
Scientiae Mathematicae Japonicae Online, Vol. 7, (2002), 149{157 149

INFERENCE OF REGULAR PATTERNS

WITH ERASING AND NONERASING VARIABLES

Jin Uemura

Received December 20, 2001; revised April 16, 2002

Abstract. A pattern is a string of constants and variables, and is regular if each vari-

able occurs in the pattern at most once. The present paper deals with the problem of

learning languages generated by regular patterns with two kinds of variables, erasing

and nonerasing from positive examples within Gold's model. First, we show an equiv-

alence theorem of a semantic containment L(p) � L(q) and a syntactic containment

p � q for regular patterns p and q. Then we show that the class of regular pattern

languages is polynomial time inferable from positive examples.

1 Introduction. A pattern is a string consisting of constants and variables. The lan-

guage of a pattern is the set of all constant strings obtained from the pattern by substituting

constant strings for variables in the pattern. A nonerasing substitution for a pattern is not

allowed to replace a variable by the empty string whereas an erasing substitution may re-

place a variable by the empty string. In the Angluin's de�nition[1] of pattern languages,

erasing substitutions are disallowed. Angluin[1] has proved the class of nonerasing pattern

language is inductively inferable from positive examples in the framework of identi�cation

in the limit due to Gold[5]. Learnability of pattern languages �rst introduced by Angluin[1]

has been extensively investigated (e.g., see Arimura, Shinohara and Otsuki[4], Mukouchi[8],

Sato, Mukouchi and Zheng[10], Shinohara[11, 12], and Shinohara and Arimura[13]).

On the other hand, pattern languages allowing erasing substitutions has been �rst intro-

duced by Shinohara[11] using the terminology of extended pattern languages. He has shown

that the subclass consisting of regular erasing (or extended) pattern languages is polynomial

time inferable from positive examples. A pattern is regular if each variable appears at most

once in the pattern. The inferability of the class of erasing pattern languages is unsolved

until now.

In the present paper, we introduce patterns consisting of constants and two kinds of

variables: erasing and nonerasing. The language of a pattern p, denoted by L(p), is the set

of constant strings obtained by substituting constant strings (possibly the empty string)

for erasing variables and nonempty constant strings for nonerasing variables in the pattern.

The class PL of such pattern languages properly contains the union of the classes of erasing

pattern languages and nonerasing pattern languages. In fact, for a pattern p = yaz over

� = fa; bg, the language L(p) given by fuav j u 2 ��
; v 2 �+g can be generated by

neither erasing nor nonerasing patterns, where y is an erasing variable and z is a nonerasing

variable. As easily seen, a language generated by a pattern containing erasing variables can

be expressed by union of �nitely many nonerasing pattern languages. As well known, the

membership problem for nonerasing pattern languages is NP-complete([1]) as well as for

erasing, and thus so is for languages of PL.

2000 Mathematics Subject Classi�cation. 68T05, 68T35.

Key words and phrases. Inductive inference, Regular pattern language, Positive examples, Identi�ca-

tion in the limit.

150 J. Uemura

In this paper, we investigate the problem of eÆcient learning of regular pattern languages

from positive examples within Gold's model of identi�cation in the limit. The class of

pattern languages is denoted by RPL.

For patterns p and q, q is a generalization of p, denoted by p � q, if p is obtained

from q by substituting some patterns for variables in q, where patterns substituted for

nonerasing variables are assumed to contain at least one constant or nonerasing variable.

Then we �rst show an equivalence theorem of a semantic containment L(p) � L(q) and a

syntactic containment p � q for any regular patterns p and q, provided that the number of

constants is more than two. Moreover, we show that for each regular pattern p, the �nite

set S(p) � L(p) is a characteristic set of L(p). Here S(p) is the �nite set of constant strings

generated by substituting any constant to each nonerasing variable and any constant or the

empty string " to each erasing variable in p, and a �nite set S � L(p) is a characteristic set

of L(p) if S � L(q) implies L(p) � L(q) for any q. Thus if S(p) � L(q) implies L(p) � L(q)

for any q. The notion of a characteristic set was introduced by Angluin[3]. A characteristic

set is useful for building an eÆcient learning algorithm of languages.

