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EFFICIENT SOLUTIONS OF MULTICRITERIA LOCATION PROBLEMS
WITH THE POLYHEDRAL GAUGE
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ABSTRACT. A multicriteria location problem with the polyhedral gauge on a plane
is considered. We propose an algorithm to find all efficient solutions of the location
problem.

1. Introduction. Everything will take place in R%, equipped with its Euclidean norm,
denoted by || - || and its canonical inner product, denoted by (-,-). Given demand points
in R%, a problem to locate a new facility in R? is called a single facility location problem.
The problem is usually formulated as a minimization problem with an objective function
involving distances between the facility and demand points. It is assumed that m(> 2)
distinct demand points d; € R?, 7 € M = {1, 2, ---, m} and a gauge v: RZ = R, in the
sense of Minkowski, are given. Let ®# € R? be the variable location of the facility. We put

D ={di, ds, - -, d,,}. Then a multicriteria location problem is formulated as follows:
(P) min (7@ = di),y(@ = da), o A& —d)) "
T eR2

(P) is a problem to find an efficient solution. A point o € R? is called an efficient solution
of (P) if there isno @ € R? such that vz — d;) < v(xog — d;) for all 1 € M and v(z — d)
< y(xog — dy) for some ¢ € M. Let E(D) be the set of all efficient solutions of (P). By the
above definition and the definition of v, given in section 2, D C E(D).

Various distances or norms are used in multicriteria location problems. For example, rec-
tilinear distance in [9, 15], asymmetric rectilinear distance in [11], the block norm in [8, 13],
the gauge in [3, 4]. In particular, the polyhedral gauge is used in [4]. These distances and
norm are special cases of the guage. In particular, rectilinear distance, asymmetric rectilin-
ear distance, the block norm and the A-distance [7, 12] are special cases of the polyhedral
gauge. In [4], the procedure for finding all efficient solutions of (P) with the polyhedral
gauge is given. In this article, a multicriteria location problem with the polyhedral gauge
in R? is considered. First, we characterize efficient solutions of (P). Next, we propose the
Frame Generating Algorithm to find E(D), which requires O(m?®) computational time.

In section 2, we give some properties of the polyhedral gauge. In section 3, main results
in [4] are given. In section 4, we give some properties of efficient solutions of (P). In
section b, we propose the Frame Generating Algorithm to find E(D), which requires O(m?)
computational time. Finally, some conclusions are given in section 6.

2. Preliminaries. In this section, we give some properties of the polyhedral gauge.

The gauge of & € R? in the sense of Minkowski, v(x), is denoted by ~(&) = inf{u > 0:
x € pB}, where B C R? is a closed bounded convex set having the origin in its interior.
For @, y € R?, the distance from y to x is denoted by v(& — y). The set B is called the
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unit ball associated with ~v. The set B® = {p € R%: (p, ) < 1, V& € B} is called the polar
of B. If B is a closed bounded convex set having the origin in its interior, then so is B°
and B°° = B (see [14]). It can be checked that the subdifferentail of the gauge v of B at
z € R? Ov(e), is given by

Be if« =0,
(1) a’y<£l:) = { {p € B°: <p7ZE> = *'y(;t)} if @ 7é 0.

A guage ~ is said to be polyhedral if its unit ball is a polytope, i.e. the convex hull of a
finite number of points. Throughout this paper, a gauge ~ is polyhedral. Moreover, we
denote the set of all extreme points of B by Ext (B), and assume that if e € Ext (B) then
—pe € Ext (B) for some p > 0. We put Ext (B) = {e1, ez, ---, €3, }, assuming that e; =
lejll(cos B, sind;)T, 7€ {1,2, -+ 20}, 0< ) < by <o <O, <7< gy <0 < by
< 27. Note that for each j € {1, 2, ---, r}, e,4; = —pe; for some p > 0. For each j € {1,
2, ---, 2r} and each n € Z, we put €anrtj = €5, Oonrg; = 207 + 05, Konryj = C{eanry,
€anrt+jt1} and Loy = Konrtj—1 [\ Konrg; = {pt€2nr+j: p > 0}, where Z is the set of all
integers and C{eznr+tj, €2nr+j+1} = {A€2nrt; + f€2nrtj41: A, o > 0}. Note that for each
jeA{1,2,---,2r} andeachn € Z, Konryj = K; = —Kyyj and Loyyry; = Lj = —Lyg;. We

put L = U:n:1 U?Ll({dZ} + Lj).

