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Abstract. Rubinstein has de�ned the information structure in order to study models

of bounded rationality. He shows that three properties of information structures de-

noted by P-1, P-2 and P-3 respectively imply satis�ability of the axioms A-1, A-2 and

A-3, which are known as T, 4 and 5 in modal logic. We wish to add some more facts

concerning them. It will be shown that the axiom A-i determines the property P-i,

and that each axiom has a kind of a free information structure in terms of formulas of

the propositional calculus. It is also shown that the so-called "two wise girls puzzle,"

which can be formulated in terms of A-2, is "solvable" by means of proof-theoretic

arguments. We also propose to consider the "non-knowledge" operator.

1 Introduction Rubinstein in [8] proposed to study models of bounded rationality and

presented some results he had obtained on this subject. His intention was to propose a

counter approach to the \perfect rational man paradigm" (according to his expression).

In Chapter 3 of [8], he de�nes the information structure and discusses the three properties

of information structures denoted by P-1,P-2 and P-3, and then shows that each of these

properties implies satis�ablity of an axiom on a knowledge operator with respect to Kripke

semantics. These axioms, denoted by A-1, A-2 and A-3, are known respectively as T, 4

and 5 in modal logic.

In this paper, we wish to add some facts with respect to these properties and axioms,

namely to establish that the axiom A-i determines the property P-i for an information

structure (Section 3) and to give a kind of a free information structure in terms of formulas

of the propositional calculus and their provability/unprovability (Section 4).

In our previous works, we developed proof-theoretic treatments of the so-called \three

wise men puzzle." (We modi�ed it to a \two wise girls puzzle.") It is formulated in a

system of modal logic known as S4, whose non-propositional axiom is A-2 in [8]. We will

also add some facts about this treatment, that is, we will show that the framework of the

proof-theory for S4 is decidable, and hence we can claim that the puzzle in question is

solvable (Section 5).

In most of treatment of a knowledge operator, the main subject has been how to interpret

\one knows." However, in a puzzle as above, how to interpret \one does not know" is an

important issue. In [11] and [12], we have discussed this matter. We would like to propose

again to take up the \non-knowledge" operator (Section 6).

We will �rst review Rubinstein [8] concerning the information structure (Section 2).

We will not go into detail of proof-theory of the sequential calculi and various facts on

modal logic. See, for example, [2] for the former and [1], [3], [4] and [7] for the latter. For

our treatment of the wise men puzzle, see [5], [6], [10], [11] and [12]. See also [9].
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2 Review: information structure We will brie
y describe information structures as-

sociated with bounded rationality and related axioms according to Section 3.2 of [8].

Let 
 be a nonempty set (of states), and let P be a function from 
 to nonempty subsets

of 
. The pair (
; P ) is called an information structure (of bounded rationality). Elements

of 
 are denoted by !;!0 etc.

We will quote three conditions of information structures associated with bounded ratio-

nality, from Section 3.2 of [8].

P-1 ! 2 P (!)

P-2 If !0 2 P (!), then P (!0) � P (!)

P-3 If !0 2 P (!), then P (!0) � P (!)

An information structure (
; P ) is called partitional if there exists a partition of 
 such

that P (!) is a component and ! 2 P (!) for each !.

Note If an information structure satis�es P-1 and P-3, then it also satis�es P-2.

In Section 3.4 of [8], the language of the propositional calculus with a knowledge operator

K is introduced. Let us call this language LK . KA represents \(an agent) knows that A

holds."

The following are three axioms on the knowledge operator K of bounded rationality,

corresponding to the three implications in Proposition 3.2 of [8].

A-1 KF ) F

A-2 KF ) K(KF )

A-3 :KF ) K(:KF )

for an arbitrary LK -formula F . These are known to be respectively T;4 and 5 in modal

logic.

3 Formal systems and semantics We will de�ne logical systems with a knowledge

operator of bounded rationality corresponding to the three axioms A-1, A-2 and A-3.

In the following, � and � denote �nite sequences of formulas, possibly empty, and �

denotes either a single formula or the emptiness.

De�nition 3.1 (Logical system) The base logic with a knowledge operator will be called

BKL, abbreviating \basic knowledge logic." BKL is the classical propositional logic with

the following basic knowledge inference, (BK), added. (We will employ the sequential

formulation of the system: see [2], for example.)

�! �
K�! K�

(BK)

where K� denotes KA1;KA2; � � � ;KAn if � is A1; A2; � � � ; An.

