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STRONG CONVERGENCE OF ITERATIVE SEQUENCES
FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
IN BANACH SPACES
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ABSTRACT. In this paper, we deal with an iteration process for an asymptotically non-
expansive mapping and prove a strong convergence theorem for the mapping in Banach
spaces, which is a generalization of the recent result of Shioji and Takahashi [12].

1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Banach space E and let T" be a
mapping of C into itself. Then, we denote by F (T') the set of fixed points of T. A mapping
T of C into itself is said to be nonexpansive if |[Te — Ty|| < ||l — y| for every z,y € C
and a mapping T of C into itself is said to be asymptotically nonezpansive with Lipschitz
constants {ky} if lim kn <1 and ||[T"z — T"y|| < ky|lz — y|| for every =,y € C (see
3).

Let C' be a nonempty closed convex subset of a real Hilbert space H and let T" be a
nonexpansive mapping of C' into itself. Let » € C. Halpern [4] and Reich [9] considered the
following iteration process:

n—roo

(1) 29 €C, xpy1=anz+(1—ay) Tz,

for each n = 0,1,2,..., where {a,} is a sequence in [0,1]. Wittmann [15] showed that
{zn} defined by (1) converges strongly to the element of F(T) which is nearest to z if
limy ooy = 0, E?:O an, = 00, E;O:O\an+1 — ap| < oo and F(T) # (. Shioji and
Takahashi [10] extended the result of Wittmann [15] to a Banach space.

Let T be an asymptotically nonexpansive mapping of a nonempty bounded closed convex
subset C of H and let 2 € C. Using the concept of mean, Shimizu and Takahashi [13] studied
the strong convergence of the following iteration process for an asymptotically nonexpansive

mapping:

1T <
Tig,
n—l—lJZ_:O tn

for sufficient large integer n, where {ay,} is a sequence in [0,1]. Shioji and Takahashi [11]
extended the result of [13] to a Banach space. Further, Shioji and Takahashi [12] proved the
following theorem by using the results of [11] (see also [14]): Let E be a uniformly convex
Banach space whose norm is uniformly Gateaux differentiable and let C' be a nonempty

(2) 2 €C, zp=0opt+(1—ay)

bounded closed convex subset of E. Let T' be an asymptotically nonexpansive mapping on
C with Lipschitz constants {k,}. Let {ay,} be a sequence of real numbers such that 0 <
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, , 2
ap <1, limy o0, =0, Y 0 o, =00 and >0 ((1 — an)(ﬁ Z;L:O kj> — 1) < 0.
+
Let x € C and let {z,} be the sequence defined by

1 .
3 o € C a1 = ant + (1 —ay,)—— Tig,
(3) w0 €C, Tny1 = anv +( Q)n+1j;) r
for each n = 0,1,2,.... Then, {z,} converges strongly to Pz, where P is the sunny

nonexpansive retraction from C onto F(T). Mann [6] introduced the following iteration
process for approximating fixed points of a nonexpansive mapping T on a nonempty closed
convex subset C' in a Hilbert space:

(4) 29 €C, xpy1 = aptn+(1—an)Ta,

for each n = 0,1,2,..., where {a,} is a sequence in [0,1]. Later, Reich [8] studied the
sequence defined by (4) in a uniformly convex Banach space whose norm is Fréchet differ-
entiable and obtained a weak convergence theorem (see also [1]).

In this paper, we introduce an iteration process for mappings of C' into itself by us-
ing the ideas of [1, 6, 12]. We prove a strong convergence theorem for an asymptotically
nonexpansive mapping, which is a generalization of the result of Shioji and Takahashi [12].

2. PRELIMINARIES

Throughout this paper, F is a real Banach space and E* is the dual space of E. We write

2z, — 2 (or lim , = z) to indicate that the sequence {x,} of vectors converges strongly
n—oo

to x. We also denote by (y,z*) the value of z* € E* at y € E. We denote by N the set of
all nonnegative integers. We also denote max{a,0} by (a)+ for a real number a.