B° D2
L L
I&rz
]—(3
I&rl
L4 Ll
0
Ky
I(@
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L5 L6
Figure 1. B,B° and e;.p;, K;, L;.
For & € R?, v(x) can be represented as follows (see [3]):
2r 2r
(2) Y(@) =mind Y i@ =Y pe;p;>0,5€{1,2,---,2r}

j=1 =1

In other words, this means that the distance from y to @ is the length of one of the shortest
possible routes to travel from y to & by going only in the directions defined and oriented
by the vectors ey, ey, « -+, eyr. From (2), for each j € {1, 2, .-+, 2r} and each n € Z and
each © = (2!, 22)T € R? if ® € Kypryj, then v(2) = az’ + ba?, where Ponrtj = (@, bt
= 1/(ejel, — eler ey, — €F, e — e}_,_l)T and e; = (e}, e?)T, ejt1 = (€)1, e']z-_H)T.
Note that e} e?+1 - e? e}+1 # O since e; and ey are linearly independent, and that p,,,, . ;
= p,. It is assumed that p; = ||p;||(cos o, sina;) T, 7€ {1,2, -, 2r}, a1 <ag < -0 <
Qop, atgr — ay < 2. Foreach j € {1, 2, ---, 2r} and each n € Z, we put agprq; = 2nw +
aj. Note that ;11 — a; < 7.

We denote by int (A4), bd (A) and co (A), the interior, the boundary and the convex
hull of a set A C R? and by ri (C) the relative interior of a convex set C' C R?.
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From [2, Theorem 9.1, pp.57-58], we have

2r
B® = ﬂ{ivGRQ:<ei7w>§1}200({p17p27“' vp2r})v
=1
EXt(BO) = {p1:p27"' vp2r}7
2r
bd(B°) = U[pjapj—O—l]
j=1
where [p;, pj41] = {up; + (1 —p)p;41: 0 < p < 1} From (1), for each j € {1,2, -+, 2r}
and each n € Z, we have
{Panryjt if @ € int(Kynri ).
(3) 07(;6) = [p2n7’+j717p2n7’+j] ifee LGr-l-j \ {0},

CO({p17p27--- 7]-727»}) if 2 =0.

3. Main results in [4]. In this section, main results in [4] are given.

We recall some notations and results in [4]. A finite family {Cy, C2, ---, Cp} of
nonempty sets in R? is said to be suitably contained in a halfspace if there exists a hyperplane
containing the origin and such that one of its associated closed halfspaces contains all of
the C}’s, with at least one of the C;’s contained in the corresponding open halfspace. In
other words, a family {Cy, Cy, ---, Cp, } is suitably contained in a halfspace if and only if
there exists @ # 0 such that, first, (a, @) < 0 for every @ in |J;-, Cy, and second, (a, @)
< 0 for every @ in some C;. For ¢ € R? we put I'(z) = {0y(z — dy), Oy(z — dz), -+,
(@ —dm)}.

Theorem 1.([4]) The set E(D) is the set of all ® € R? such that T'(x) is not suitably

contained in a halfspace.

A nonempty closed convex set C' C R? is called an elementary convezr set with respect

to D and v if C = i~,({di} + N(q,)) for some q; € B°, 1 € M, where

-[(2n7’+j lfp = Ponr+j»

N(p) =4 Lonrtj41 HpEe ri([pl)nr+j7p2nr+j+1])v
{0} if p € int(B°)
for each j € {1, 2, ---, 2r} and each n € Z. For each @ € C, we have q; € dv(z — d;).

N

B

Py
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N

Figure 2. Elementary convex sets. (o: demand points)
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Corollary 1.([4]) If C is an elementary convez set, then either C is contained in E(D) or
else ri (C') and E(D) are disjoint.

Theorem 2.([4]) The set E(D) is a connected finite union of polytopes, each of which is
an elementary convez set.