The three additional inference rules (K1), (K2) and (K3), each corresponding to one

of A-1, A-2 and A-3, are the following.

�;�! �

K�;�! �
(K1)

�;K�! �

K�;K�! K�
(K2)
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In order to formulate the third inference rule, it is convenient to introduce a symbol N

de�ned as follows.

NA � :KA

NA represents \(an agent) does not know that A holds."

�;N�! N�

K�;N�! KN�
(K3)

With N , the axiom A-3 can be expressed as NF ! KNF .

The systems obtained from BKL with (K1),(K2) and (K3) added will be respectively

called KL1, KL2 and KL3.

The latter two are known respectively as S4 and S5.

Proposition 3.1 (Formal equivalence of axiom and inference) The axiom A-i is equivalent

to the inference (Ki) over the base logic BKL.

Proof The equivalences are generally known, but since (K3) is not in the usual form, we

will give a proof for A-3 and (K3).

NF ! KNF (A-3) is an immediate consequence of (K3):

NF ! NF
NF ! KNF

(K3)

(K3) becomes a derived rule over BKL by virtue of A-3. For simplicity, let us assume

� � A1; A2. Then N� represents NA1;NA2. Similarly with KN�.

[N�! KN�]

�;N�! N�

K�;KN�! KN�
(BK)

K�;N�! KN�
(cuts)

The last part is an abbreviation of the cuts

NA1 ! KNA1 K�;KN�! KN�

K�;NA1;KNA2 ! KN�
(cut)

and
NA2 ! KNA2 K�;NA1;KNA2 ! KN�

K�;N�! KN�
(cut)

De�nition 3.2 (Models: Section 3.4 of [8]) Let � be a map


� �! fTrue; Falseg;

where � denotes the set of formulas of LK . WriteM� for the triple (
; P; �), which is called

a Kripke structure.

The relation (M� ; !) j= F is de�ned as follows.

For an atomic F , this relation holds when �(!;F ) = True. For the proositional con-

nectives, the classical truth value assignment is at work. If F is of the form KG, then

(M� ; !) j= F holds when, for every !0 2 P (!), (M�; !
0) j= G.

For a sequent, (M�; !) j= A1; A2; � � � ; Am ! B1; B2; � � � ; Bn can be interpreted to be

(M� ; !) j= A1 ^A2 ^ � � � ^Am ) B1 _B2 _ � � � _Bn.

We will also denote the relation that (M�; !) j= F holds for every � and for every ! by

(
; P ) j= F , and will say that F is valid in (
; P ), or (
; P ) is a model of F . F is called

valid if F is valid in every (
; P ).



132 MARIKO YASUGI AND SOBEI H. ODA

It is a straightforward practice to prove the following.

Proposition 3.2 (Semantic consistency of BKL) Every theorem of BKL is valid, and

hence BKL is consistent.

In Proposition 3.2, Section 3.4 of [8], it is claimed that the model condition P-i satis�es

the axiom A-i, i = 1; 2; 3.

We wish to claim the converse.

Proposition 3.3 (Axioms determine model properties) If an information structure (
; P )

is a model of the axiom A-i, then (
; P ) satis�es the condition Pi.

Proof The proof technique is the same for all three axioms, that is, the axiom applied to

an atomic formula (propositional variable), say X, determines the model property.

A-1: Suppose (M�; !) j= KX ) X for every X, � and !.

Fix any !, and de�ne, for this ! and for every propositional variable X, �!(!;X) =

False and �!(!
0;X) = True if ! 6= !0.

For any !; �;X, (*) (M�; !) j= KX ) X means

8!0
2 P (!)(M� ; !

0) j= X implies (M� ; !) j= X;

and (M� ; !) j= X means �(!;X) = True.

Letting � be the �! above, �!(!;X) = False. So, for this assignment �!, (*) holds

only if, for some !0 2 P (!), �!(!
0;X) = False. According to the de�nition of �!, this is

possible only if !0 = !. This forces that ! 2 P (!), or P-1.

A-2: Suppose (M�; !) j= KX ) KKX for every � and !.

This means that

8!0
2 P (!)(M� ; !

0) j= X implies 8!0
2 P (!)8!00

2 P (!0)(M!; !
00) j= X:

Take any !, and de�ne

�!(!
0;X) = True if !0

2 P (!);= False otherwise :

For this �!, 8!
0 2 P (!)(M�! ; !

0) j= X holds, and so it must be the case that

8!0
2 P (!)8!00

2 P (!0)(M!; !
00) j= X:

For any !0 2 P (!) and !00 2 P (!0), (M�! ; !
00) j= X, or �!(!

