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Abstract. We show that two point G1-Hermite quadratic and T-cubic spline interpo-

lations to a smooth spiral are spirals if the interpolation points are taken close enough.

The use of spirals gives the designer an excellent and speedy control over the shape

of curve that is produced because there are no internal curvature maxima, curvature

minima, in
ection points, loops and cusps in a spiral segment.

1 Introduction Smooth curve representation is required for visualization of the scien-

ti�c data. Smoothness is one of the most important requirements for the visual pleasing

display. Fair curves are also important in computer-aided design (CAD) and computer-

aided geometric design (CAGD). Cubic splines, although smoother, are not always helpful

since they might have unwanted in
ection points and singularities (see [4], [5]). Spirals

are visually pleasing curves of monotone curvature; and they have the advantage of not

containing curvature maxima, curvatue minima, in
ection points and singularities. Many

authors have advocated their use in the design of fair curves (see [1]). These spirals are

desirable for applications such as the design of highway or railway routes and trajectories

of mobile robots. The bene�t of using such curves in the design of surfaces, in particular

surfaces of revolution and swept surfaces, is the control of unwanted 
at spots and undu-

lations (see [8]). Some advantages of spirals are that they are parametric curves, the arc

length can be expressed as a polynomial function of the parameter, the curvature can be

expressed as a rational function of the parameter and the o�set curve is a rational function

of the parameter. These last three properties result from the fact that the T-cubic (the

Tschirnhausen cubic) has a Pythagorean hodograph and can be expressed as cubic NURBS

for compatibility with existing computer aided design software. Meek & Walton has consid-

ered two-point Hermite interpolating spirals by joining T-cubic spirals and/or arc/T-cubic

spirals (see [2]). The T-cubic spline has a simple representation for treatment of its curva-

ture while the numerator of the derivative of the curvature is quintic and diÆcult to treat

even for the cubic curve.

If a smooth curve is a spiral, it is desirable that its approximation also be a spiral. Meek

& Walton([3]) have considered two-point G1 Hermite biarc approximation (interpolation)

to the smooth planar spiral. The biarc spline composed of two circular arcs joined in a G1

manner passes from one given point to another such that its unit tangent vector matches

given unit tangent vectors at two points. Their results are as follows:

(1) If the interpolation points on the spiral are taken close enough, the biarc spline produced

from joining biarcs is a spiral.

(2) The accuracy of the biarc spline approximation to the spiral is O(h3) where h is the arc

length of the spiral between the two interpolation points.

(3) The accuracy of the curvature approximation is O(h).

The object of this note is to derive the similar results for quadratic and T-cubic splines
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under the same assumption:

(a) If the interpolation points on the smooth spiral are close enough, the quadratic spline

and the T-cubic spline through the two points matching the two unit tangent vectors at

those points are spirals.

(b) The accuracy of their approximations to the spiral is O(h2).

(c) The accuracy of their curvature approximations is O(h2).
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Figure 1: T-cubic spiral interpolating G1 Hermite data taken from a spiral.

As in [3], let the spiral be

s(t)(= (x(t); y(t))) =

0
@ tZ

o

cos(u)

�(u)
du;

tZ
o

sin(u)

�(u)
du

1
A (t � 0)(1)

where t is the angle of the tangent vector with respect to the x- axis, and � (= 1=w) is a

smooth non-negative and strictly monotone curvature of the spiral. Assume that the part of

the spiral to be approximated is the part from A = s(a) to B = s(b) (0 � a < b). Sections

2 and 3 deal with G1 spiral (quadratic, T-cubic and cubic spline) approximations to the

spiral. At the end of Section 3, we show that the usual cubic spline Hermite interpolation

to the spiral is a spiral. We presented some examples of spiral approximations in Section 4.