Next, we show that the classRPL has �nite thickness as well as the classes of erasing and

nonerasing pattern languages ([11, 12]). Finite thickness has been introduce by Angluin[2]

as a suÆcient condition for inferability from positive examples. Wright[7, 15] has introduced

a more general notion of language classes called �nite elasticity than �nite thickness. Finite

elasticity has a good property in the sense that it is not only a suÆcient condition for

inferability but also closed under various class operations such as union, intersection and so

on ([6, 9, 15]). Thus the classes obtained by applying to these class operations to the class

RPL is also inferable from positive examples.

Concerning to a class with �nite elasticity, it is well known that if both of the membership

problem and the MINL problem of the class are polynomial time computable, then the

class is polynomial time inferable from positive examples. The MINL problem is a problem

�nding one of the minimal languages in the class containing a given nonempty �nite set of

��.

We �nally show these two problems are polynomial time computable, and thus the class

of regular pattern languages is polynomial time inferable from positive examples, as well as

the classes of erasing and nonerasing pattern languages ([11, 12]).

2 Regular patterns with erasing and nonerasing variables. We introduce pat-

terns with erasing and nonerasing variables and languages de�ned by such patterns. Let N

be the set of nonnegative integers, and let]S be the cardinality of a set S.

2.1 Pattern languages. Let Y and Z be countable sets of variables. Assume that �; Y

and Z are mutually disjoint. Elements of Y are erasing variables, denoted by y; y0; y1; � � � ,

and those of Z are nonerasing variables, denoted by z; z0; z1; � � � , while elements in � are

constants. We put X = Y [Z, whose elements are denoted by x; x0; x1; � � � . A pattern is

a �nite string (possibly the empty string) over � [X. The symbol " denotes the empty

string. For a pattern p, the length of p, denoted by jpj, is the number of symbols in p. The

set of patterns is denoted by P.

A substitution � is a homomorphism from P to P which maps every constant to itself,

every nonerasing variable to a pattern containing at least one element in � [Z and every

erasing variable to a pattern. A set of replacements fx0 := p0; x1 := p1; � � � ; xn := png is

the substitution that maps each variable xi to the pattern pi and any other variables to

themselves. For a pattern p and a substitution �, the image of p by � is denoted by p�.

For a pattern p, we denote by pn" the pattern obtained from p by substituting " to every

erasing variable in p. Thus the pattern pn" is a string of (� [Z)�.

INFERENCE OF REGULAR PATTERNS 151

For patterns p and q, q is a generalization of p or p is an instance of q, denoted by p � q,

if there is a substitution � such that p = q�. Patterns p and q are equivalent, denoted by

p � q, if p � q and q � p. Note that p � q does not always imply p = q. For instance,

y0 � y0y1 and y0y1 � y0 imply y0 � y0y1 but y0 6= y0y1.

For a pattern p, the language generated by p is de�ned by L(p) = fw 2 �� j w � pg.

Clearly jwj � jpn"j if w 2 L(p), and the shortest length of strings in L(p) is given by jpn"j.

And p � q implies L(p) � L(q), and so p � q implies L(p) = L(q). A language L over �

is a pattern language if there is a pattern p such that L(p) = L. For instance, a language

L = fuav j u 2 ��
; v 2 �+g over � = fa; bg is a pattern language because L = L(yaz).

We should remark that the language L can be generated by neither erasing patterns nor

nonerasing patterns. Thus the class PL properly contains union of the classes of erasing

and nonerasing pattern languages.

2.2 Regular pattern languages. A pattern p is regular if each variable occurs at most

once in p. The classes of regular patterns and regular pattern languages are denoted by RP

and RPL, respectively.

A regular pattern p containing at least one variable can be expressed as p = w0�0w1�1 � � �

wn�1�n�1wn for some n where w0; wn 2 ��
; wi 2 �+ and �j 2 X

+ for i = 1; 2; � � � ; n � 1

and j 2 N . A pattern p is of canonical form, if �i 2 Y [Z
+ for any i or p 2 ��. In

this paper, we do not distinguish two regular patterns if they are equal except renaming

variables. However, we do not allow renaming variables between an erasing variable and

a nonerasing variable. Thus yaz = y0az1, and yaz 6= yy0az although yaz is equivalent to

yy0az.

Theorem 2.1. The class of canonical regular patterns constitutes a partially ordered set

under the relation �.

