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Abstract. This article studies a continuous-time generalization of the so-called secre-

tary problem. A man seeks an apartment. Opportunities to inspect apartments arise

according to a homogeneous Poisson process of unknown intensity � having a Gamma

prior density, G(r; 1=a), where r is natural number. At any epoch he is able to rank a

given apartment amongst all those inspected to date, where all permutations of ranks

are equally likely and independent of the Poisson process.The objective to maximize

the probability of selecting best apartment from those (if any) available in the interval

[0; T ], where T is given. This problem is reformulated as the optimal stopping prob-

lem and it is shown to be the monotone case. The optimal strategy for the problem is

solved to be a threshold rule.

1 Introduction. This article studies a continuous-time generalization of the so-called

secretary problem which is as follows: A man has been allowed a �xed time T in which to �nd

an apartment. Opportunities to inspect apartments occur at the epochs of a homogeneous

Poisson process of unknown intensity �. He inspects each apartment when the opportunity

arises, and he must decide immediately whether to accept or not. At any epoch he is able to

rank a given apartment amongst all those inspected to date, where all permutations of ranks

are equally likely and independent of the Poisson process. The objective is to maximize

the probability of selecting the best apartment from those (if any) available in the interval

[0; T ]. We show that if the prior density of the intensity is Gamma G(r; 1=a) where r is

natural number, then the optimal strategy for this problem can be described as follows;

accept the jth option which arrives after time s
(r)�
j

if the option is the �rst relatively best

option (if any), where s
(r)�
j

is nonincreasing sequence of j and is determined by the unique

root of a certain equation, and s
(r)�
j

! (T + a)=e� a as j !1 for all r.

Bruss (1987) showed that if the prior density of the intensity of the Poisson process

is exponential with parameter a > 0, E(1=a) (note that this is Gamma distribution with

parameters 1 and 1=a, G(1; 1=a)), then the optimal strategy is to accept the �rst relatively

best option (if any) after time s� = (T + a)=e� a. Cowan and Zabczyk (1978) studied the

problem where the intensity of the Poisson process is known. Therefore, Bruss' problem

is an extension of their model. A di�erent approach to the secretary problem with an

unknown number of options had been developed by Presman and Sonin (1972). Ano (2001)

studied multiple selections with the objective of maximizing the probability of selecting the

overall best option for both the problems of Bruss and Presman and Sonin, and derived the

optimal strategy for Bruss' multiple selection problem.

To �nd the optimal strategy for Bruss' problem, he directly calculated the maximum

probability of selecting the best apartment when the current relatively best option is ac-

cepted, and the maximum probability of selecting the best one when the current relatively
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best option is rejected. In Section 2 of this paper, his problem is resolved from a di�erent

approach and it is shown that it is monotone in the sense of Chow, Robbins, and Siegmund

(1971). This section has an instructive and preparative meaning of the next sections. For

a good background of the Poisson process to the Section 2, see Chapter 7 of Karlin (1966).

The following questions naturally arise: if the prior density of the intensity is Gamma

G(r; 1=a); r = 1; 2; 3; � � �, what is the optimal strategy? In Section 3 and 4, the problem of

Gamma prior intensity with natural number parameter is studied in detail.

2 Resolution of Bruss' problem. The one-stage look-ahead stopping strategy is em-

ployed to resolve Bruss' problem. Let S1; S2; � � � denote the arrival times of the Poisson pro-

cess, fN(t)gt�0. For unknown intensity �, an exponential prior density a expf�a�gI(� > 0)

is assumed, where a is known and nonnegative. Then by Bayes' theorem, the conditional

posterior density f(�jSj = s) given Sj = s, is f(�jSj = s) = (�j=j!)(s + a)j+1 expf�(s +

a)�gI(� > 0); s 2 [0; T ]. Bruss showed that the posterior distribution of N(T ) given

s1; � � � ; sj(= s) is equivalent to a Pascal distribution with parameters (j; (s + a)=(T + a)),

that is,

P (N(T ) = njS1 = t1; � � � ; Sj�1 = tj�1; Sj = s)

= P (N(T ) = njSj = s)

=

�
n

j

��
s+ a

T + a

�j+1�
1�

s+ a

T + a

�n�j

:

Let (j; s) denote the state of the process, when option number j arrives at time s and

that is the relatively best one. De�ne the relative rank of jth option by Yj . Yj = 1 represents

the relative rank of jth option is best, Yj = 2 does the one of jth option is second and so

on. De�ne the ture rank of jth option by Xj . Xj = 1 means that Xj is the best option of

all, so Xj = min(X1; � � � ; XN(T )): Let Wj(s) denote the maximum probability of obtaining

the best option starting from state (j; s), that is,

Wj(s) = sup
�2[j;N(T )]