At the end, there is an Appendix of Mathematica0s program for (26) and (27) in Section

5.
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2 Quadratic spline approximation Consider a quadratic spline z2(t)(= (x(t); y(t)))

of the form:

x(t) = u0(1� t)2 + 2u1t(1 � t) + u2t
2

(2)

y(t) = v0(1� t)2 + 2v1t(1 � t) + v2t
2

Match the unit tangent vectors at A and B to give

2u0 + r0 cos a = 2u2 � r1 cos b(= 2u1)

(3)

2v0 + r0 sin a = 2v2 � r1 sin b(= 2v1)

Conditions: z2(a)(= (u0; v0)) = s(a) and z2(b)(= (u2; v2)) = s(b) determine (r0; r1) as:
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Figure 2: Quadratic spline approximation (thin mode) of spiral (thick mode) from (1).
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Figure 3: Graph of �2(t) � �(a(1 � t) + bt) (left) and �02(t) (right) where 0 � t � 1.

r0 =
2

sin (b � a)

bZ
a

w(u) sin (b � u)du; r1 =
2

sin (b � a)

bZ
a

w(u) sin (u� a)du(4)

Note that the curvature �2 of the quadratic spline z2 is equal to

�2(t)

 
=

(z0 � z00)(t)
kz0(t)k3

!
=

r0r1 sin (b � a)

fr20(1� t)2 + r21t
2 + 2r0r1t(1 � t) cos (a + b)g3=2(5)
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where "�" and k�k mean the cross product of the two vectors and the Euclidean norm,

respectively. Note that the quadratic function of the denominator of �2 has its minimum

at t = tm:

tm =
r0fr0 � r1 cos (b � a)g

r20 + r21 � 2r0r1 cos (b � a)
(6)

to obtain the spiral conditions: tm � 0 (, the monotone decreasing curvature) and tm � 1

(,the monotone increasing curvature) from which follows the spiral condition

r1 cos (b � a) � r0 or r0 cos (b � a) � r1(7)

Let (a; b) = (c� d=2; c+ d=2); d > 0 and ci = wi(c)(the i-th derivative of w(t) at t = c) to

obtain

r0 = c0d�
c1d

2

6
+O(d3); r1 = c0d+

c1d
2

6
+O(d3)(8)

Since with c1 = ��0(c)=�2(c)

r1 cos (b � a) � r0 =
c1d

2

3
+O(d3); r0 cos (b � a) � r1 = �c1d

2

3
+O(d3);(9)

the spiral condition (7) is valid for small d. In addition, we have the following asymptotic

expansions, the proof of (b) and (c):

(i) z2(t) � s(a(1 � t) + bt) =

�
c1t(1� t)

3

�
d2(cos c; sin c) +O(d3)

(10)

(ii) �2(t)� �(a(1 � t) + bt) =

�
3c0(c2 � 3c0)(1 � 6t+ 6t2)� 4c2

1(1� 3t+ 3t2)

36c3
0

�
d2

+O(d3)

where we note

h =

bZ
a

w(u)du = c0d+O(d3); i.e., d = O(h)(11)

3 T-cubic spline approximation We consider the following T-cubic spline z3(t)(=

(x(t); y(t))) as

z03(t)(= (u(t)2 � v(t)2; 2u(t)v(t))) (0 � t � 1)(12)

with

u(t) = r0(1� t) cos
a

2
+ r1t cos

b

2
(r0; r1 > 0)

(13)

v(t) = r0(1 � t) sin
a

2
+ r1t sin

b

2

From (1) and (12), it is easy to check that the T-cubic spline matches the unit tangent

vectors of the spiral at A and B as

z03(0) = s0(a)(= r20(cos a; sin a)); z03(1) = s0(b)(= r21(cos b; sin b))(14)
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Figure 4: T-cubic spline approximation (thin mode) of spiral (thick mode) from (1).
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Figure 5: Graph of �3(t) � �(a(1 � t) + bt) (left) and �0
3
(t) (right) where 0 � t � 1.