A Banach space E is said to be strictly convex if ||z + y|[/2 < 1 for z,y € E with
llz]| = |ly]| = 1 and 2 # y. In a strictly convex Banach space, we have that if ||2] = ||y|| =
(1 =X a4+ Ay|| for 2,y € E and A € (0,1) then & = y. For every ¢ with 0 < ¢ <2, we
define the modulus é(¢) of convexity of E by

-yl zef.

A Banach space F is said to be uniformly convex if §(¢) > 0 for every ¢ > 0. If E is
uniformly convex, then for r. & with r > & > 0, there exists ¢ <§) > 0 such that

S (-0(0)

| > . It is well-known that a uniformly

A : lz+y
e =int 1= B e <oy <

for every x,y € E with ||z|| <7, |ly|]| <r and ||z —y
convex Banach space is reflexive and strictly convex.
The multi-valued mapping J from E into E* defined by

J(z)={z* € E* : (z,2") = HQ:HZ = H:L*HZ} for every xz € E

is called the duality mapping of E. From the Hahn-Banach theorem, we see that J(z) # ()
for all x € E. A Banach space FE is said to be smooth if the limit

L ety = ]
im-———————

t—0 t
exists for each = and y in 51, where S; = {u € E : ||u]| = 1}. The norm of E is said to
be uniformly Gateaux differentiable if for each y in 57, the limit is attained uniformly for
z in S7. We know that if E is smooth then the duality mapping is single-valued and norm
to weak-star continuous and that if the norm of F is uniformly Géateaux differentiable then
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the duality mapping is single-valued and norm to weak-star uniformly continuous on each
bounded subset of E.

Let C' be a nonempty convex subset of £ and let K be a nonempty subset of C. A
mapping P of C onto K is said to be sunny if P(Px +t(x — Pxz)) = Px for each « € C and
t > 0 with Pz + t(z — Px) € C. A mapping P of C onto K is said to be a retraction if
Py =z for each x € K. We know from [2, 7] that if E is smooth, then a retraction P of C
onto K is sunny and nonexpansive if and only if

(x — Pa,J(y — Px)) <0 forall 2€C and yekK.
Hence, there is at most one sunny nonexpansive retraction of C onto K. If there is a sunny
nonexpansive retraction of C' onto K, K is said to be a sunny nonexpansive retract of C.
The following proposition related to the existence of sunny nonexpansive retractions was
proved in [11].
Proposition 2.1. Let C be a nonempty closed convez subset of a uniformly conver Banach
space whose norm s uniformly Gateaus differentiable and let T be an asymptotically non-

ezpansiwve mapping on C with Lipschitz constants {k,} such that F(T) # (. Then, F(T) is
a sunny nonezpansie retract of C.

3. LEMMAS

Let C be a nonempty closed convex subset of a Banach space E and let T be a mapping
of C into itself. Let {a,,} and {3, } be sequences of real numbers such that 0 < a, < 1,0 <
On <1, and let © € C. Now consider the following iteration process:

0 €C

1 &
Tpg1 = o+ (1 —ap)—— ZT]yn,
(5) ntl=

1 =
Yn = Pnln 1_817,— TJ1n
o = Bue (= On) g 3T

for each n € N. Especially, if 3, = 1 for each n € N, then the sequence {z,} is written by
(3). We prove a strong convergence theorem for an asymptotically nonexpansive mapping
T on C with Lipschitz constants {k,}, which is a generalization of the result of Shioji and
Takahashi [12]. Without loss of generality, we may assume k,, > 1 for each n € N. Since
kn > 1 for each n € N, we obtain the following lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a Banach space E and let T
be an asymptotically nonexpansive mapping on C with Lipschitz constants {k,} such that
F(T) # 0. Let {an} and {B,} be two sequences of real numbers such that 0 < a,, < 1,
0<8,<1 and

o<

(6) (1= an)(My — 1) < oo,

n=0
where M, = (n%l_l > o kj) (517 +(1- ﬁ,ﬁ(%ﬂ Y=o k])) Let x € C, and let {2,} and
{yn} be the sequences defined by (5). Then, {x,} and {y,} are bounded. Further, {T7z,}
and {T7y,} are bounded for each j € N,