P (X� = 1jSj = s; Yj = 1):

Similarly, let Uj(s) be the corresponding probability when we select the current relatively

best option, that is,

Uj(s) =
X
n�j

P (Xj = 1; N(T ) = njSj = s; Yj = 1)

=
X
n�j

�
j

n

�
P (N(T ) = njSj = s) =

s+ a

T + a
:

Let Vj(s) be the corresponding probability when we don't select the current relatively best

option and proceed optimally thereafter, that is,

Vj(s) =

Z
T�s

0

X
k�1

p
(k;u)
(j;s) Wj+k(s+ u)du;

where p
(k;u)
(j;s) is the one-step transition probability from state (j; s) to state (j+k; s+u) and

is de�ned as

p
(k;u)
(j;s) =

Z 1

0

P (Sj+k = s+ ujSj = s; �)

�P (Yj+k = 1jYj = 1; Sj = s; Sj+k = s+ u; �)g(�jSj = s)d�:
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Since

P (Yj+k = 1jYj = 1; Sj = s; Sj+k = s+ u; �) =
j

(j + k � 1)(j + k)
;

p
(k;u)
(j;s) can be derived from the equality

R
1

0
�k+j expf��(s+ a+ u)gd� = �(k+ j +1)=(s+

a+ u)k+j+1 as follows.

p
(k;u)
(j;s) =

Z
1

0

�e��u(�u)k�1

(k � 1)!

j

(j + k � 1)(j + k)

e��(s+a)�j(s+ a)j+1

j!
d�

=
s+ a

(s+ a+ u)2

�
j + k � 2

k � 1

��
s+ a

s+ a+ u

�j�
u

s+ a+ u

�k�1

:

By the principle of optimality, we have the following optimal equation,

Wj(s) = maxfUj(s); Vj(s)g; j � 1; 0 < s � T;

with Wj(T ) = 1 for j = 1; 2; � � �. Let B be the one-step look-ahead stopping region, that

is, B is the set of state (j; s) for which selecting the current relatively best option is at

least as good as waiting for the next relatively best option to appear and then selecting it.

Therefore, B is given by

B = f(j; s) : Uj(s)�

Z
T�s

0

X
k�1

p
(k;u)
(j;s) Uj+k(s+ u)du � 0g:

De�ne hj(s) as hj(s) � Uj(s) �
R
T�s

0

P
k�1 p

(k;u)
(j;s) Uj+k(s + u)du. A stopping problem is

de�ned as monotone if the events Gj(s) = fhj(s) � 0g, are monotone non-decreasing in j

and s, i.e., G0(s) � G1(s) � � � � a.s. and for u > 0, Gj(s) � Gj(s + u) � � � � a.s. Now we

have

hj(s) =
s+ a

T + a
�

Z
T�s

0

X
k�1

p
(k;u)
(j;s)

�
s+ a+ u

T + a

�
du

=
s+ a

T + a
�

Z
T�s

0

X
k�1

s+ a

(s+ a+ u)2

�
j + k � 2

k � 1

��
s+ a

s+ a+ u

�j

�

�
u

s+ a+ u

�k�1�
s+ a+ u

T + a

�
du

=
s+ a

T + a
�

Z
T�s

0

s+ a

T + a

1

s+ a+ u
du

=
s+ a

T + a

�
1 + ln

�
s+ a

T + a

��
:

This function hj(s) does not depend on j, so we write this h(s). The third equality follows

from the equalities, p
(k;u)
(j;s) = (s + a)=(s + a + u)2� fPascal distribution with parameters

(k; u=(s+ a+ u))g and
P

k�1 p
(k;u)
(j;s) = (s+ a)=(s+ a+ u)2. Using h(s), B reduces to

B = f(j; s) : h(s) � 0g = fs : ln

�
s+ a

T + a

�
� �1g = fs : s � (T + a)=e� ag:
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Because ln((s+ a)=(T + a)) is nondecreasing in s, if h(s) � 0, then h(s+ u) � 0; for u > 0.

Therefore, for 0 < u < T � s, we can see that

P (h(s+ u) � 0jh(s) � 0) = P (s+ u 2 Bjs 2 B) = 1;

or, equivalently,

G(s) � G(s+ u) � � � � a.s.

Thus, the problem is monotone and B is "closed". It is known that if the problem is

monotone, then B gives the optimal stopping region. Now we have reached the following

result.

