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ABSTRACT. Qur purpose is to show two strong convergence theorems for nonexpansive nonself-
mappings in a Hilbert space; these are generalizations of Wittmann’s result[7], and are proved
without any boundary conditions. For this purpose, a boundary condition, called nowhere
normal-outward condition, is investigated and characterized.

1 Introduction Let H be a Hilbert space, let C' be a nonempty closed convex subset of
H, and let T be a nonexpansive nonself-mapping jfrom C into H such that the set F(T') of
all fixed points of T' is nonempty. In 1992, Marino and Trombetta[2] defined two contraction
mappings S; and U; as follows: For a given u € C' and each ¢ € (0,1),

(1.1) Six =tPTe+ (1 —t)u forall zeC
and
(1.2) Ujrg =P(tTe + (1 —t)u) forall ze€C,

where P is the metric projection from H onto C. Then by the Banach contraction principle,
there exists a unique element x, € F(Sy)(resp. y¢ € F(Uy)), ie.

(1.3) g =tPTxy 4+ (1 —t)u
and
(1.4) yr = P(tTy: + (1 — t)u).

Recently, Xu and Yin[8] proved that if T is a nonexpansive nonself-mapping from C' into
H satisfying the weak inwardness condition, then {z,} (resp. {y,;}) defined by (1.3) (resp.
(1.4)) converges strongly as t — 1 to an element of F(T') which is nearest to u in F(T).
This result was extended to a Banach space by Takahashi and Kim[6]. On the other hand,
Wittmann[7] proved the following strong convergence theorem; see also [4]:

Theorem (Wittmann 1992).

Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be
a nonexpansive mapping from C into itself. Let {a,} be a sequence of real numbers such
that 0 < a, < 1, lim,— s a, = 0, 220:1 |opt1 — an| < oo, and 220:1 an, = oco. Define a
sequence {x,} as follows: vy =z € C and

Tpy1 = apt + (1 — ay)Sz, for n > 1.
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If F(S) #£ 0, then {x,} converges strongly to Px € F(S), where P is the metric projection
from C onto F(S).

In this paper, we extend the above Wittmann’s result to nonexpansive nonself-mappings
without any boundary conditions. For this purpose, we consider about a boundary con-
dition in Section 2, which is called nowhere normal-outward condition. Also we show two
propositions between the boundary condition and F(T') when T is a nonexpansive nonself-
mapping; the propositions play important roles in this paper. Finally, we introduce two
iteration schemes for T' by using the metric projection from H onto C, and show two strong
convergence theorems, which are generalizations of the Wittmann’s result in Section 3.

2 Preliminaries Throughout this paper, we denote the set of all positive integers by N.

Let H be a real Hilbert space with norm || - || and with inner product {-,-), let C be a closed

convex subset of H, and let T be a nonself-mapping from C into H. We denote the set of
all fixed points of T by F(T'). Then T is said to be nonexpansive if

1Tz — Tyl < ||z —y| forall z,y e C.

For all € H, there exists a unique element Px of C' satisfying

|z — Pz|| = min ||z —y|| forall z¢c H.
yed

This mapping P is said to be the metric projection from H onto C. We know that P is
nonexpansive and for all « € H, z = Pz if and only if (¢ — 2,y —2) <Oforall y € C. It
is known that H satisfies Opial’s condition [3]; see also [5]: if {z,} converges weakly to z,
then

liminf (|2, — 2| < liminf ||z, — y||

n—o0 n—o0

for all y # =.

Next, we introduce several boundary conditions upon the nonself-mapping.

(i) Rothe’s condition: T(9C) C C, where 9C is the boundary set of C;
(i1) inwardness condition[l]: Tz € I.(z) for all z € C', where
I(2)={y € H|y=2+a(z —z) for some z € C and a > 0};
(iii) weak inwardness condition[l]: Ta € cll.(z) for all © € C, where cl denotes the

norm-closure; and

(iv) nowhere normal-outward condition[l]: Tz € S¢ for all x € C, where P is the
metric projection from H onto C', and

Se={y€H |y+#uz,Py=na}

It is easily seen that there hold implications: (i)=-(ii)=-(iii). It also holds that (iii)=(iv);
see [1], p.354. To prove our results, we need the following propositions:

Proposition 2.1 Let H be a Hilbert space, let C be a nonempty closed convexr subset of H,
let P be the metric projection from H onto C, and let T be a nonself-mapping from C into
H satisfying the nowhere normal-outward condition. Then F(T) = F(PT). Moreover, if C

15 bounded and T 1s nonezpansive, then T has a fized point.
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Proof. At first we show F(T') = F(PT). It is sufficient to prove that F(PT) is a subset of
F(T). Let « € F(PT), that is PTx = z. Since Tz € S¢, we obtain Tz = 2. Next, suppose
that C' is bounded and T is nonexpansive. Then PT is a nonexpansive mapping from C'

into itself. Therefore F(T) = F(PT) # (), see [5]. O

Proposition 2.2 Let H be a Hilbert space, let C be a nonempty closed convexr subset of
H, let T be a nonexpansive nonself-mapping from C into H. If F(T) # (0, then T satisfies
nowhere normal-outward condition.

Proof. If there exists z9 € C such that Txg € S, then Txg # 2o and PTxq = 2, where
P is the metric projection from H onto C. Let z € F(T'), we have

1Tz — ZH2 = [Ty — 1‘0”2 +2(Two — PTxg, PTwg — z) 4 ||PTxo — ZH2
> leo — 2%

This contradicts that T is nonexpansive. Therefore, Tx € S¢ for all z € C.
O

Remark 2.1 By using Proposition 2.1 and Proposition 2.2, we can consider generalizations
of fixed point theorems ;from self-mappings to nonself-mappings. When T is a nonexpansive
nonself-mapping, applying the fixed point theorems to self-mapping PT, we have some
results with respect to nonself-mapping T. For example, we can show the following, which
is a generalization result of Xu and Yin’s result, see [8], and also note that it is proved
without any boundary conditions:

Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, let P be
the metric projection from H onto C, and let T be a nonexpansive nonself-mapping from C
into H. Let {x¢} and {y;} be the nets defined by (1.3) and (1.4), respectively. If T satisfies

nowhere normal-outward condition, then the following three conditions are equivalent:
o F(T)#£1,
o {x,} remains bounded as t — 1,

o {y;} remains bounded as t — 1.
Also, if F(T) # ¢, then {x+} and {y:} converge strongly ast — 1 to some fized points of T.

In the next section, we can apply the idea to Theorem 3.1. However, we can not apply it
to Theorem 3.2 simply; it is more complicated.

3 Main Results In this section, we prove two strong convergence theorems for non-
expansive nonself-mappings, which are generalizations of Wittmann’s result[7], and also,
which are not required any boundary conditions.

Theorem 3.1 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let
Py be the metric projection from H onto C, and let T be a nonexpansive nonself-mapping
from C into H. Let {a,} be a sequence of real numbers such that 0 < o, < 1, lim, 00y =
0, >0 langr —an| < oo, and 377 o, = co. Define a sequence {x,} as follows: vy =
x € C and

Tpg1 = an® + (1 — an) P Ty forn > 1.

If F(T) # 0, then {x,} converges strongly to Pax € F(T), where Py is the metric projection
from C onto F(T).
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This theorem is proved easily by using Proposition 2.1 and Proposition 2.2, as shown in
Remark 2.1.

Proof. Since PiT is a nonexpansive mapping from C' into itself, applying Wittmann’s
result, we obtain that {z,} converges strongly as n — oo to a fixed point z of P;T nearest
to x. Using Proposition 2.1 and Proposition 2.2, we obtain F(P,T) = F(T). Hence {z,}
converges strongly as n — oo to a fixed point z of T nearest to x. O

Theorem 3.2 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let
Py be the metric projection from H onto C, and let T be a nonexpansive nonself-mapping
from C into H. Let {c,,} be a sequence of real numbers such that 0 < o, < 1, lim,,_yo0 oy =
0, Zzozl |ang1 — an] < oo, and 22021 ay, = 0o. Define a sequence {y,} as follows: y, =
y € C and

Ynt1 = Pr(any + (1 — ap)Ty,) forn > 1.

If F(T) # 0, then {y,} converges strongly to Pyy € F(T), where Py is the metric projection
from C onto F(T).