00;X) = True can hold only if

!00 2 P (!), and so P (!0) � P (!), or P-2.

A-3: Suppose, for every � and for every !, (M�; !) j= :KX ) K:KX. This means

that,

9!0
2 P (!)�(!0;X) = False:

implies 8!�
2 P (!)9!00

2 P (!�)�(!00;X) = False

Now, for any ! and for any !� 2 P (!), �xed, de�ne

�!;!� (!
0;X) = True if !0

2 P (!�);= False otherwise

For this �!;!� , there is an !0 = !� such that

8!00
2 P (!�); �(!00;X) = True;
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and so the conclusion of the supposition is refuted. So, in order that the supposition hold,

it is forced that, for all !0 2 P (!), �!;!� (!
0;X) = True. The value can be True only if

!0 2 P (!�), that is, !0 2 P (!) implies !0 2 P (!�), and hence P (!) � P (!�), or P-3.

According to Proposition 3.1 in [8], an information structure (
; P ) is partitional if and

only if it satis�es all P-1, P-2 and P-3. With this fact, Proposition 3.2 in [8] and Proposition

3.3, we can claim that an information structure (
; P ) is partitional if and only if it satis�es

all the axioms A-1, A-2 and A-3.

4 Free structure We will construct a kind of free information structure (
; Pi) for each

axiom A-i (or condition P-i), consisting of propositional formulas (without knowledge op-

erator) and determined by provability/unprovability in the classical propositional calculus.

We regard each structure below as \free" for the reason that it is constructed purely

syntactically using provability/unprovability of formulas.

Let 
 be the set of all formulas of the propositional calculus, with propositional variables

prepared. We de�ne a function Pi : 
! P(
), where P(
) denotes the power set of 
, as

follows..

Pi will satisfy P-i but not P-j for j 6= i.

P-1: P1(A) = fBj ` A ! B or ` B ! Ag, where ` expresses the provability in the

propositional calculus.

It is obvious that A 2 P1(A), and hence P-1 holds.

For any distinct propositional variablesX;Y and Z, X_Y 2 P1(X) and Y 2 P1(X_Y ),

but Y =2 P1(X). So, P1(X _ Y ) 6� P1(X). That is, P-2 does not hold.

X _ Z 2 P1(X) but X _ Z =2 P1(X _ Y ), and so P1(X) 6� P1(X _ Y ), hence P-3 does

not hold.

P-2: P2(A) =the set of all theorems of the propositional calculus if A is a theorem.

P2(A) = fBj ` A! B but not ` B ! Ag if A is not a theorem.

In either case, every theorem belongs to P2(A).

Since ` X ! X, X =2 P1(X), and so P-1 does not hold.

Suppose A is not a theorem and B 2 P2(A). That is, ` A ! B and not ` B ! A.

If C 2 P2(B), then ` B ! C, and so ` A ! C. If ` C ! A, then ` B ! A, yielding

a contradiction. So, C 2 P2(A). This proves P2(B) � P2(A): If A is a theorem, then

B 2 P2(A) if and only if B is a theorem, and so P2(A) = P2(B). So P-2 holds.

For any distinct X and Y , X _ Y 2 P2(X), and X _ Y =2 P2(X _ Y ), and so P-3 does

not hold.

P-3: If A is a contradiction (` :A), then

P3(A) =the set of all theorems.

If A is not a contradiction (called consistent), then

P3(A) = fBjB is consistent g.

According to this de�nition, if A and B are each consistent, then P3(A) = P3(B). If A

is consistent, then P3(A) strictly contains all theorems. Note that a theorem is consistent.

Suppose A is a contradiction and B 2 P3(A). Then B is a theorem, and hence

P3(B) � P3(A).
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If A is consistent and B 2 P3(A), then B is consistent, and hence P3(B) = P3(A). So, P-3

holds.

For a contradiction A, A 62 P3(A), hence P-1 does not hold. For a contradiction A,

if B 2 P3(A), then B is consistent, and so P3(B) strictly contains P3(A), hence P3(B) 6�

P3(A), and so P-2 does not hold.

At the end, we will de�ne a partition:

P0(A) = fBj ` A$ Bg

This P0 de�nes an equivalence class of formulas with respect to ` A $ B. A 2 P0(A),

and B 2 P0(A) if and only if P0(B) = P0(A). Obviously P is partitional, since it satis�es

all of P-1, P-2 and P-3 (cf. Proposition 3.1 in [8]).