Theorem 1 (Bruss(1987)) If the prior density of the intensity of the Poisson process is

exponential with parameter a > 0, then the problem is monotone and the optimal strategy

is to accept the �rst relatively best option (if any) after time s� = (T + a)=e� a.

3 Problem for Gamma prior intensity, G(2; 1=a). Suppose that the prior density

of the intensity � of the Poisson process is Gamma with parameters r > 0; a > 0, G(r; 1=a).

Then, the density of � is given by

g(�) =
ar

�(r)
e�a��r�1:

The posterior density of � given S1 = s1; � � � ; Sj = s can be computed and turns out to

be Gamma, G(r + j; 1=(a+ s)). We can see that the posterior distribution of N(T ) given

S1 = s1; � � � ; Sj = s is again a Pascal distribution.

Lemma 2 The posterior distribution of N(T ) given S1 = s1; � � � ; Sj = s(0 < s < T ) only

depends on the values of j and Sj , and is a Pascal distribution with parameters r + j; (s+

a)=(T + a). That is, for n = j; j + 1; � � �

P (N(T ) = njS1 = s1; � � � ; Sj = s) =
�(n+ r)

�(r + j)(n� j)!

�
s+ a

T + a

�r+j�
T � s

T + a

�n�j

:

This statement was found in Bruss (1987) without the proof. The proof for Lemma 2 above

was derived in a similar manner as the proof of the Lemma in Section 2 of Bruss (1987) (in

which the posterior distribution of N(T ) is given for the exponential prior intensity). The

precise proof for Lemma 2 follows.

Proof. The arrival times S1; S2; � � � ; Sj�1 of the Poisson process, given Sj = s, are i.i.d.

random variables with the uniform distribution on (0; s). The joint distribution of the

order statistics S1 < S2 < � � � < Sj = s, therefore, only depends on the values j and Sj .

Thus,

P (N(T ) = njS1 = s1; � � � ; Sj = s) = P (N(T ) = njN(s) = j; Sj = s)

= P (N(T ) = njSj = s):

Let g(�jSj = s) be the conditional density of � given Sj = s; then we get

P (N(T ) = njSj = s) =

Z
1

0

P (N(T ) = njSj = s; �)g(�jSj = s)d�:(1)
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Since fN(t)gt�0 has independent stationary increments, it follows that

P (N(T ) = njSj = s; �) =
(�(T � s))n�j

(n� j)!
e��(T�s):(2)

The conditional density of Sj given � equals

f(sj�) =
(�s)j�1

(j � 1)!
�e��s:

Using Bayes' theorem, we get

g(�jSj = s) =
�j+r�1e��(s+a)R

1

0
uj+r�1e�u(s+a)du

=
�j+r�1e��(s+a)

1
(s+a)j+r �(j + r)

:(3)

We obtain from (1), (2) and (3)

P (N(T ) = njSj = s) =

Z
1

0

(�(T � s))n�j

(n� j)!
e��(T�s)

�j+r�1e��(s+a)(s+ a)j+r

�(j + r)
d�

=
(T � s)n�j(s+ a)j+r

�(j + r)(n� j)!

Z
1

0

�n+r�1e��(T+a)d�

=
(T � s)n�j(s+ a)j+r

�(j + r)(n� j)!

�(n+ r)

(T + a)n+r

=
�(n+ r)

�(j + r)(n� j)!

�
s+ a

T + a

�j+r�
T � s

T + a

�n�j

:

"#

For the problem with Gamma prior density of the intensity, let U
(r)
j

(s); V
(r)
j

(s) and

W
(r)
j

(s) denote the same probabilities de�ned in Section 2. Using the formula

(n+ r � 1)!

n
= (r � 1)!

r�1X
i=0

(n+ i� 1)!

i!
; for r = 1; 2; � � � ;(4)

U
(r)
j

(s) becomes

U
(r)
j

(s) = E

�
j

N(T )

���� Sj = s

�
=

X
n�j

�
j

n

�
P (N(T ) = njSj = s)

=
j(r � 1)!

(j + r � 1)!

r�1X
i=0

(j + i� 1)!

i!
�r�i;

where � = (s + a)=(T + a). In particular, for r = 1; 2, and 3, we have U
(r)
j

(s) = �; �(j +

�)=(j + 1), and �(2�(� + j) + j(j + 1))=((j + 1)(j + 2)), respectively.