Proof. Let p and q be canonical regular patterns. It is enough to show that if p � q, then p

is identical to q except renaming variables. If p 2 ��, it is obvious. We assume p contains

at least one variable.

Let p = w0�0w1�1 � � �wn�1�n�1wn where �i 2 Y [Z
+ for each i. By p � q, there are

substitutions � and �0 such that q = p� and p = q�
0. Thus p = p��

0 = w0(�0��
0)w1(�1��

0) � � �

wn�1(�n�1��
0)wn holds. It means that �i��

0 = �i must hold for every i. Clearly since p

and q are in canonical forms, it implies that �i� = �i for each i. Hence p = q.

As easily seen, a regular pattern x0x1 � � �xn is equivalent to y if xi 2 Y for i = 0; 1; � � � ; n,

Otherwise x0x1 � � � xn is equivalent to z0z1 � � � zk�1, where k is the number of nonerasing

variables of x0; x1; � � � ; xn. Thus it follows immediately:

Theorem 2.2. For any regular pattern p, there uniquely exists the canonical regular pat-

tern q such that L(p) = L(q).

A pattern p is a substring of a pattern q if there are patterns r; r0 such that q = rpr
0 .

The following result can be shown similarly to that for nonerasing regular pattern languages

given by Mukouchi[8]:

Lemma 2.3. Suppose]� � 3. Let p and q be regular patterns. If L(p) � L(q), then a

constant substring of q is also a substring of p.

We should note that the condition]� � 3 is necessary in the above theorem. Indeed, if

]� = 2, say � = fa; bg, L(y0ay1by2) � L(y0aby1) holds although the substring ab of y0aby1
is not a substring of y0ay1by2.

Hereafter, we assume that]� � 3 and patterns are regular.

152 J. Uemura

3 Characteristic sets and completeness. For a regular pattern p, a �nite set S � ��

is a characteristic set of L(p), if S � L(q) implies L(p) � L(q) for any q 2 RP.

For a regular pattern p, the set S(p) denotes the set of all constant strings obtained

from p by substituting any constant for each nonerasing variable in p, and any constant or

" for each erasing variable in p. Thus the lengths of the longest strings and the shortest

strings in S(p) equal jpj and jpn"j, respectively.

Let p and q be regular patterns which satisfy with p � q and p = p0rp1 for some patterns

r(6= "); p0; p1. The substring r in p1rp2 is generable by variable substitution for q if there is

a variable xi in q and a substitution � = fx0 := r0; x1 := r1; � � � ; xi := r
0
rr

00
; � � � ; xn := rng

such that p0 = (q0�)r
0 and p1 = r

00(q1�) where q = q0xiq1. This variable xi in q generates the

substring r of p. As easily seen, p0zp1 � q holds when xi in q generates r, and particularly,

p0yp1 � q holds if xi 2 Y . Note that every variable in p is always generable by variable

substitution for q when p � q.

The following result can be shown similarly to that for nonerasing regular patterns given

by Sato et al.[10]:

Lemma 3.1. Let p and q be regular patterns. If pfz := aig � q for distinct constants

a0; a1; a2 2 �, then p � q.

Note that, in the above lemma, p � q does not hold if we replace a nonerasing variable

z with an erasing variable y. In fact, consider p = a0ya1 and q = a0za1, where � =

fa0; a1; a2g. Clearly pfy := aig � q for i = 0; 1; 2 but p 6� q. Concerning with the variable

x in p to be erasing, we have the following result:

Lemma 3.2. Let p and q be canonical regular patterns. If pfy := zg � q and pfy := "g � q,

then p � q.

Proof. Clearly if the pattern p does not contain the variable y, our lemma is valid. Thus

let p = p0yp1 for some patterns p0 and p1. We prove only for the case of pi 6= " for i = 0; 1.

It can be shown similarly for the other cases.

Assume pi 6= " for i = 0; 1. Since p is in canonical form, p0 = p
0

0a and p1 = bp
0

1 for

some a; b 2 � and for some patterns p00; p
0

1. Suppose that p 6� q. Then by (pfy := "g =)

p
0

0(ab)p
0

1 � q, there is a substitution � such that p00(ab)p
0

1 = q�. If the substring a; b or ab in

p
0

0(ab)p
0

1 is generable by variable substitution for q, then p � q holds, and a contradiction.