In [4], practical rules with which the whole set E(D) can be found are given. They are
obvious consequences of Theorem 1 and Corollary 1, and described as follows:

Rule 1. If & ¢ D is such that the family T'(x) is suitably contained in a halfspace, then for
every elementary convez set C containing @ , ri (C') and E(D) are disjoint. O

Rule 2. If® € R? is in the relative interior of an elementary convex set C and if the family
T'(x) 15 not suitably contained in a halfspace, then C is contained in E(D). O

A point & € R? is called an intersection point if @ is an extreme point of some elementary
convex set. Let I be the set of all intersection points. When I is known and it is possible to
check whether T'(z) for & € R? is suitably contained in a halfspace or not, the procedure for
finding E(D) can be described. First apply Rule 1 to every point of I. In this way, many
elementary convex sets are eliminated. Then apply Rule 2 to every remaining elementary
convex set, by considering first the elementary convex sets whose dimension is two, then
one. This method is clearly finite. Implementing it efficiently, however, is a hard task.

4. Properties of efficient solutions. In this section, we give some properties of efficient
solutions of (P).

Theorem 3. Let C be a bounded elementary conver set such that int (C) # §. If bd (C)
C E(D), then C C E(D).

Proof. For y € int (C), assume that y ¢ E(D). From Theorem 1, I'(y) is suitably

contained in a halfspace. For each i € M, there exists j; € {1, 2, ---, 2r} such that y €
{d;} + int (Kj;). Then C = ﬂznzl({dz} + Kj;) and Ov(y — d;) = {pj,:}v i € M. Since I'(y)
is suitably contained in a halfspace, | JI", K,+;, = — Ui, Kj; # R% Note that -, K, #

Kj for any j € {1, 2, -+, 2r} since C' is bounded. We put G(y) = -, int ({y} + K,4;).
Then we see that D C G(y).

Without loss of generality, assume that a; < aj, < .- < a; . For each 1 € M and
each n € Z, we put jum4i = 2nr + ji. Note that p; =~ = po, ;. = p; and aj, ., =
Oonrtj; = 2n7 4 a ;. Since I'(y) is suitably contained in a halfspace, one of the following
conditions is satisfied.

(i) 0 < @, — aj, <7 forsomek € M.

(i) @,y — aj, = 7@ for some k € M, and o, < aj, < aj,,,, , for some ( (k < { <
m+k—1).

L R

2 7
sin > )T, Then we see that (a, pj;) < Oforanyi € M, ie. (a, z) <0 for any =
e UL, 0v(y — di). Since o, ,,_, — «oj, <, we have R(y) = ({y} + Kr1j,) U {y} +
Krpjov) U Uy} + Kogjopsy) # R% R(y) is a cone with a vertex at y. We put
P(y) = (int(R(y))). Since D C G(y) C int (R(y)), we have D () P(y) = . Moreover,
Ply) = ({y} + Kp) U (Qy} + Kp) U - U (g} + Kpyo) for some p € {1, 2, -+,
2r} and some t > 0, where I, = Kiijppwor+1 and Ky = Kpyj, 1. There exists z €

Case 1. First, assume that condition (i) is satisfied. We put @ = —(cos

o I T
2

bd (C)[ P(y) such that z is not a vertex of C, i.e. z is a relative interior point of some
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edge of C. Let ¢ and @, be two end points of the edge containing z. We put Q = {pzq +
(1 —p)xs: pp € R} Then Q = {z + pej: p € R}y ={z} + L, U Lyyj, for some jg € {1,
2, -+, 2r}. Since Oy(z — d;) = Oy(y — d;) = {p;, } for d; ¢ Q, we sce that (a, ) <0 for
any @ € 0v(z — d;). Let d; be a demand point in Q. If d; € {2z} + Lj,, then z € {d;} +
Ly, and Lyyj, = Ly for some ¢ € {jr+1, -, jmtk—1} since D (| P(z) =0. If d; € {z}
+ Lyt j,, then z € {d;} + Lj,, and Lj, = L, for some g € {jr+1, -+, jmtr—1} since D [
P(z) = 0. In either case, dy(z — d;) can be represented as dy(z — d;) = [p,_;,p,], and
we have {(a, ®) < 0 for any @ € v(z — d;) since jr < q—1, ¢ < Jmtr—1- Thus, {(a,z) <0
for any @ € [J;~, 9v(z — d;). Therefore, = ¢ E(D) from Theorem 1 since I'(z) is suitably
contained in a halfspace. However, this contradicts our assumption that bd (C') C E(D).