Proof. Let Ko = sup,, kn. We obtain

1 n
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for each n € N. Set M,, = (n+1 Zn ) (6’ +(1-0n )<n+1 Z?:O k])> Then, we obtain
1 < M, < K§ for each n € N. Let z € F(S). Then, it follows from (5) that

1 .
T _ _ Jp -
I — <1 ‘ﬁnm SRUREAT = DICEEE
1 &K
SﬁnHIn—ZH+(1—/3n)n—+1;||T‘7$n—Z||
) S RN R (R o |
> | Pn Pn n+ 1 4 j Tp — %
1=0
(8) < Kol — ||
for each n € N. By (5), we also obtain
fonss = 2l = an(e = 2)+ (1 = an)—= 3Ty - 2
Tp41 — 2| = [|OnlT — 2 Op n+1j70 Yn — 2

<apllr =z + (1 —ay)

ZHT]yanII
n+
(9) <aplle =zl + (1= an) (nHZk)wn_N

(10) <l — =] + Eollys — =]

for each n € N. Since F(T') # 0, from (8) and (10), we see that {x,} is bounded if and only
if {y,} is bounded.
By (7) and (9), for each n € N, we have

[Znt1 — ||
1 < JR—
<aylz — . - ‘ _ N _—
aulle— ]+ (1 an><n+1;k1><ﬁn+<1 ,8”><n+1;k]>)|xn /|
(11) =ay|lr —z|| + (1 — apn) My, ||z, — 2]|-

Set hy = ((1 — apn)M, — 1)4. Since by = (1 — an) My — 1)1 < (1 — o) (M, — 1) for each

n € N, we obtain

(12) ihn < oo
n=0
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by (6). By (11), for each n € N, we have
[#ns1 — 2|
< (1= (1= an)fe = =l + (1~ an)Malln — 2|
<{14(1=—an) (M, —1) = (1 — an)Mn(1 —ap_1) |z — 2|
+(1— o) M (1— ap1)My 1|z, — 2|
< {1 (1= an)(Mp — 1) + (1 = an)Ma(1 — ano1)(Mng — 1)

(1 — )M (1 — anet )My (1 — an_z}Hx —
+ (1 — an)ﬂ/fn(l — an_l)‘Mn_l(l — an_Q)./L.{n_QHxn_Q — 2“

{1+(1—an)(M —1) +nZ{ (1— ag)(M; — 1) f[ [(1 - a;)M;1}

=1 J=i+1

— (1 —ao) H[(l - aj)Mj]}M — 2|+ JTI = )M o — 2|

j=1 7=0

< {1—|—(1—an)(M'n— 1)—|—2_:{(1—oz1-)(ﬂ/[i— | (1+h]-)}}|:172|

=1 Jj=1+1
H (14 hy)llzo — 2|
H1-|—h {[1+Z 41—1)]|x—2|+|:€0—z|}
< exp <Z hj> { 14+ 30— a)(Mi = 1))l — 2 + |0 Z|} .

=1

Hence by (6) and (12), we obtain that {||z, — 2|/} is bounded. Therefore, {z,} and {y,}
are bounded.
Let Lo = sup,{||zn — 2||}. Then, it follows from (8) that

1770 = 2| < Kyl — 2|l < KoL

and
T yn — 2|| < Ejllyn — 2|| < Ko - KoLo = K§ Lo
for each j,n € N. Hence, {TVz,} and {T7y, } are also bounded for each j € N. O

Lemma 3.2 and Proposition 3.3 were proved by Shioji and Takahashi [11].

