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Abstract. In this paper, we deal with an iteration process for an asymptotically non-

expansive mapping and prove a strong convergence theorem for the mapping in Banach

spaces, which is a generalization of the recent result of Shioji and Takahashi [12].

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E and let T be a

mapping of C into itself. Then, we denote by F (T ) the set of �xed points of T: A mapping

T of C into itself is said to be nonexpansive if kTx � Tyk � kx � yk for every x; y 2 C

and a mapping T of C into itself is said to be asymptotically nonexpansive with Lipschitz

constants fkng if lim
n!1

kn � 1 and kTnx � Tnyk � knkx � yk for every x; y 2 C (see

[3]).

Let C be a nonempty closed convex subset of a real Hilbert space H and let T be a

nonexpansive mapping of C into itself. Let x 2 C. Halpern [4] and Reich [9] considered the

following iteration process:

x0 2 C; xn+1 = �n x + (1� �n)Txn(1)

for each n = 0; 1; 2; : : : , where f�ng is a sequence in [0; 1]. Wittmann [15] showed that

fxng de�ned by (1) converges strongly to the element of F (T ) which is nearest to x if

limn!1�n = 0,
P
1

n=0
�n = 1,

P
1

n=0
j�n+1 � �nj < 1 and F (T ) 6= ;. Shioji and

Takahashi [10] extended the result of Wittmann [15] to a Banach space.

Let T be an asymptotically nonexpansive mapping of a nonempty bounded closed convex

subset C ofH and let x 2 C. Using the concept of mean, Shimizu and Takahashi [13] studied

the strong convergence of the following iteration process for an asymptotically nonexpansive

mapping:

x0 2 C; xn = �n x + (1� �n)
1

n+ 1

nX
j=0

T jxn(2)

for suÆcient large integer n, where f�ng is a sequence in [0; 1]. Shioji and Takahashi [11]

extended the result of [13] to a Banach space. Further, Shioji and Takahashi [12] proved the

following theorem by using the results of [11] (see also [14]): Let E be a uniformly convex

Banach space whose norm is uniformly Gâteaux di�erentiable and let C be a nonempty

bounded closed convex subset of E. Let T be an asymptotically nonexpansive mapping on

C with Lipschitz constants fkng. Let f�ng be a sequence of real numbers such that 0 �
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�n � 1; limn!1 �n = 0,
P
1

n=0
�n = 1 and

P
1

n=0

�
(1 � �n)

�
1

n+1

P
n

j=0
kj

�2
� 1
�
+

< 1:

Let x 2 C and let fxng be the sequence de�ned by

x0 2 C; xn+1 = �nx+ (1� �n)
1

n + 1

nX
j=0

T jxn(3)

for each n = 0; 1; 2; : : : . Then, fxng converges strongly to Px, where P is the sunny

nonexpansive retraction from C onto F (T ). Mann [6] introduced the following iteration

process for approximating �xed points of a nonexpansive mapping T on a nonempty closed

convex subset C in a Hilbert space:

x0 2 C; xn+1 = �nxn + (1� �n)Txn(4)

for each n = 0; 1; 2; : : : , where f�ng is a sequence in [0; 1]. Later, Reich [8] studied the

sequence de�ned by (4) in a uniformly convex Banach space whose norm is Fr�echet di�er-

entiable and obtained a weak convergence theorem (see also [1]).

In this paper, we introduce an iteration process for mappings of C into itself by us-

ing the ideas of [1, 6, 12]. We prove a strong convergence theorem for an asymptotically

nonexpansive mapping, which is a generalization of the result of Shioji and Takahashi [12].

2. Preliminaries

Throughout this paper, E is a real Banach space and E� is the dual space of E. We write

xn ! x (or lim
n!1

xn = x) to indicate that the sequence fxng of vectors converges strongly

to x: We also denote by hy; x�i the value of x� 2 E� at y 2 E: We denote by N the set of

all nonnegative integers. We also denote maxfa; 0g by (a)+ for a real number a.