Case 2. Next, assume that condition (ii) is satisfied. Let a, R(y) and P(y) be the
same ones as in Case 1. In this case, (a, p;,) < 0 for any i € M and (a, p;,) <0, ie. (a,z)
< Oforany @ € |Ji-, dv(y — d;) and (a, ) < 0 for any @ € dv(y — d¢).

First, assume that K;, C P(0) for some ¢ (k < £ < m + k — 1) such that o, < aj, <
s There exists z € bd (C) () ({y} + Kj,) such that z is not a vertex of C. Let
1, 2,  and jo be the same ones as in Case 1. By the similar argument in Case 1, we
see that (a, ®) < 0 for any @ € |Ji_, dy(2 — d;). In this case, (a, ) < 0 for any x €
Ov(z —dy) since Oy(z — dv) = dvy(y — d¢) = {p;,} by the definition of 2. Thus, 2 ¢ E(D)
from Theorem 1 since I'(z) is suitably contained in a halfspace. However, this contradicts
our assumption that bd (C') C E(D).

Next, assume that K;, ¢ P(0) for any ¢ (k < { < m + k — 1) such that aj, < j, <
Qjrpner- Then Kj, # K;, 5 € {p.p+1, -, p+t}forany ¢ (k <l <m+k—1)such
that a;, < aj, < aj . And 0 < 8py441 — 0, < wsinceif Oy — 0, > m, then K;, C
P(0) for any ¢ (k < ¢ < m 4k — 1) such that oj, < aj, < aj,,,_,. Moreover, we see that
D 0 P~(y) = 0, where P~(y) = ({5} — K,) U ({g} — Kpi1) U - U (g} = Kpeo). T
D (\ P~(y) # 0, then there exists d,, € D (| P~ (y) such that o, < aj, .., <oj .k
<nm + u < m+k—1for some n € Z and that d, € {y} — K, for some ¢ € {p, p+ 1,
-+, p+t}. Sinced, € {y} — Kj,,,.,,, we have K; . = K, C P(0).

Since 8p4441 — 0, < =, D (| P~ (y) = 0, we see that P(0) C C{ej, 41, €j,42, -, €, }
or P(0) C C{ej,11, €j,42, "~ » €], ., }- It is sufficient to show the case P(0) C C{ej, 11,
€j.+2, ", €5, }. It can be shown similarly the case P(0) C C{ej, 41, €j,42, - ", €)1, }-
Thus, we assume that P(0) C C{ej, 41, €j,+42, - -, €j, I

There exists z € bd (C) () P(y) such that z is not a vertex of C. Let ®1, @2, @ and
Jjo be the same ones as in Case 1. By the similar argument in Case 1, we see that (a, x)
< 0 for any ® € |J.—, dv(2 — d;). Now, choose any ¢ (k < { < m + k — 1) such that a,
< aj, < Gy Uz € {de} + int (K, ), then 0v(z — d¢) = Ov(y — d¢) = {p;, }, and
(@, ®) < 0 for any ® € dy(z — dy) since (a, p;,) < 0. If 2 ¢ int (I,), then we see that
z € {d,} + Lj, since P(0) C C{ej,+1, €j,+2, ***, €j, }, and that Iy(z — d¢) = [p;,_1, P}, |-
Since o, < aj, 41 < aj, < aj, .., we have (a, ) < 0 for any @ € 0v(2 — d¢). Thus,
z ¢ E(D) from Theorem 1 since I'(z) is suitably contained in a halfspace. However, this
contradicts our assumption that bd (C') C E(D).

Therefore, it is proved that C C E(D). O

For @y, xs € I, @ is called an adjacent intersection point to xo and xs is called an
adjacent intersection point to @y if @y # @q, [€1, ®2] C L and i ([&y, x2]) () I = 0.