Let us call the system BKL augmented by all the three axioms A-1, A-2 and A-3 (or,

equivalently, all inferences (K1), (K2) and (K3)) KL0.

Proposition 4.1 (Consistency of KL0) The system KL0 is semantically consistent, and

hence each system KLi is semantically consistent.

Proof The basic logic BKL is consistent with respect to any information structure by

Proposition 3.2. Any partition satis�es all three axioms by virture of Proposition 3.2 in

Section 3.4 of [8], and hence KL0 is consistent with respect to (
; P0).

5 Two wise girls puzzle We will �rst brie
y explain a puzzle (which we call \two wise

girls puzzle").

Two girls are put on white hats on their heads; the �rst girl can see the second girl's

hat but not her own, and the second girl cannot see either hat. The �rst girl is asked if her

hat is white. She answers \I do not know if my hat is white." Then the second girl is asked

the same question, and she answers \I know that my hat is white."

We assume that the logical ability of each girl is equivalent to the system KL2, with

knowledge operators K1 and K2 for respectively the �rst girl and the second girl.

In order that the �rst girl can conclude that she does not know if her hat is white,

she has to \jump out" of her logical system and study it from outside. This jumping out

is formulated in terms of proof-theory. Details are seen in [5], [6], [10], [11] and [12]. In

particular, the cut elimination theorem is known to hold for KL2 (cf. also [4] and [7]). We

will not repeat the argument here, but will add one lemma as below.

Proposition 5.1 (Mono-conclusion lemma) Suppose S : Ki� ! Ki� is provable and �

and � are Ki-free. Then there is a �, which is either empty or a single formula in �, so

that Ki�! Ki� is provable.

Proof Consider a cut-free proof-�gure of the sequent S. We prove the proposition by

induction on the total number � of formulas in � and �.

If � is 1, then the proposition is obvious. When � > 1, there are three possibilities of

obtaining S.

1. S is an initial sequent. Then, the proposition is obvious.

2. S is obtained by a thin, and the upper sequent is Ki�
0 ! Ki�

0. Then the number of

formulas is ��1, and hence the induction hypothesis applies. Thus, there is a � as required

so that Ki�
0 ! Ki� is provable. By applying \thin", if necessary, one obtains Ki�! Ki�.

3. S is obtained by (Ki2). Then, by the condition of the inference, the cardinality of

� must be at most 1.
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Using some lemmas, we showed, for example, that a claim such as \I do not know if

my hat is white" can be interpreted as the unprovability of \I know my hat is white" in

a logical system. Then we gave a formal proof of the second player's solution within her

logical system.

Question of Solvability There arise two questions here. First, if the proof-theory we

employ is transcendental, then it is unlikely that a player can claim unprovability of a

statement. Second, not everybody can make correct inferences, and so the second player

may not be able to construct a correct proof of her conclusion. Nonetheless, we claim that

the puzzle is solvable. This claim can be interpreted as that judgements of both provability

and unprovability are recursive; more preciesly, decidability of unprovability and automated

theorem proving of a theorem.

This can be attained by means of the resolution method. The propositional part of the

theorem proving (cheking) can be executed just as usual, say by Wang's algorithm. In

resolving a sequent, only the new inference (K2) has to be taken care of.

Outline of resolution method

The resolution of a formula in a propositional sequent can be regarded as the reverse

operation of an inference. For example, the formula A ) B in a sequent � ! �; A ) B

can be resolved into A;�! �; B, which is just the reverse of the rule (!)). The sequent

A;� ! �; B is called a resolution of �! �; A) B.

The resolution of A _B in �! �; A _B is �! �; A;B, and this is essentially the rule

(! _).

The �gure which starts with a given sequent S and consists of continuation of resolutions

as described above will be called a resolution tree of S.

At each resolution, the number of logical connectives in a sequent decreases, and so

eventually one obtains a sequent (called a top sequent) without connectives. Such a sequent

is said to be valid if it contains a same propositional variable (or constant) in both sides of

!. It is known that a given sequent of the propositional calculus is provable if and only if

all the top sequents in its resolution tree are valid. (We will then say that the tree is valid.)

Furthermore, a proof-�gure can be automatically created from the resolution tree.

In resolving a sequent in the system KL2, only the the case where no propositional

resolution applies, that is, the case where the sequent is of the form �;K(�) ! K(�);�,

where � and � consist of atomic formulas and they are mutually disjoint. (For simplicity, we

will explain the resolution for a system with a single knowledge operator K.) A resolution

of such a sequent looks like this:

�1;K(�2)! ��

�;K(�)! K(�);�
(K2)

;

where �1 and �2 form a decomposition of �, �� is a subset of � of cardinality at most 1

and either �1 or � is non-empty.