Lemma 3.2. Let C be a nonempty closed conver subset of a uniformly convex Banach space
E and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants {k,}
such that F(T) # (0. Then, for each r > 0,

lim lim  sup Z Ty —T™ < 1 Z TJy> =0,
n
0 =0

m—o0 n—oo yeCNRB, || N+ 1 P

where B, ={z € E : ||z]| < r}.
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Proposition 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E whose norm is uniformly Gateauz differentiable. Let T be an asymptotically non-
ezpansive mapping on C with Lipschitz constants {ky} such that F(T) # 0 and let P be the
sunny nonezpansive retraction from C onto F(T). Let {d,} be a sequence of real numbers
such that 0 < d,, < 1,lim, oo d = 0 and

1 n
ki —1
n—&—ljz:; 7

lim ——— < 1.

—>0C dn

Let x € C and let z,, be the unique point of C' which satisfies

1 =
—d _ iz,
(14) Zn =dpz + (1 dn)n—l—l jgon

for n > mg, where mg is a sufficiently large integer. Then, {z,} converges strongly to Px.

Remark 3.4. The inequality

1 n
ki —1
- n—&—lgo !

im — "~ <1
n—oco dn

yields

1 n
(1fd,,,)-n+1]§kj<1

for all sufficiently large integer n. So for such n, there exists a unique point z, of C' satisfying
Zy = dpv + (1 — dn)#_l Z;‘l:o Tz, since the mapping T, from C' into itself defined by

Tou=dpx+ (1 - dn)n%_l 2?20 T’u is a contraction, that is,

N
HTTLU — TnU” S (1 - dn) : m ;k]HTI — ’U||
for each u,v € C.

4, STRONG CONVERGENCE THEOREMS

Our main result is the following, which is a generalization of Shioji and Takahashi’s result

[12]:

Theorem 4.1. Let C be a nonempty closed convezr subset of a uniformly convexr Banach
space E whose norm is uniformly Gateauz differentiable and let T be an asymptotically
nonezpansive mapping on C with Lipschitz constants {k,} such that F(T) # 0. Let {an}
and {B,} be sequences of real numbers such that 0 < o, < 1,0 < 8, <1,

n—>0C

>
lim a, =0, E a, = 00
n=0

and

o

(15) (1 an)(M, 1) < o,

n=0
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where M,, = (%—1—1 Z;L:O kj) (611 +(1- ,()’n)<nl? Z;:o k])) Let w € C and let {x,} be the
sequence defined by

xp € C

1 i
Tp1 = apz + (1 *an)mZijn,
j=0

1
n = PnTn 1_/8n T,
Y Bran + ( )n—|—1§0 €
j=

for each n € N. Then, {x,} converges strongly to Pz, where P is the sunny nonezpansive
retraction from C onto F(T).

Proof. Set M, = (n%_l 2?20 kj) (ﬁn + (1 - ,8,,,)(#_1 E?:() kj)) and set Koy = sup,, kn.
Since F(T) # 0 and Y07 (1 — o) (M, — 1) < oo, from Lemma 3.1, we see that {x, }, {yn},
{T7z,} and {T"y,} are bounded for each j € N.

Since En_m kn, < 1, we can choose a sequence {d,} of real numbers such that d,, >
0,lim, o d, =0,

17 I 1
(I) TLE}nOC dn <
and

1 < ?
18 Bl <1+4d,>
(1) ( J) <14

for each n € N (see also [13]). By the reason in Remark 3.4, there exists the unique point
Zm of C satisfying z,, = dpa + (1 —dp) —— Z Tz, for all sufficiently large integer m.
m+1 prd

Without loss of generality, we may assume that d,, < 1/2 for all m € N and 2, is defined
for all m € N. We know that {z,} converges strongly to Pa by Proposition 3.3. From (16),
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for each m,n € N, we have

m

= ZT Tpil — Tpti

A
3
+
—

~

5
3

o

\
=
+ _
—_

. ~
gk
~
.
VN

3

+ |~
—_

"