Theorem 4 It 1s assumed that polytope B, which defines the polyhedral gauge, 1s symmetric
around the origin, 1.e. v is a norm. For mutually adjacent intersection points ¢y and xy, if

x1, 2 € E(D), then [z, 2] C E(D).

Proof. For z € ri ([#1, #2]), we shall show that z € E(D). When B is symmetric around
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the origin, o € E(D) if and only if @ satisfies one of the following conditions (see [13,
Proposition 2 and 3]):

(1) D ﬂ ({:130} + U;;i Iff-%j) # 0 for any le {1* 27 B ZT}

(ii) There exists ¢ € {1,2,---, 2r} such that D () ({zo} + UjZ1 Kryj) = 0. D (int ({0}
+ Uiy Krper) = 0, D N ({0} + K¢) # 0 and D () ({20} + Kpie) # 0.

Without loss of generality, assume that £, — 21 = pe; for some p > 0. We put U =
U;:z(:ri([azl, z3]) + L; U Ly4+;). Then D (| U = () since @, and @« are mutually adjacent
intersection points.

Case 1. First, assume that @1 and @, satisfy condition (i). Since x; and @- satisfy
condition (i), D () ({z} + UP1 Kiy;) DD NHz} + Ur;i Kpyj) # 0 for each ¢ € {1, 2,

o, b N (=) + UZ Keap) 5 DN ({2} + Uph Krag) # 0 for cach £€ {r+1,
-+, 2r}. Thus, z € E(D) since z satisfies condition (i).

Case 2. Nex‘r assume that &, or @, satisfies condition (ii). It is sufficient to show the
case & satisfies condition (ii). It can be shown similarly the case @, satisfies condition (ii).
Thus, we assume that @ satisfies condition (ii). In this case, D () ({&1} + ri (L1)) # 0
or D () ({&1} + i (Ly41)) # 0. We shall show only the case D () ({®1} + i (L1)) # 0.
It can be shown similarly the case D (| ({@1} + i (Ly41)) # 0. In this case, we have D
N {z} + Lr41) = 0. Because if D () ({2} + L,41) # 0, then @ satisfies condition (i)
and so &y does not satisfy condition (ii). Since @1 satisfies condition (i), it needs that ¢ in
condition (ii) is 1 or r. Because D [ ({1} + U]r;i Ky j)) DD N{@1} +1i(Ly)) # D for ¢
ef{r+1, -, 20}, and D (Vint ({®1} + U2} Krges;) O D ({1} +1i (L1)) # O for £ €
{1, 2, ---, r}\ {1, r}. We shall show only the case £ in condition (ii) is 1. It can be shown
similarly the case { in condition (ii) is r. Since D N {z1} + U;;i Ki4+;) = 0, we see that
DN ({z} + UiZ Kiwy) = D N [z} + U2y Kiag) U ([, 2]\ {aa} + Lo)] € [D N
{1} + Uimy Kl U (D N U) = 0. Since D (int ({1} + U= Kry14;) = 0, we see
that D [ int ({z} + U] 1 ' K,114;) € D N int ({&,} + U . Ix,«+1+‘]) = (). We have D )
(=} + Ky) # 0 since 5 () ({1} + K0) = D () [(fer. 21+ L) U ({=) + 1)) = [D N
(1,2 + L)) U [D N ({2} + K0)] # D and D () ({21, 2] + Lo) = D (3 [({1} + Lo) U
(1, 2]\ fo1) + L2)] = [D () (f2} + L)) U D A ([er, 2]\ 1) + L2)]  [D () ({1}

+ U] (K ) UMD NAOU)=0. Since D () ({21} + Kyq1) # 0, we see that D () ({z} +
K1) DD () {1} + ]x,_H # (). Therefore, z € E(D) since z satisfies condition (ii). O

Theorem 5. [t 1s assumed that polytope B, which defines the polyhedral gauge, is symmetric
around the origin, i.e. v 18 a norm. Let C' be a bounded elementary convex set such that
int (C) # 0. If every extreme point of C is efficient solution of (P), then C C E(D).