There can be as many possibilities of upper sequents �1;K(�2) ! �� as the number

of decompositions of � and the choice of �� from �, but in any case the number of the

operator K decreases.

Once a (K2)-resolution applies, a tree forks into several trees according to decomposi-

tions of � and choices of ��, so that there will be a forest of trees.

It is a lengthy but straightforward procedure to show the following. (For an interested

reader, details of construction of resolution forests can be seen in Section 13 of [10].)
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Proposition 5.2 (Resolution forest) If one of the trees in a forest of a sequent is valid,

then it induces a proof-�gure of the given sequent. Otherwise, the given sequent is unprov-

able. Construction of a resolution forest and checking algorithm of its validity are decidable

procedures. (We will call this procedure a theorem checking.)

Note (1) In case a sequent is of the form

�; fKi(�i)g1�i�n ! fKi(�i)g1�i�n;�

a resolution will assume the form

�1i ;Ki(�
2

i )! ��

i

for some i.

(2) The (K2) resolution is a reverse expression of Proposition 5.1, the mono-conclusion

lemma.

As a way of an example, we will give a resolution-forest of � ! K22W , where iW is a

propositional constant representing \Player i knows her hat is white," and � denotes the

knowledge set of Player 2. In order to make expressions simple, we will demonstrate a

tree (in a forest) which turns out to be valid. (In a similar manner, one can construct a

counter-example of a resolution tree of �! K2:2W , which shows that this sequent cannot

be provable.)

Let � denote 1W _ 2W . Then the target sequent S0 is

K2K1�;K2(:K11W );K2(:2W ) K1:2W )! K22W

The following is a desired tree of S0.

�! 1W; 2W

�;:2W ! 1W
(! :)

K1�;K1:2W ! 2W;K11W
(K12)

K1�;:K11W;K1:2W ! 2W
(: !)

2W;K1�;:K11W ! 2W

K1�;:K11W ! 2W;:2W
(! :)

K1�;:K11W;:2W ) K1:2W ! 2W
()!)

K2K1�;K2:K11W;K2(:2W ) K1:2W )! K22W
(K22)

It is obvious that �! 1W; 2W can be resolved into a vaild sequent.

By inserting some applications of thin, one can immediately obtain a (cut-free) proof-

�gure of S0.

6 On non-knowledge operator: a proposal The main motif of this article has been

the knowledge operator. Taking the negative of a knowledge operator, we can express

\non-knowledge." The notion of \does not know" is, however, not unique. For example, in

Section 2 in this article and in our previous works, :KA has been employed for \does not

know A." Another candidate is K:KA, and this works for the two wise girls puzzle just

as well. It can easily be shown that the latter implies the former in KL2, and \the former

implis the latter" is exactly A-3. (See also a remark in the �nal section of [12].)

There can be other versions of non-knowledge. We will here propose to employ the

non-knowledge operator N as primitive, and see what sort of properties are requied fot it.
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The �rst candidate for N is N � :K and the second one is N � K:K as mentioned

above. In KL3, or equivalently in BKL with the axiom A-3, these two are equivalent. By

taking N � :K, we can derive NNX ! KX in KL3 as follow.

:KX ! K:KX K:KX;:K:KX !

:KX;:K:KX !
(cut)

:K:KX ! ::KX
(! :)

::KX ! KX
:K:KX ! KX

(cut)

This can hold in a situation that, if an agent does not know of her non-knowledge of a

fact, it indicates that she does know of the fact.

On the other hand, we may consider an axiom

NNF ! NF:

For example, if an agent does not know that she does not know there is a language called

Dragon, it indicates that she does not know there is a language called Dragon.

Related to this sequent, we can list some of properties which we wish to require for N .

A formula is called propositional if its outermost operator is not N .

Desirable properties.

1. NNF ! NF is admitted.

2. If F ! is provable for a propositional formula F , then ! NF is provable.

3. For propositional A and B, NA _NB ! N(A ^B) is provable.

4. For propositional A and B, N(A _ B)! NA ^NB is provable.

5. If, for a propositional F , ! F is provable, then NF ! is provable.

6. NF;N:F ! is not necessarily provable. In general, ! A;B does not necessarily

imply NA;NB !.

We wish to make more investigations on interpretations of non-knowledge operators in

future.
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