3
~—

1 =y
n—&—lz:Tynixn—l_1
=0

7=0 (=0 (=0
1 m 1 T
Zk]—l—l) Tp+1 — —— T’(n
(m +1 s n+1 P
1 m n n
P 7 { _ Tl
o O S B
7=0 =0 =0
1 n
Ko+1) - o T'y,
<(Kot+1)-a 71—&—1; y

~

‘ - 1 <
T? Ty, | — —— S Tly,
(n—l—lz y) n+1 y
=0 0
< (Ko +1) - an(Jle] +sup | Ty )
nn
1 m
+m—|—1j:ZO

) 1 n 1
T? Ty, | — Ty,

It follows from Lemma 3.2 that

Il 3
(=]

lim lIim
mMm—>00 N—00

n 1 n
( Z:nyn) I
=0

=0

Hence by lim, ;o a, = 0, we have

1 1 noo
lim Tim Ty —x = lim lim Tz, —x 0.
m—oo n—oo || M+ 1 ]ZO e e m—con—oo | M+ 1 ; " "

Then, we may also assume that

n—oo

L 1 m . ‘
7=0
for each m € N. Set R = sup({||TVzp|| : j.m € N} U{||T?2y|| : j.n € N}). From

(1 —dm) <m:—1 ; TIz,, — mn> =(zm — 2p) — dm(r — 24),
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we obtain
2

(1= dm mHZT%mw > Nl — wall* — 2z — 20, T (2 — 7))

= |lzm — ¢n||2 —2dp{z — zm + 2m — ¥, J(2m — x4))
= (1 =2dm)||zm — @nll* + 2dm{x — 2m, J(2n — 2m))
for each m,n € N. Then, it follows from (18) that

(2 — zm, J(2n — 2m))

1 1 .
< 1—dp)?||——= ) T72p —a,
—de(( ) m+1; Fm

2
1—-2d d
= = T m — Tn —|[fm — Tn 2 -
2d,, (Hm—l—lz : Iz = |>+ 2

2

— (1 =2dn)|lzm — xn|2>

9

1 .
_— T 20 — Th
m—&—ljzzo : v

1—2dn, 1 o~ 1 I . 2
< 5. ({ m+1j:ZOszm_m7+1] OT":cn + M]E%T]In_mn}
—llzm — :vn,||2> +2R%d,,
2 m

2
—lzm — xn|2) +2R¥d,,

1 1 &
§2—m {(m—HZ:k]) }||Zm—.17n| +6R
1
ZTJTn—mn

_2d
m—l—lZT]xn_ "

for each m,n € N. Hence by (19), we have
Im (2 — 2, J(2n — 2m)) < (4R* + 3R)dp,

n—r0o0

+2R%d,,

ZT Tp — Ty,

<(]‘ |z — TnH2 +6R

) +2R?%d,,

< 4R?%d,, +

for each m € N. Since {z,,} converges strongly to Pz and the norm of E is uniformly
Gateaux differentiable, we have

lim (x — Px, J(z, — Pz)) <

n—roo

Let £ > 0. Then, there exists ng € N such that (x — Pz, J(z, — Px)) < 5 for each n > nyg.

From

, 1 S
(1—ay) < Z Ty, — Pm) = (2p41 — Px) — ay(x — Px),
ntli=
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we also obtain

1 4
(20)  |lwn+1 — PJLH <2ap(r — Pa,J(xp41 — Px)) + (1 — ozn)2 = ZT]yn — Px

=0

for each n € N. So, we get

|zns1 — Pzl

2

<an5+(1_a1z < +1Zk) ||yn7P$||
1 ’ 2
< ot + (1= oy )? ((n+12k> (5+1 gn)<ﬁ4 k]>> |wn — Pe|