Hence there are patterns q0; q1 such that

q = q0(ab)q1; and p
0

i
= qi� for i = 0; 1:

Similarly by (pfy := zg =)p00(azb)p
0

1 � q, there is a substitution �
0 satisfying p

0

0(azb)p
0

1 =

q�
0. Let x be a variable in q to generate the variable z in p

0

0(azb)p
0

1.

Consider the case that q0 contains x.

In this case, there are patterns q00; q
00

0 such that

q0 = q
0

0xq
00

0 ; p
0

0a = q
0

0�
0 and bp

0

1 = q
00

0 (ab)q1�
0
:

Let us put r0 = q
0

0�; r1 = x� and r2 = q
00

0 �. Then we have p00(ayb)p
0

1 = (r0r1r2)(ayb)p
0

1 =

r0(r1r2a)(byp
0

1
) = (q0

0
�)(xfx := r1r2ayg)(q

00

0
abq1�

0), and so p � q.

We can prove similarly for the other case that q1 contains x.

The class RP is complete if the semantic containment L(p) � L(q) is equivalent to the

syntactic containment p � q.

In terms of Lemma 3.1 and Lemma 3.2, we obtain the following equivalence theorem

which plays an important role in learning regular patterns from positive examples:

INFERENCE OF REGULAR PATTERNS 153

Theorem 3.3. Let p and q be canonical regular patterns. The following three relations

are equivalent:

(i) S(p) � L(q), (ii) L(p) � L(q), (iii) p � q.

Proof. Clearly (iii) implies (ii) and (ii) implies (i). It suÆces to show that (i) implies (iii),

that is, S(p) � L(q) implies p � q. It is done by mathematical induction on the number n

of variables in p.

In case of n = 0, it is obvious since p is a constant string. Assume that it is valid for any

k(� n). Let p be a canonical regular pattern with n+ 1 variables and p = p0xp1 for some

p0; p1 and for some variable x. Since]� � 3, there are three distinct constants a0; a1; a2 2 �.

For each i = 0; 1; 2, the pattern p0aip1 is of n variables and S(p0aip1) � S(p) holds. Thus

by induction hypothesis, we have p0aip1 � q for i = 0; 1; 2. It implies by Lemma 3.1 that

p0zp1 � q. If x 2 Z, clearly p � q. Otherwise S(p0p1) � S(p) because of x 2 Y . Since

p0p1 is also of n variables, it turns out by induction hypothesis that p0p1 � q. Hence both

p0p1 and p0zp1 are instances of q. Appealing to Lemma 3.2, p = p0yp1 � q holds. This

completes our proof.

By the above theorem, the following important results can be shown immediately:

Corollary 3.4. The class RP of regular patterns is complete.

Corollary 3.5. For any regular pattern p, the set S(p) is a characteristic set of L(p).

4 EÆcient learning of regular patterns. In this section, we �rst give a framework

of identi�cation in the limit from positive examples due to Gold[5]. Then we show that the

class of regular pattern languages is polynomial time inferable from positive examples.

4.1 Inductive inference from positive examples. A language class L = L0; L1; � � �

over � is an indexed class of recursive languages if there is a computable function f :

N � �� ! f0; 1g such that f(i; w) = 1 if w 2 Li, otherwise 0. Hereafter we con�ne

ourselves to indexed classes of recursive languages.

An in�nite sequence of strings w0; w1; � � � over � is a positive presentation of a language

L if L = fwn j n � 0g holds.

An inference machine is an e�ective procedure that requests examples from time to time

and produces natural numbers, called hypotheses, from time to time. Note that hypotheses

in the present paper are assumed to correspond to regular patterns. Let M be an inference

machine and � = w0; w1; � � � be an in�nite sequence of constant strings. We denote by

hn, the hypothesis produced by M after the strings w0; w1; � � � ; wn are fed to M . The

inference machine M is polynomial time updating if M produces hn in time polynomial

of the sum of lengths of strings so far received. The inference machine M is consistent if

fw0; w1; � � � ; wng � Lhn
for any n, and is conservative if wn 2 Lhn�1

implies hn = hn�1 for

any n > 1.

An inference machine M on input � converges to h if there is an integer n0 2 N such

that hn = h for every n � n0. M identi�es in the limit a language L from positive examples,

if for any positive presentation � of L, M on input � converges to h which satis�es L = Lh.