Proof. From Theorem 4, bd (C) C E(D). Thus, C C E(D) from Theorem 3. O
Theorem 6 It is assumed that r = 2 and that D C {0} + Lj, U Lyyj, for some xy €
R? and some jo € {1, 2, -+, r}. Then E(D) = co (D).

Proof. For y ¢ co (D), y € ri (C) for some unbounded elementary convex set C. Since
C is unbounded, C' ¢ E(D) from Theorem 2, and so ri (C) (| E(D) = 0 from Corollary 1
Thus, we have y ¢ E(D). We know D C E(D). Without loss of generality, assume that jg
=1,6, =0andd! <d} <--- <d!, whered; = (d}, d))T,i € M. Fory € co (D)\ D =
[dy, dy )\ D = U] 1i ([di, dis]), y € 1i ([diy, digy1]) for some ig € {1,2, -, m —1}.

Since r = 2, we have
if 1 <1,
ov(y — d;) = [Py P4 1= o,
W(y ) { Py, ps] i1 > o,
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Note that [p,, p;] and [p,, ps] are mutually opposite edges of the quadrangle B® = co ({p;,
Py, P3, Py }). Since O € int (B°), I'(y) is not suitably contained in a halfspace. Thus, y €
E(D) from Theorem 1. Therefore, it is proved that E(D) = co (D). O

5. Algorithm to find all efficient solutions. In this section, we propose the Frame
Generating Algorithm to find E(D), which requires O(m?) computational time.

Let &7 and @} be any two efficient solutions of (P). From Corollary 1 and Theo-
rem 2, there exists polygonal line in F(D), which connects @] and xj, i.e. there exists
Ty, &y, -, &, € E(D) such that [&], 2], [x1, 2], ,[®s, 23] C E(D). In particular, if &7
and @} are in L, then there exists polygonal line in L (] E(D), which connects &7 and @3.
The set L (| E(D) is called the frame of E(D). Note that the frame of E(D) is the union
of all one-dimensional elementary convex sets in E(D). From Theorem 3, if the frame of
E(D) is determined, then E(D) can be constructed. Thus, we give the Frame Generating
Algorithm to find the frame of E(D) in the following.

In the Frame Generating Algorithm, finding adjacent intersection points to an intersec-
tion point and checking that I'(@q) for g ¢ D is suitably contained in a halfplane or not are
needed. First, adjacent intersection points to an intersection point can be found efficiently
by using the method given in [7]. Next, we shall state how to check that I'(#o) for @ ¢ D
is suitably contained in a halfplane or not. For each i € M, there exists j; € {1, 2, -+, 2r}
such that @y € {d;} + int (Kj,) or ¢ € {d;} + L;,. From (3), we have

~ {p.} if g € {d;} +int(K},),
I~/ — dl — Ji . Ji
(= ) { [Pji—1:pj] e e{di}+Lj.

For each 1 € M, we pu‘r qZ =pj qZ =pj Bl = aj, and 37 = o, if Oy(zo — d;) = {r;.}
and put g = pj_y, @2 = py, B = ajor and G = aj, if 9y(we — di) = [p;,_, P
Without loss of generali‘ry, we assume that 3] < 84 < ... < B! and that, for each i € {1,
2, -, m — 1}, B < 6 i if gl = ,3}+1. qu each 1 € M and each n € Z and each j € {1,
2}, we put q?zm-l—i = ql. Bim-l-z = 2n7w 4 (. Then we see that I'(xg) is suitably contained
in a halfspace if and only if one of the following conditions is satisfied.

(1) ,(7",2,1_1_,6_1 — B < « for some k € M.

(i) ,83n+k_1 — B{ = = for some k € M, and there exists { € M such that (a, ) < 0 for
1 2 1 2
any & € Ov(xo — d¢), where @ = —(cos B‘“Jrﬂ;“"k*l, sin ﬂk+’6;+k_l)T.