Proof. Let z € F(T). Then we have

ly2 =zl = |Pi(ery + (L —a1)Ty1) — Prz||
< ey + (1 — )Ty — 2|
< arlly =2+ (1= an)llyn — 2|

ly — =l

If |lyn — 2|| < ||y — z|| for some n € N, then we can show that ||yn4+1 — 2| < ||y — 2| similarly.
Therefore, by induction, we obtain ||y, — 2| < ||y — z|| for all n €N and hence {y,} and
{Ty,} are bounded. Set K = sup{||Ty,| : n € N}. Then

[Yne1 —ynll = [[Pilomy + (1 —an)Tyn) = Pr(an—1y + (1 = an1)Tyn )|
< ey + (1= an)Tyn = {an—1y + (1 — an—1)Tyn—1}|
= (e —an—1)y + (1 — an)(Tyn — Tyn—1) + (n—1 — an)Tyn_1]|
< apoyr —ap|||yll + (1 = an)l|yn = Yn—1ll + lan—1 — an ||| Tyn—1]|
< an—r —anl(llyll + K) + (1 = an)llyn — yn—1|

for each n € N. By induction, we have

n+m—1 n+m-—1
Wttt — vnrmll < S awgr —axl(yl + K+ T (1t ymer — vl
k=m k=m

for all m,n € N. By Y>>~ a,, = o0, we have [[_ (1 — a,,) = 0; see [4]. Hence we obtain

lim sup Hyn+1 - ynH = lim sup Hyn+m+1 - yn+m|| < Z ‘O‘k+1 - OZk|(Hy|| + If)
n—oo n—00

k=m
for all m € N. By Y07 | g1 — an| < 00, we get limy oo ||[Ynt1 — ynll = 0. Also, from
||1/n_P1TynH = H-Pl(anfly‘k(l_anfl)Tynfl)_PlTynH

< a1y + (1 = an—1)Tyn—1 — Tyal|
< an71||y - TUnH + (]— — Olnfl)l‘ynfl - ynH-,
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we obtain
(3.5) lim [ly — Py Ty, | = 0.
n—ro0
Next we prove
(3.6) lim sup {y,, — Pay,y — Pa2y) < 0.
n—oo

Let {yn, } be a subsequence of {y,} which satisfies

lim (yn, — Pay,y — Poy) = limsup (yn — Poy,y — Pay),

k—oc n—oo
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and which converges weakly as & — oo to yo € C. By (3.5) and Opial’s condition, we obtain
yo € F(P,T). Applying Proposition 2.1 and Proposition 2.2, we conclude yo € F(T'). Then

we have

limsup (yn — Poy,y — Poy) = lIm (yn, — Poy,y — Pay)

n—oo k—

= (vo— P,y — Pay) <0.
By (3.6), for any ¢ > 0, there exists m € N such that
(3.7) (Yn — Pay.y — Poy) < ¢
for all n > m. On the other hand, from
Pi(any + (1 — an)Tyn) — Pi(any + (1 — an)Pay) = ynt1 — Poy + an(Pay — y),
we have
[P (any + (1 = an)Tyn) = Pr(ony + (1 = an) Pay)||?
> [[ynt1 — Payll> + 200 (ynt+1 — Pay, Pay — y).
This implies
[Ynt1 — Pyl < (1 — 0)?|Tyn — Poyll* + 200 (yns1 — Pay.y — Poy)
for all n € N. By (3.7), we have
Y41 — Poyl? < 200(yni1 — Pow,y — Pox) + (1 — an)?||Tyn — Poyl|?
< 2ane + (1 - an)[|Tyn — Poyll® < 2ane + (1 — an)|lyn — Poyl®
= 2:(1—(1—an)) + (1 = an)llyn — Pay|?

for all n > m. This implies

lYnt1 — Poyll? < 2e{1—(1—ay,)}
+2e(1 = an)(1 = (1= ap—1) + (1 = an1)|lyn—1 — Poyl*)

= 2:{1-(1—an)(l = an-1)} + (1= an)(l = an-1)llyn-1 — Poyll”

for all n > m. By induction, we obtain

n n
[Ynt1 — Payl® §2€{1 o | } IT (= an)lym — Poyll*.
k=m k=m

Therefore, from > 7, o, = 00, we obtain

lim sup ||yns1 — Poyl|* < 2e.
n—o0

Since ¢ is arbitrary, we can conclude that {y,} converges strongly to P»y.
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