Then, the curvature �3 of the T-cubic spline z3 is equal to

�3(t) =
2r0r1 sin

b�a
2

fr2
0
(1� t)2 + r2

1
t2 + 2r0r1t(1� t) cos b�a

2
g2(15)

Note that the quadratic function of the denominator of the above curvature has its minimum

at t = tm:

tm =
r0(r0 � r1 cos

b�a
2
)

r20 + r21 � 2r0r1 cos
b�a
2

(16)

to obtain the spiral conditions: tm � 0 (, the monotone decreasing curvature of the T-

cubic spline) and tm � 1 (, the monotone increasing curvature of the T-cubic spline) from

which follows the spiral condition ([2]):

r1 cos
b� a

2
� r0 or r0 cos

b� a

2
� r1(17)

Conditions s(a) = z3(a) and s(b) = z3(b) give a quadratic system of equations in (r0; r1):

r20 cos a+ r0r1 cos
a+ b

2
+ r21 cos b = A0

0
@= 3

bZ
a

w(u) cos udu

1
A

r20 sina + r0r1 sin
a+ b

2
+ r21 sin b = A1

0
@= 3

bZ
a

w(u) sinudu

1
A
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Letting r1 = mr0, from above

A0

cos a +m cos a+b
2

+m2 cos b
=

A1

sin a+m sin a+b
2

+m2 sin b
(= r20)(18)

De�ne the positive two quantities p; r and one more q that is positive or negative according

to the monotone decreasing or increasing curvature � of the spiral::

p =

bZ
a

w(u) sin(b� u)du; q =

bZ
a

w(u) sin

�
u� a + b

2

�
du; r =

bZ
a

w(u) sin(u� a)du(19)

to obtain (if necessary, with help of Mathematica)

m =
q +

p
q2 + 4pr

2p

�
= 1 +

c1d

4c0
+

c21d
2

32c2
0

+O(d3)

�
(20)

Then, (18) gives

r20 = c0d�
c1d

2

4
+O(d3); r21 = c0d+

c1d
2

4
+O(d3)(21)

from which we get

r1 cos
b� a

2
� r0 =

c1d
3

2

4
p
c0

+O(d
5

2 ); r0 cos
b � a

2
� r1 = � c1d

3

2

4
p
c0

+O(d
5

2 )(22)

Hence, the spiral condition (17) is valid for small d. This completes the proof of (a).

Mathematica helps us give the asymptotic expansions, i.e., the proof of (b) and (c) as

(i) z3(t) � s(a(1 � t) + bt) =

�
c1t(1� t)

4

�
d2(cos c; sin c) +O(d3)

(23)

(ii) �3(t)� �(a(1 � t) + bt) =

�
4c0(c2 � c0)(1 � 6t+ 6t2)� c21(5� 18t+ 18t2)

48c30

�
d2

+O(d3)

The following results are not for the T-cubic spline but the usual cubic spline having

two more degrees of freedom. Consider the general cubic spline z(t)(= (x(t); y(t))) of the

form:

x(t) = u0(1� t)3 + 3u1t(1 � t)2 + 3u2t
2(1� t) + u3t

3

(24)

y(t) = v0(1� t)3 + 3v1t(1 � t)2 + 3v2t
2(1� t) + v3t

3

Now, require the following Hermite interpolation conditions

z(0) = s(a); z(1) = s(b); z0(0) = (b � a)s0(a); z0(1) = (b � a)s0(b)(25)

Then, note that all parameters ui; vi; 0 � i � 3 are uniquely determined. Letting (r0; r1) =

d(w(a); w(b)), thenMathematica greatly helps us show for the curvature k(t) = N(t)=
p
D(t)3

of the cubic spline z(t)

N 0(t)D(t) � 3N(t)D0(t)=2 = �c30c1d6 +O(d7); D(t) = c20d
2 +O(d3)(26)
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Figure 6: Usual cubic spline approximation (thin mode) of spiral (thick mode) from (1).
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Figure 7: Graph of k(t)� �(a(1 � t) + bt) (left) and k0(t) (right) where 0 � t � 1.