An inference machine M infers the class L if M identi�es in the limit a language L

from positive examples for any L 2 L. A class of languages L is inferable from positive

examples if there is an inference machine which infers the class L. A class L is polynomial

time inferable from positive examples if there is a consistent, conservative and polynomial

time updating inference machine that infers the class L.

Angluin[2] gave a characterizing theorem for language classes to be inferable from pos-

itive examples, and showed that a class with �nite thickness is inferable from positive

154 J. Uemura

examples. A class L has �nite thickness if]fL 2 L j S � Lg is �nite for any nonempty

�nite set S � ��.

Wright[15] gave a more general notion for a class called �nite elasticity than �nite

thickness. A class L has �nite elasticity, if there is no in�nite sequence of constant strings

w0; w1; � � � and no in�nite sequence of languages Li0
; Li1

; � � � in L satisfying fw0; w1; � � � ;

wn�1g � Lin
but wn 62 Lin

for every n 2 N . Finite elasticity is a good property in a sense

that it is not only a more general suÆcient condition for inferability than �nite thickness,

but also closed under various class operations such as union, intersection and so on ([6, 15]).

For a class L with �nite elasticity, an eÆcient inference algorithm was presented as given

below if both of the membership problem and the MINL problem for the language class

L are polynomial time computable. The membership problem for L is a problem deciding

whether a constant string belongs to a language in L. The MINL problem for L is a problem

�nding one of the minimal languages within L containing a nonempty �nite set of constant

strings. A problem is polynomial time computable if there is a procedure that computes

the answer of the problem in polynomial time of the sum of lengths of input strings.

Theorem 4.1 (Angluin[1], Arimura et al.[4]). If a class L has �nite elasticity and the

MINL problem for L is computable, the procedure INFER below infers L from positive

examples. Furthermore, if the membership problem and the MINL problem for L are

polynomial time computable with respect to the sum of lengths of the pattern and the

word, then L is polynomial time inferable from positive examples by the procedure INFER.

Procedure INFER

begin

S := fw0g; h0 := MINL(S); n := 1;

repeat

read the next example wn;

S := S [fwng;

if wn 2 Lh
n�1

then hn := hn�1 else hn := MINL(S);

output hn;

n := n+ 1

forever

end

4.2 Learning regular patterns. Let S � �� be a nonempty �nite set. If a regular

pattern language L(p) contains the set S, then jpj � lmin holds where lmin is the length of

the shortest strings in S. It means that the number of regular pattern languages containing

S is at most �nite, that is, the class RPL has �nite thickness. Thus we have the following

result.

Theorem 4.2. The classRPL has �nite thickness. Thus the class is inferable from positive

examples.

Clearly, since a language class with �nite thickness has �nite elasticity, by the above

theorem, the class RPL has �nite elasticity. Moreover, since the property of �nite elasticity

is closed under various class operations such as union, intersection and so on([9, 15]), the

classes obtained by applying to such operations �nitely many times to the classRPL are also

inferable from positive examples. As mentioned in the previous subsection, if both of the

membership problem and the MINL problem of regular pattern languages are polynomial

time computable, it implies that the class RPL is polynomial time inferable from positive

examples by the procedure INFER.

INFERENCE OF REGULAR PATTERNS 155

The membership problem for regular pattern languages is polynomial time computable

as well as that for erasing or nonerasing regular pattern languages([11, 12]) as follows:

Lemma 4.3. For any string w 2 �� and any regular pattern p, whether w 2 L(p) or not

is computable in time O(jwj + jpj).

Let v;w 2 �+ and w = a0a1 � � � an for ai 2 � for i = 0; 1; � � � ; n. A constant string v

is a subsequence of w, denoted by v � w, if v = ai0ai1 � � � aik for some i0; i1; � � � ; ik with

0 � i0 < i1 < � � � < ik � n. We note that the empty string " is a subsequence of any

constant string. There is no confusion by using the same symbol as � for a pair of numbers.

For a set S � ��, we de�ne the set of common subsequences CS and the set of maximal

common subsequences MCS of S as follows:

CS(S) = fv 2 �� j 8w 2 S; v � wg ; MCS(S) = fv 2 CS(S) j 8w 2 CS(S); v 6< wg .