Since the distribution of the interarrival time of the Poisson process is the exponential

distribution, the posterior distribution of �, given Sj = s, is given by (3), and the conditional

probability that the (j+k)th option is the �rst relatively best option among (j+k) options
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after the jth option, which was the relatively best one among j options, is j=((j+k�1)(j+

k)), the one-step transition probability p
(k;u)
(j;s) is given by

p
(k;u)
(j;s) =

Z
1

0

�e��u(�u)k�1

�(k)

j

(j + k � 1)(j + k)

�j+r�1e��(s+a)(s+ a)j+r

�(j + r)
d�(5)

=
j(s+ a)j+ruk�1

�(k)(j + k � 1)(j + k)�(j + r)

Z 1

0

�j+r+k�1e��(s+a+u)d�

=
�(j + k + r)

�(k)�(j + r)

j

(j + k � 1)(j + k)

s+ a

(s+ a+ u)2

�

�
s+ a

s+ a+ u

�j+r�1�
u

s+ a+ u

�k�1

:

Then we get

V
(r)
j

(s) =

Z
T�s

0

X
k�1

p
(k;u)
(j;s) W

(r)
j+k(s+ u)du:

By the principle of optimality, we have

W
(r)
j

(s) = maxfU
(r)
j

(s); V
(r)
j

(s)g; j = 1; 2; � � � ; 0 < s � T;

with W
(r)
j

(T ) = 1 for j = 1; 2; � � �. The one-stage look-ahead stopping region Br is given by

Br = f(j; s) : G
(r)
j
(s) � 0g

where

G
(r)
j
(s) � U

(r)
j

(s)�

Z
T�s

0

X
k�1

p
(k;u)
(j;s) U

(r)
j+k(s+ u)du:

When the parameter r of the Gamma prior is 2, that is, G(2; 1=a), we have

U
(2)
j

(s) =
1

j + 1

s+ a

T + a

�
j +

s+ a

T + a

�
:

De�ne h
(2)
j
(s) as

h
(2)
j
(s) �

(j + 1)(T + a)

s+ a
G

(2)
j
(s);

then B2 can be rewritten as B2 = f(j; s) : h
(2)
j
(s) � 0g. Thus

h
(2)
j
(s) = j +

s+ a

T + a
�

(T + a)(j + 1)

s+ a

Z
T�s

0

X
k�1

p
(k;u)
(j;s)

1

j + k + 1

s+ a+ u

T + a

�

�
j + k � 1 +

�
1 +

s+ a+ u

T + a

��
du:(6)

Using (5), the second term of RHS in (6) becomes

Z
T�s

0

X
k�1

(j + k � 2)!

(k � 1)!j!

j

s+ a+ u

�
s+ a

s+ a+ u

�j+1�
u

s+ a+ u

�k�1
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�

�
j + k � 1 +

�
1 +

s+ a+ u

T + a

��
du(7)

=

Z
T�s

0

j

s+ a+ u

X
k�1

(j + k � 1)!

(k � 1)!j!

�
s+ a

s+ a+ u

�j+1�
u

s+ a+ u

�k�1

du

+

Z
T�s

0

X
k�1

(j + k � 2)!

(k � 1)!j!

j

s+ a+ u

�
s+ a

s+ a+ u

�j+1�
u

s+ a+ u

�k�1

�

�
1 +

s+ a+ u

T + a

�
du

=

Z
T�s

0

j

s+ a+ u
du+

Z
T�s

0

s+ a

(s+ a+ u)2

�
1 +

s+ a+ u

T + a

�
du

= �

�
j +

s+ a

T + a

�
ln

s+ a

T + a
+ 1�

s+ a

T + a
;

where the third equality follows from the following formulas, for 0 < p < 1X
k�1

�
j + k � 1

k � 1

�
pj+1(1� p)k�1 = 1;

X
k�1

�
j + k � 2

k � 1

�
pj+1(1� p)k�1 = p:

>From (6) and (7), we have after some simpli�cation

h
(2)
j
(s) = H

(2)
j

(�) = j(1 + ln �) + � ln � + 2� � 1;(8)

where � = (s+ a)=(T + a). Now we can write the one-stage look-ahead stopping region B2

as

B2 =

�
(j; s) : H

(2)
j

�
s+ a

T + a

�
� 0

�
:

SinceH
(2)
j

(�) is strictly increasing in � and has exactly one solution t
(2)�
j

= (s
(2)�
j

+a)=(T+a).