=one+ (11— ozn)‘]Wn |z, — PrH

(21)

for each n > ng. Set p, = ||z, — Pz||?, L, = M,? and ¢, = ((1 —ay)Ly — 1)4. Then, for
each n € N, we have
en=(1—an)ln —1)y <(1—ap)(L,—-1)
=(1—an) (M, +1)(M, — 1) < (EKo* + 1)(1 — a,)(M, —1).
Hence by (15), > ¢; < 0o. Let n € N with n > ng. Then, for each m € N, we have
=0
Pn4+m S Opn4m—1€ + (1 - an,+m—1)2Ln+m—1pn+m—1
S {an+m—1 + (1 - OL'rz+rn—1)Z-Ln+m—1Oé'n+m—2}5

+ (1 - an+m71)2Ln+m71<1 - an+m72)2Ln+m72[)n+m72

IA

n+m—2 n+m—1 n+m—1
Uptm—1 + Z ( H (1 - ai)zLi]> €+ < H [(1 - ai)2Li]> Pn

t=j+1

IN

n+m—1 n+m—2 n+m—1
H (1 ‘|‘ci) Ap+m—1 + Z ( H 1_ai)> €

i=n+1 j=n
n+m—1 n+m—1

+ H (14 ¢)- H (I =) pn

t=n

INA A
[0 i
T o
T —
3 /;\
+ +
M=
D H/\
— 7
+ =
o +
5
e ::Sl
5 /\Q /—\H
. ¥ —
NGER
L2
o N
~ —
m
2 +
< 3
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o IHE
3 [
ME 7
3
I +
-
e
+
S e
—
|
2
3
&)
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o)
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o
Z N
i[]e
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——
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+

o)
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o
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(&)
By > a; = co, we get

1=0

oo
lim Pm = lim pn+m§5~exp<20i>.
o0

>0
Since eXp(E ci> < oo and € > 0 is arbitrary, {2, } converges strongly to Pz € F(T). O
i=0

Remark 4.2. Y 77 [(1—ay,)(M,—1) < oo yields Y77 ¢, < 0. So, by the proofs of Lemma
3.1 and Theorem 4.1, we see the following: Let E, C, T, x and {k,} be as in Theorem 4.1.
Let {an} be a sequence of real numbers such that 0 < «, < 1, lim, oo, = 0 and
S g an =00, and let {8,} be a sequence of real numbers such that 0 < 3,, < 1. Assume

Z((l —an)M,* - 1)+ < 00,

n=0
where M, = (njH Z?:o k‘j) (,3n + (1 - ﬁn)(# 27:0 k])) Let {z,} be the sequence
defined by (16). Then, {z,} converges strongly to a fixed point of T if and only if {x,} is
bounded.
Since Y07 (1 —ay) (# E;:U kj— 1) < oo yields 307 (1 — ay ) (M, — 1) < oo, we get
the following.
Corollary 4.3. Let E, C, T, v and {k,} be as in Theorem 4.1. Let {a,} be a sequence

of real numbers such that 0 < a, <1, limy_seo ap = 0 and ZZO:O an =00, and let {B,} be
any sequence of real numbers such that 0 < 3, < 1. Assume

> an)<ni12kj - 1> < 0.
n=0 7=0

Let {x,,} be the sequence defined by (16). Then, {x,} converges strongly to Px, where P is
the sunny nonexpansive retraction from C onto F(T).

In the case when T is nonexpansive, by > -~ (1 — a,)(M, — 1) = 0, we can directly
obtain the following.

Theorem 4.4. Let E be a uniformly conver Banach space whose norm is uniformly Gateaus
differentiable and let C' be a nonempty closed convex subset of E. Let T be a nonezpansive
mapping of C into itself such that F(T) # 0. Let {a,} be a sequence of real numbers such
that 0 < ap, < 1, lim, oo @ = 0 and Zio:o an = oo, and let {8,} be a sequence of real

numbers such that 0 < 3, < 1. Let x € C and let {x,} be the sequence defined by (16).
Then, {x,} converges strongly to Px, where P is the sunny nonezpansive retraction from

C onto F(T).
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