If S � L(p) for a regular pattern p, then the constant string, denoted by c(p), obtained

from p by deleting all variables in p is a common subsequence of S. Conversely, if the

constant string s is a common subsequence of S, then S � L(p) holds, where s = a0a1 � � � ak
and p = y0a0y1y1 � � � ykakyk+1. Note that this inclusion is not always valid for nonerasing

variables zi instead of erasing variables yi. Then clearly S � L(p) implies that c(p) is a

common subsequence of S. Shimizu[14] has given a procedure computing one of the maximal

common subsequences of a �nite set S of constant strings in time O(lmin �
P

w2S
jwj).

Lemma 4.4. Let S � �� and s 2 MCS(S). The following procedure MINL computes a

regular pattern that generates a minimal language containing the set S within the class

RPL in time O((lmin)
2 �
P

w2S
jwj).

Procedure MINL

Inputs: a �nite set of constant strings S

and a maximal common subsequence s = a0a1 � � �ak of S where jsj = k + 1

Output: a regular pattern

begin

let l be the length of the shortest strings in S;

m := l � (k + 1);

q0 := y0a0y1a1 � � � ykakyk+1;

for i = 0 to k + 1 do

begin

if S � L(qi�1fyi := "g) then begin qi := qi�1fyi := "g; goto E end;

for j = m downto 1 do

if S � L(qi�1fyi := zi;1zi;2 � � � zi;jg) then

begin qi := qi�1fyi := zi;1zi;2 � � � zi;jg; goto E end ;

qi := qi�1

E: end;

output qk+1

end

Proof. By the procedure MINL, since s 2 MCS(S) and q0 = y0a0y1a1 � � � ykakyk+1, S �

L(q0) holds. Moreover, as easily seen, S � L(qi) for i = 0; 1; � � � ; k + 1. We denote by q

the output qk+1 of the procedure for short. Suppose to the contrary that there is a regular

pattern p such that S � L(p) � L(q). By Theorem 3.3, we can assume that p is of canonical

form. Put q = �0a0�1a1 � � � �kak�k+1 for some �i 2 Y [Z+[f"g(i = 0; 1; � � � ; k+1), where

s = a0a1 � � � ak and each ai 2 �. Since L(p) � L(q), by Theorem 3.3, p � q, that is,

156 J. Uemura

p � q and p 6= q. Thus p = p0a0p1a1 � � � pkakpk+1 for some patterns pi with pi � �i for

i = 0; 1; � � � ; k + 1. We �rst note that for each i, pi contains no constants. In fact, if pi
contains constants, then the constant string c(p) de�ned above is a common subsequence of

S because of S � L(p). Moreover, the maximal subsequence s of S is a subsequence of c(p)

and s 6= c(p). It leads a contradiction to the choice of s. Thus pi 2 Y [Z+ [f"g for each i.

Next, we note that by pi � �i for each i, �i = " implies pi = ", �i 2 Z
+ implies pi 2 Z

+

and pi = yi implies �i = yi. By p � q, it follows that pi � �i for some i � k + 1. Let i0 be

the minimum integer of such i's. By the above, �i0 6= " and pi0 6= yi0 .

Let us put q0 = �0a0�1a1 � � ��i0�2ai0�2�i0�1ai0�1 and q
00 = ai0�i0+1ai0+1 � � ��kak�k+1.

Then we have

q = q
0
�i0q

00
; p = q

0
pi0p

00
; for some p00 such that p00 � q

00

and pi0 � �i0 � yi0 ; p
00 � q

00 � ai0yi0+1ai0+1 � � � ykakyk+1

Let us consider the �i0 determined at the i0-th stage in the �rst for loop of the procedure.

Since the pre�x q0 of q is determined at the (i0�1)-th stage, qi0�1 = q
0
yi0ai0yi1ai1 � � � ykakyk+1.

At the i0-th stage, the nonempty string " is �rst substituted to the variable yi0 . As men-

tioned above, since �i0 6= ", S 6� L(qi0�1fyi0 := "g). As easily seen, q0p00 � q
0
q
00 �

qi0�1fyi0 := "g holds, and so S 6� L(q0p00). It means that pi0 6= ". Moreover, since pi0 6= yi0

as mentioned above, it implies pi0 2 Z
+.