Then B2 is written as B2 = f(j; s) : s � s
(2)�
j

g: In the case where H
(2)
j

(�) = 0, then

1 + ln � = �(� ln � + 2� � 1)=j: When j ! 1, the RHS of the above equation tends to

zero. Thus lim t
(2)�
j

= 1=e and then lim s
(2)�
j

= (T + a)=e � a. On the other hand, since

H
(2)
j+1(�) � H

(2)
j

(�) = 1 + ln � then H
(2)
j

(�) is decreasing in j for � < 1=e and increasing

for � � 1=e. Moreover H
(2)
j

(1=e) = 1=e � 1 < 0 and therefore t
(2)�
j

> 1=e for every

j. So, Hj(�) � 0 implies Hj+k(� + u) for every k and u � 0, and we can see that for

h
(2)
j
(s) = H

(2)
j

((s+ a)=(T + a))

P (h
(2)
j+k(s+ u) � 0jh

(2)
j
(s) � 0) = P ((j + k; s+ u) 2 B2j(j; s) 2 B2) = 1;

for k = 1; 2; � � � ; u > 0: Therefore, B2 is \closed" and the problem becomes monotone and

B2 becomes optimal stopping region. Now we have the following result.

Theorem 3 Suppose that the prior density of the intensity of the Poisson process is Gamma

with parameters 2 and a > 0. Then the optimal strategy is to accept the jth option which

arrives after time s
(2)�
j

if the option is the �rst relatively best option (if any), where s
(2)�
j

is

nonincreasing sequence of j and is determined by the unique root of the equation h
(2)
j
(s) = 0.

The values t
(2)�
j

(= (s
(2)�
j

+ a)=(T + a)) for j = 1; � � � ; 10; � � � ; 50; 100; 1000; 10000 are shown

in Table 1.
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Table 1: The values of t
(2)�
j

for r = 2

j 1 2 3 4 5 6

t
(2)�
j

.509242 .458519 .433823 .419516 .410248 .403776

j 7 8 9 10 20 30

t
(2)�
j

.399008 .395352 .392462 .390120 .379257 .375521

j 40 50 100 1000 10000 1

t
(2)�
j

.373621 .372491 .370195 .368112 .367902 1=e

4 Problem for G(r; 1=a). For r = 1; 2; � � �, we get

G
(r)
i
(s) � U

(r)
i

(s)�

Z
T�s

0

X
k�1

p
(k;u)
(i;s) U

(r)
i+k(s+ u)du

=
i(r � 1) !

(i+ r � 1) !

r�1X
j=0

(i+ j � 1) !

j !

�
s+ a

T + a

�r�j

�

Z
T�s

0

X
k�1

�(i+ k + r)

�(k)�(i+ r)

i

(i+ k)(i+ k � 1)

s+ a

(s+ a+ u)2

�
s+ a

s+ a+ u

�i+r�1

�

�
u

s+ a+ u

�k�1
(i+ k)(r � 1) !

(i+ k + r � 1) !

r�1X
j=0

(i+ k + j � 1) !

j !

�
s+ a+ u

T + a

�r�j

du

=
i(r � 1) !

(i+ r � 1) !

r�1X
j=0

(i+ j � 1) !

j !

�
s+ a

T + a

�r�j

�

Z
T�s

0

X
k�1

(r � 1) !

(k � 1) ! (i+ r � 1) !

i

i+ k � 1

s+ a

(s+ a+ u)2

�
s+ a

s+ a+ u

�i+r�1

�

�
u

s+ a+ u

�k�1 r�1X
j=0

(i+ k + j � 1) !

j !

�
s+ a+ u

T + a

�r�j

du:

Let

h
(r)
i
(s) �

(i+ r � 1) !

i ! (r � 1) !

T + a

s+ a
G
(r)
i
(s);

then

h
(r)
i
(s) =

(i+ r � 1) !

i ! (r � 1) !

T + a

s+ a

i(r � 1) !

(i+ r � 1) !

r�1X
j=0

(i+ j � 1) !

j !

�
s+ a

T + a

�r�j

�
(i+ r � 1) !

i ! (r � 1) !

T + a

s+ a

Z
T�s

0

X
k�1

(i+ k + r � 1) !

(k � 1)(i+ r � 1)

i

(i+ k)(i+ k � 1)

�
s+ a

(s+ a+ u)2

�
s+ a

s+ a+ u

�i+r�1�
u

s+ a+ u

�k�1
(i+ k)(r � 1) !

(i+ k + r � 1) !

�

r�1X
j=0

(i+ k + j � 1) !

j !

�
s+ a+ u

T + a

�r�j

du
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=

r�1X
j=0

(i+ j � 1) !

