s i : . r/s
ZWJA;’. < ZWJ-A; < C(m®, M*; g) ijAj-
7=1 j=1 j=1
or
i s/r i . i s/r
ijA; < ijA; <C(M",m"; ;) ijA;
7j=1 =1 j=1
So
glsl oA gl oA s oags. It/raglsloa .,
(12) log M (A;w) > log M (A;w) > log (C'(m*, M*; =)"""M;" (A;w) ) ,
S

with C'(m?®, M*; E)l/r = A(k;r,s), or
(13) log M’,ET}(A;w) <log ‘M,[:}(A;w) <log (C(M"",mr; ;)I/SJWIET](A;LU)) ,

with C(M7",m"; f)l/s = A(r;r,s)"!. Then the inequality (7) holds when r < s, r,s # 0.
In the end, if r — 0 in (10) and (12), then

A(r;0,5) M (A;w) < MY (A w) < ME (A w)
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by Lemma 8 and Lemma 7. Similarly, if s — 0 in (11) and (13), then

JW,[CO](A; w) < A(r;r,0)7! M,ET](A;w) < Aw;r,0)7" f,[co}(A; w).

Then the inequality (7) holds when r =0 < s or r < s =0.

Remark 9. If we put r = 0 and s = 1 in Theorem 5, then we have the following

inequality between arithmetic mean and geometric mean:

1]

7]

k k - k
Kr—1 .
exp ij log4; | <« Zw‘j Aj K ———— exp Zw]‘ log A;
= j=1 elog k=1 j=1
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