When 32, ,_, — 08} =« for some k € M, if for a # 0, (a, ) < 0 for any @ € |J/—, dv(z0—

. B
d;), then a = —p(cos 5k+6’2"+k L, sin /k+6’"+k 1)1 for some p1 > 0. For such @ and each ¢ €

M, we see that (a, ) < 0 for any @ € 3')(a30 — dy) if and only if (a, g¢}) < 0 and (a, q%)
< 0. Now, it can be checked that I'(@0) is suitably contained in a halfspace or not, i.e. one
of the above conditions is satisfied or not. From Theorem 1, it can be checked that &g is an
efficient solution of (P) or not by checking that I'(x¢) is suitably contained in a halfspace
or not.

Remark. In view of the fact that the frame of E(D) is the union of all one-dimensional
elementary convex sets in E(D), which is connected, we can construct a connected graph
(I () E(D), E), where E is the set of arcs in the graph. Given &1, @2 € I | E(D), the arc
a(x1, x2) which connects &1 and @5 is in E if and only if ; and @2 are mutually adjacent
and [, 2] C E(D). This concept will be guide for describing an algorithm to locate the
frame of E(D). It can be checked that [@;, @] is contained in E(D) or not by checking
I'(xq) for any one point @&y € ri ([&1, ®2]) is suitably contained in a halfspace or not. If
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I'(xo) is suitably contained in a halfspace, then [®1, @3] is not contained in E(D) from
Theorem 1. If I'(xg) is not suitably contained in a halfspace, then [@;, @3] is contained in
E(D) from Theorem 1 and Corollary 1.

The Frame Generating Algorithm finds one-dimensional elementary convex sets in the
frame of E(D), which are connected with some demand point. The set V is the set of
checked intersection points which are connected with some demand point. The set S C V
is the set of intersection points which have been checked that one-dimensional elementary
convex sets connected with them are contained in E(D) or not. The set T is the union of
one-dimensional elementary convex sets in E(D) which have been checked before.

The Frame Generating Algorithm

Step 1. Set V=D, S =0 and T = 0.

Step 2. If V = S, then stop. (The set T' is the frame of E(D).) Otherwise, choose any g
eV\Sandset S=S5{J{®o}.

Step 3. Set W be the set of all adjacent intersection points to xg.
Step 4. If W = (), then go to Step 2, otherwise choose any y, € W.

Step 5. If [xg, yo] C T, then go to step 4. Otherwise, check I'(zg) for any one point zg
€ 1i ([®o, Y,]) is suitably contained in a halfspace or not. If T'(zq) is not suitably
contained in a halfspace, then set T = T |J 20, yy], and if y, ¢ V., then set V =V

U {yo}- Go to Step 4.

In the Frame Generating Algorithm, the number of iterations is Q(m?) since the number
of intersection points is Q(m?). In Step 3, determining all adjacent intersection points to
2o requires O(1) computational time, assuming that {d;} + L; |J L,4;, 7 € M for each j €
{1, 2, -+, r} have been sorted according to their z-intercept or y-intercept, which requires
O(mlog m) computational time (see [7]). The number of intersection points adjacent to g
is at most 2r. In Step 5, checking that ['(zg) is suitably contained in a halfspace or not
requires O(m) computational time. Therefore, the Frame Generating Algorithm requires
O(m?) computational time.

Finally, we consider an example problem for d; = (3 ,4)7, dy = (7, 4)7, d3 = (6, 7)7,
d, = (8,9)7 and d5 = (13, 6)T, where B = co ({e1, e, €3, eq, €5, eg}) and e; = (2, 0)7,
€2 = (% %)Ta €3 = (_%: %)T: €4 = (_17 0)T7 €5 = (_%7 %)Tv €6 = (% _é)T (See Figure
1). Applying the Frame Generating Algorithm for the multicriteria location problem (P),
we have the frame of E(D) illustrated in Figure 3.

d,

B
ds

Figure 3. The frame of E(D). (e: demand points)
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Conclusions. We delt with a multicriteria location problem with the polyhedral

gauge in R? Our main interest was to find E(D). First, we obtained characterizations of
efficient solutions of (P) as Theorem 3-6 by using the concept of elementary convex sets.
Next, we proposed the Frame Generating Algorithm to find the frame of E(D). The Frame
Generating Algorithm generates the frame of E(D) by tracing one-dimensional elementary

convex sets in E(D). Furthermore, we gave the procedure for checking that a given point
is an efficient solution of (P) or not.
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