(i� 1) ! j !

�
s+ a

T + a

�r�j�1

�

Z
T�s

0

X
k�1

1

(i� 1) ! (k � 1) !

1

i+ k � 1

�
1

s+ a+ u

�
s+ a

s+ a+ u

�i+r�1�
u

s+ a+ u

�k�1

�

r�1X
j=0

(i+ k + j � 1) !

j !

�
s+ a+ u

T + a

�r�j�1

du:(9)

Thus Br can be rewritten as

Br = f(i; s) : h
(r)
i
(s) � 0g:

For the formula (4), let n = i+ k � 1 and r = j + 1, then

(i+ k + j � 1) !

i+ k � 1
= j !

jX
l=0

(i+ k + l � 2) !

l !
:

Let �̂ = (s+ a)=(s+ a+ u). Using this, the second term of RHS of (9) is obtained by

�

Z
T�s

0

X
k�1

1

(i� 1) ! (k � 1) !

1

s+ a+ u
�̂i+r�1(1� �̂)k�1(10)

�

r�1X
j=0

1

j !
j !

jX
l=0

(i+ k + l � 2) !

l !

�
s+ a+ u

T + a

�r�j�1

du

= �

Z
T�s

0

r�1X
j=0

jX
l=0

X
k�1

(i+ k + l � 2) !

(k � 1) ! (i+ l � 1) !

(i+ l � 1) !

(i� 1) ! l !
�̂i+r�1(1� �̂)k�1

�
1

s+ a+ u

�
s+ a+ u

T + a

�r�j�1

du

= �

Z
T�s

0

r�1X
j=0

jX
l=0

X
k�1

�
i+ k + l� 2

k � 1

�
�̂i+l+(r�l�1)(1� �̂)k�1

�

�
i+ l � 1

l

�
1

s+ a+ u

�
s+ a+ u

T + a

�r�j�1

du

= �

Z
T�s

0

r�1X
j=0

�
i+ j � 1

j

��
s+ a

T + a

�r�j�1
du

s+ a+ u

�

Z
T�s

0

r�1X
j=0

j�1X
l=0

�
i+ l � 1

l

��
(s+ a)r�l�1

(T + a)r�j�1

�
(s+ a+ u)l�j�1du

=

r�1X
j=0

�
i+ j � 1

j

��
s+ a

T + a

�r�j�1

ln

�
s+ a

T + a

�

+

r�1X
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l

(�
s+ a

T + a

�r�l�1

�

�
s+ a

T + a

�r�j�1
)

(11)
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where the forth equality follows, for 0 � �̂ � 1,X
k�1

�
i+ k � 1

k � 1

�
�̂i+1(1� �̂)k�1 = 1:

Finally we have for � = (s+ a)=(T + a),

h
(r)
i
(s) = H

(r)
i

(�) =

r�1X
j=0

�
i+ j � 1

j

�
�r�j�1(1 + ln �)

+

r�1X
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l
(�r�l�1 � �r�j�1):(12)

When r = 2, U
(2)
i

(s) and H
(2)
i

(�) are given as follows and these functions are equivalent

to the ones found in Section 3;

U
(2)
i

(s) =
�(i+ �)

i+ 1
;

H
(2)
i

(�) = i(1 + ln �) + � ln � + 2� � 1:

The optimal stopping rule for G(r; 1=a), r = 1; 2; � � � ; a > 0 is given in Theorem 6. To

prove Theorem 6, we need two lemmas.

Lemma 4

h
(r)
i+1(s)� h

(r)
i
(s) = h

(r�1)
i+1 (s)

Proof. Let (12) rewrite as

h
(r)
i
(s) =

r�1X
m=0

�
i+m� 1

m

�
C(r)
m
;

where

C(r)
m

= �r�m�1(1 + ln �) +

r�1X
j=m+1

1

j �m
(�r�m�1 � �r�j�1); m = 0; 1; � � � ; r � 2

C
(r)
r�1 = 1 + ln �:

Note that C
(r)
m = C

(r+1)
m+1 holds.

Therefore

h
(r)
i+1(s)� h

(r)
i
(s) =

r�1X
m=0

��
i+m

m

�
�

�
i+m� 1

m

��
C(r)
m

=

r�1X
m=0

�
i+m

i
� 1

��
i+m� 1

m

�
C(r)
m

=

r�1X
m=1

�
i+m� 1

m� 1

�
C(r)
m

=

r�2X
m=0

�
i+m

m

�
C

(r�1)
m�1 = h

(r�1)
i+1 (s):

"#
Let s

(r)�
i

be the unique root of the equation h
(r)
i
(s) = 0.
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Lemma 5

(i) h
(r)
i
(s) � 0 =) h

(r)
i
(s+ u) � 0, 0 < u < T � s.