Consider the case of �i0 2 Z
+. Clearly jpi0 j > j�i0 j(= j0). The second for loop runs

substitutions fyi0 := zi0;1zi0;2 � � � zi0;jg for the pattern qi0�1 from j = m down to 1, and fails

to substitute for any j > j0. It means S 6� L(qi0�1pi0ai0yi0+1ai0+1yi0+2ai0+2 � � � ykakyk+1).

Hence L(p) � L(qi0�1pi0ai0yi0+1ai0+1yi0+2ai0+2 � � � ykakyk+1), it leads a contradiction.

The other case is �i0 = yi0 . In this case, the procedure at the i0-th stage fails a

substitution fyi0 := zi0g. It means that S 6� L(q0pi0ai0yi0+1 � � � akyk+1) holds because of

pi0 2 Z
+. This implies that S 6� L(p), and it is a contradiction.

Finally since k;m � l and the inclusion problem for S at each stage is computable in

time O(
P

w2S
jwj), the procedure MINL runs in time O(l2 �

P
w2S

jwj).

This completes our proof.

By Theorem 4.1, Lemma 4.3 and Lemma 4.4, we obtain the following:

Theorem 4.5. The class of regular pattern languages is polynomial time inferable from

positive examples.

Acknowledgements. I am grateful to Professor Masako Sato and Associate Professor

Yasuhito Mukouchi for our fruitful discussions.

References

[1] D. Angluin: Finding patterns common to a set of strings, Journal of Computer and System

Sciences, 21, 46-62, (1980).

[2] D. Angluin: Inductive inference of formal languages from positive data, Information and Con-

trol, 45, 117-135, (1980).

[3] D. Angluin: Inference of Reversible Language, Journal of the Association for Computing Ma-

chinery, 29, 741-765, (1982).

[4] H. Arimura, T. Shinohara and S. Otsuki: Finding minimal generalizations for unions of pat-

tern languages and its application to inductive inference from positive data, Lecture Notes in

Computer Science, 775, 646-660, (1994).

[5] E. M. Gold: Language identi�cation in the limit, Information and Control, 10, 447-474, (1967).

INFERENCE OF REGULAR PATTERNS 157

[6] T. Moriyama and M. Sato: Properties of language classes with �nite elasticity, IEICE Trans-

actions on Information and Systems, E78-D, (5), 532-538, (1995).

[7] T. Motoki, T. Shinohara and K. Wright: The correct de�nition of �nite elasticity: Corrigen-

dum to identi�cation of unions, Proceedings of the 4th Annual Workshop on Computational

Learning Theory, 375, (1991).

[8] Y. Mukouchi: Containment problems for pattern languages, IEICE Transactions on Informa-

tion and Systems, E75-D, (4), 420-425, (1992).

[9] M. Sato: Inductive Inference of Formal Languages, Bulletin of Information and Cybernetics,

27, (1), 85-106, (1995).

[10] M. Sato, Y. Mukouchi and D. Zheng: Characteristic sets for unions of regular pattern languages

and compactness, Lecture Notes in Arti�cial Intelligence, 1501, 220-233, (1998).

[11] T. Shinohara: Polynomial time inference of extended regular pattern languages, Proceedings

of RIMS Symposia on Software Science and Engineering, Lecture Notes in Computer Science,

147, 115-127, (1982).

[12] T. Shinohara: Polynomial Time Inference of Pattern Languages and Its Application, Proceed-

ings of the 7th IBM Symposium on Mathematical Foundations of Computer Science, 191-209,

(1982).

[13] T. Shinohara and H. Arimura: Inductive inference of unbounded unions of pattern languages

from positive data, Proceedings of the 7th International Workshop on Algorithmic Learning

Theory, Lecture Notes in Arti�cial Intelligence, 1160, 256-271, (1996).

[14] K. Shimizu: A polynomial time algorithm for computing a shortest characteristic sequence and

maximal common subsequence of a set of sequences, Master thesis, University of Osaka, (1993).

[15] K. Wright: Identi�cation of unions of languages drawn from positive data, Proceedings of the

2nd Annual Workshop on Computational Learning Theory, 328-333, (1989).

Department of Mathematics and Information Sciences, Gratitude School of Science,

Osaka Prefecture University

1-1 Gakuen-cho, Sakai, Osaka 582-8582, JAPAN