from which follows

k0(t) = �c1d

c2
0

+O(d2)(27)

To obtain the �rst expansion of (26), one should calculate the coeÆcients of ti; 0 � i � 5

separately. Now, (27) implies that the cubic spline interpolation satisfying (25) is a spiral

if the interpolation points on the smooth spiral are close enough. In addition,

(i) z(t) � s(a(1 � t) + bt) =

�
c1t

2(1� t)2

24

�
d4f(c0 � 3c2)(sin c; cos c)

+(c3 � 3c1)(cos c;� sin c)g+O(d5)

(28)

(ii) k(t)� �(a(1 � t) + bt) =

�
(c0 � 3c2)(1 � 6t+ 6t2)

12c20

�
d2 +O(d3)

Note that no useful suÆcient spiral conditions for the usual cubic spline except the T-

cubic one have ever derived since the numerator N 0(t)D(t) � 3N(t)D0(t) of �0(t) is a very

complicated quintic polynomial whose real roots must be outside [0; 1].

4 Demonstration and Analysis For all examples in �gures 2-7, we take a = 1; b = 1:8

and w(t) = e2t. Spiral from (1) is sketched in thick mode to compare it with the spiral

approximations of quadratic and cubic splines from section 2 and 3 respectively. One can see

that T-cubic spline approximation in �gure 4 is the best approximation. Its accuracy can
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be seen in its curvature and derivative of curvature approximations in �gure 5. Quadratic

spline approximation in �gure 2 is also reasonable but usual cubic spline case in �gure 6 is

poor. Curvature and derivative of curvature approximations of quadratic and usual cubic

splines are given in �gures 3 and 7 respectively.

We conclude that two point Hermite quadratic and T-cubic splines interpolations to a

smooth spiral are also spirals. Fair curves can be designed interactively using quadratic

and T-cubic splines. Due to simple algorithm, these spirals can be easily achieved and then

implemented. Our future work directions are to revise this paper for G2 case and investigate

the existence and uniqueness of Pythagorean hodograph quintic spiral (see [6],[7],[8]) in a

simple way and develop eÆcient algorithm for implementation.

5 Appendix Here is Mathematica0s program code for (26) and (27).

u1 = (3u0 + r0 Cos[a])/3; v1 = (3v0 + r0 Sin[a])/3;

u2 = (3u3 - r1 Cos[b])/3; v2 = (3v3 - r1 Sin[b])/3;

x[t_] := u0(1 - t)^3 + 3u1 t(1 - t)^2 + 3u2 t^2(1 - t) + u3 t^3

y[t_] := v0(1 - t)^3 + 3v1 t(1 - t)^2 + 3v2 t^2(1 - t) + v3 t^3

Nn[t_] := D[D[y[t], t], t]D[x[t], t] - D[D[x[t], t], t]D[y[t], t]

Dd[t_] := D[x[t], t]^2 + D[y[t], t]^2

R[t_] := D[Nn[t], t]Dd[t] - 3Nn[t]D[Dd[t], t]/2

u0 = Integrate[Cos[s]w[s], {s, 0, a}]; v0 = Integrate[Sin[s]w[s], {s, 0, a}];

u3 = Integrate[Cos[s]w[s], {s, 0, b}]; v3 = Integrate[Sin[s]w[s], {s, 0, b}];

a = c - d/2; b = c + d/2; r0 = d w[a]; r1 = d w[b];

eq1 = Simplify[Series[R[t], {d, 0, 6}]]

eq2 = Simplify[Series[Dd[t], {d, 0, 2}]]

Simplify[Together[eq1/eq2^(5/2)]]

�c30c1d6 +O(d7)

c20d
2 +O(d3)

� c1d

c2
0

+O(d2)
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