(ii) h
(r)
i
(s) � 0 =) h

(r)
i+1(s) � 0!$i = 1; 2; � � �.

(iii) s
(r)�
i

is nonincreasing in i.

Proof.

(i) To show the statement, it is enough to prove that (a) h
(r)
i
(s) is increasing in s 2

[s
(r�1)�
i

; T ], (b) h
(r)
i
(s) < 0 for s 2 (0; s

(r�1)�
i

) and (c) h
(r)
i
(s) = 0 has a unique root

s
(r)�
i

2 [s
(r�1)�
i

; T ] (Note that this is consequently obtained by (a) and (b)). These are

shown by induction on r. Since �(= (s + a)=(T + a)) is increasing function of s and

h
(1)
i
(s) = 1 + ln �, obviously h

(1)
i
(s) is increasing in s and h

(1)
i
(s) = 0 has the unique

root 1=e(= s
(1)�
i

). Thus for r = 1, (a), (b) and (c) hold.

Assume that (a) h
(r)
i
(s) is increasing in s 2 [s

(r�1)�
i

; T ], (b) h
(r)
i
(s) < 0 for s 2

(0; s
(r�1)�
i

) and (c) h
(r)
i
(s) = 0 has a unique root s

(r)�
i

2 [s
(r�1)�
i

; T ]. h
(r+1)
i

(s) can be

written as

h
(r+1)
i

(s) =

rX
j=0

�
i+ j � 1

j

�
�r�j(1 + ln �) +

rX
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l
(�r�l � �r�j)

= �h
(r)
i
(s) +

�
i+ r � 1

r

�
(1 + ln �) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(�r�l � 1):

Note that �, ln � and �r�l are increasing in s. Therefore if h
(r)
i
(s) � 0, that is

s 2 [s
(r)�
i

; T ], then h
(r+1)
i

(s) is increasing in s 2 [s
(r)�
i

; T ]. Thus for r + 1, (a) holds.

To show that (b) holds for r + 1, �rst we see that h
(r+1)
i

(s
(r)�
i

) < 0. Let �� =

(s
(r)�
i

+ a)=(T + a).

h
(r+1)
i

(s
(r)�
i

)

= ��h
(r)
i
(s

(r)�
i

) +

�
i+ r � 1

r

�
(1 + ln ��) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(��r�l � 1)

=

�
i+ r � 1

r

�
(1 + ln ��) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(��r�l � 1):(13)

On the other hand, using another transformation of the formula (4), we have

�
n+ r � 1

r � 1

�
=

r�1X
i=1

�
n+ i� 1

i

�
:

By the above equation, we can see that

h
(r)
i
(s

(r)�
i

) = 0

()

�
i+ r � 1

r � 1

�
(1 + ln ��) +

r�1X
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l
(��j�l � 1) = 0:(14)
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>From (13) and (14), h
(r+1)
i

(s
(r)�
i

) can be written as

h
(r+1)
i

(s
(r)�
i

)

= �
i

r

r�1X
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l
(��j�l � 1) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(��r�l � 1)

= �

r�1X
m=1

i

r

�
i+ r �m� 1

r �m� 1

�
1

m
(��m � 1) +

rX
m=1

�
i+ r �m� 1

r �m

�
1

m
(��m � 1)

=
1

r

r�1X
l=0

�
i+ l � 1

l

�
(��r�l � 1)

< 0:(15)

For s 2 (0; s
(r)�
i

),

h
(r+1)
i

(s) = �h
(r)
i
(s) +

�
i+ r � 1

r

�
(1 + ln �) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(�r�l � 1)

< ��h
(r)
i
(s

(r)�
i

) +

�
i+ r � 1

r

�
(1 + ln ��) +

r�1X
l=0

�
i+ l � 1

l

�
1

r � l
(��r�l � 1)

= h
(r+1)
i

(s
(r)�
i

)

< 0 (from (15)):

So (b) holds for r + 1. Therefore (c) holds for r + 1. The proof is completed.

(ii) To show

h
(r)
i
(s) � 0 =) h

(r)
i+1(s) � 0; i = 1; 2; � � � ;

from Lemma 4 it is suÆcient to show

h
(r)
i
(s) � 0 =) h

(r�1)
i+1 (s) � 0:(16)

To show this, it is suÆcient to show from (i)

s
(r�1)�
i+1 < s

(r)�
i

:

That is, it must be shown

h
(r)
i
(s

(r�1)�
i+1 ) < 0:

This is true because from Lemma 4 and (15)

h
(r)
i
(s

(r�1)�
i+1 ) = h

(r)
i+1(s

(r�1)�
i+1 ) < 0:

(iii) >From (i), it is shown that h
(r)
i
(s) = 0 has unique root s

(r)�
i

and one-step look-ahead

stopping region Br can be written as Br = f(i; s) : s � s
(r)�
i

g. >From (16), for

s 2 [s
(r)�
i

; T ]

h
(r)
i
(s) � 0 =) h

(r�1)
i+1 (s) � 0:

>From Lemma 4, for s 2 [s
(r)�
i

; T ]

h
(r)
i
(s) � 0 =) h

(r)
i+1(s) � h

(r)
i
(s):
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Thus

h
(r)
i+1(s

(r)�
i

) � h
(r)
i
(s

(r)�
i

) = 0:

Finally we get

s
(r)�
i+1 � s

(r)�
i

:

"#

Theorem 6 Suppose that the prior density of the intensity of the Poisson process is Gamma

with parameters r = 1; 2; � � � and a > 0. The optimal stopping rule ��
r
is

��
r
= minfsi 2 [ s

(r)�
i

; T ] : Xi = 1g;

where Xi is the relative rank of the ith option. That is, it is to accept the ith option which

arrives after time s
(r)�

i
if the option is the �rst relatively best option (if any), where s

(r)�

i
is

nonincreasing sequence of i and is determined by the unique root in (0; T ] of the equation

h
(r)
i
(s) = 0, that is

r�1X
j=0

�
i+ j � 1

j

�
�r�j�1(1 + ln �) +

r�1X
j=1

j�1X
l=0

�
i+ l � 1

l

�
1

j � l
(�r�l�1 � �r�j�1) = 0;

where � = (s+ a)=(T + a).

Proof. >From Lemma 5 (i),

h
(r)
i
(s) � 0 =) h

(r)
i
(s+ u) � 0; 0 < u � T � s:

>From Lemma 5 (ii),

h
(r)
i
(s) � 0 =) h

(r)
i+1(s) � 0:

Then we have

h
(r)
i
(s) � 0 =) h

(r)
i+k(s+ u) � 0; 0 < u � T � s; k = 1; 2; � � � :

Therefore one-step look-ahead stopping regionBr is \closed" and is optimal stopping region.

So the �rst hitting time to Br, �
�

r
= minfs � s

(r)�
i

: (i; s) 2 Brg = minfs 2 [ s
(r)�
i

; T ] :

Xi = 1g is optimal. Finally, Lemma 5 (iii) shows that s
(r)�
i

is nonincreasing in i. "#

The last theorem states the behaviour of the asymptotic value of s
(r)�
i

.

Theorem 7

lim
i!1

s
(r)�
i

=

�
T + a

e
� a

�+

Proof.

h
(r)
i
(s) = 0 () 1 + ln � = �

r�2X
m=0

�
i+m� 1

m

�
C(r)
m

��
i+ r � 2

r � 1

�

When i!1, RHS! 0. Since s
(r)�
i

is uniqe root of the equation h
(r)
i
(s) = 0, the statement

holds. "#



222 A. KURUSHIMA AND K. ANO

It is well-known that the threshold value of the optimal stopping rule for large number of

options n in the classical secretary problem is n=e. It is interesting to compare the threshold

value n=e with T=e when a = 0 in the Theorem 7 for all r = 1; 2; � � �.

Table 2 gives the values of t
(r)�
i

� (s
(r)�
i

+ a)=(T + a) for G(r; 1=a), r = 3; 4; 5; 10.

Table 2: The values of t
(r)�
i

for r = 3; 4; 5; 10

i 1 2 3 4 5 6 7 8

t
(3)�
i

.600198 .526948 .487532 .463460 .447350 .435847 .427234 .420549

t
(4)�
i

.663076 .580234 .532041 .501277 .480094 .464665 .452941 .443739

t
(5)�
i

.709002 .622828 .569494 .534148 .509195 .490694 .476449 .465150

t
(10)�
i

.827215 .750056 .692738 .649759 .616621 .590372 .569095 .551512

i 9 10 50

t
(3)�
i

.415212 .410854 .377036

t
(4)�
i

.436326 .430229 .381515

t
(5)�
i

.455973 .448374 .385930

t
(10)�
i

.536744 .524167 .407095
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