A Banach space E is said to be strictly convex if kx + yk=2 < 1 for x; y 2 E with

kxk = kyk = 1 and x 6= y: In a strictly convex Banach space, we have that if kxk = kyk =
k (1� �)x + �yk for x; y 2 E and � 2 (0; 1) then x = y: For every " with 0 � " � 2; we

de�ne the modulus Æ(") of convexity of E by

Æ (") = inf

�
1�

kx+ yk

2

�� kxk � 1; kyk � 1; kx� yk � "

�
:

A Banach space E is said to be uniformly convex if Æ (") > 0 for every " > 0: If E is

uniformly convex, then for r; " with r � " > 0; there exists Æ
�
"

r

�
> 0 such that



x + y

2





 � r
�
1� Æ

�"
r

��
for every x; y 2 E with kxk � r; kyk � r and kx�yk � ": It is well-known that a uniformly

convex Banach space is re
exive and strictly convex.

The multi-valued mapping J from E into E� de�ned by

J(x) = fx� 2 E� : hx; x�i = kxk2 = kx�k2g for every x 2 E

is called the duality mapping of E. From the Hahn-Banach theorem, we see that J(x) 6= ;
for all x 2 E: A Banach space E is said to be smooth if the limit

lim
t!0

kx+ tyk � kxk

t

exists for each x and y in S1, where S1 = fu 2 E : kuk = 1g: The norm of E is said to

be uniformly Gâteaux di�erentiable if for each y in S1, the limit is attained uniformly for

x in S1: We know that if E is smooth then the duality mapping is single-valued and norm

to weak-star continuous and that if the norm of E is uniformly Gâteaux di�erentiable then
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the duality mapping is single-valued and norm to weak-star uniformly continuous on each

bounded subset of E:

Let C be a nonempty convex subset of E and let K be a nonempty subset of C. A

mapping P of C onto K is said to be sunny if P (Px+ t(x�Px)) = Px for each x 2 C and

t � 0 with Px + t(x � Px) 2 C. A mapping P of C onto K is said to be a retraction if

Px = x for each x 2 K: We know from [2, 7] that if E is smooth, then a retraction P of C

onto K is sunny and nonexpansive if and only if

hx � Px; J(y � Px)i � 0 for all x 2 C and y 2 K:

Hence, there is at most one sunny nonexpansive retraction of C onto K. If there is a sunny

nonexpansive retraction of C onto K, K is said to be a sunny nonexpansive retract of C.

The following proposition related to the existence of sunny nonexpansive retractions was

proved in [11].

Proposition 2.1. Let C be a nonempty closed convex subset of a uniformly convex Banach
space whose norm is uniformly Gâteaux di�erentiable and let T be an asymptotically non-
expansive mapping on C with Lipschitz constants fkng such that F (T ) 6= ;. Then, F (T ) is
a sunny nonexpansive retract of C.

3. Lemmas

Let C be a nonempty closed convex subset of a Banach space E and let T be a mapping

of C into itself. Let f�ng and f�ng be sequences of real numbers such that 0 � �n � 1; 0 �
�n � 1, and let x 2 C. Now consider the following iteration process:8>>>>>>><

>>>>>>>:

x0 2 C

xn+1 = �nx+ (1 � �n)
1

n + 1

nX
j=0

T jyn;

yn = �nxn + (1� �n)
1

n+ 1

nX
j=0

T jxn

(5)

for each n 2 N. Especially, if �n = 1 for each n 2 N, then the sequence fxng is written by

(3). We prove a strong convergence theorem for an asymptotically nonexpansive mapping

T on C with Lipschitz constants fkng, which is a generalization of the result of Shioji and

Takahashi [12]. Without loss of generality, we may assume kn � 1 for each n 2 N. Since

kn � 1 for each n 2 N, we obtain the following lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a Banach space E and let T
be an asymptotically nonexpansive mapping on C with Lipschitz constants fkng such that
F (T ) 6= ;. Let f�ng and f�ng be two sequences of real numbers such that 0 � �n � 1;

0 � �n � 1 and
1X
n=0

(1 � �n)(Mn � 1) <1;(6)

where Mn =
�

1

n+1

P
n

j=0
kj

��
�n + (1 � �n)

�
1

n+1

P
n

j=0
kj

��
: Let x 2 C, and let fxng and

fyng be the sequences de�ned by (5). Then, fxng and fyng are bounded. Further, fT jxng
and fT jyng are bounded for each j 2 N.

Proof. Let K0 = sup
n
kn. We obtain

1 � �n + (1� �n)

 
1

n+ 1

nX
j=0

kj

!
� K0
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for each n 2 N. Set Mn =
�

1

n+1

P
n

j=0
kj

��
�n+ (1� �n)

�
1

n+1

P
n

j=0
kj

��
: Then, we obtain

1 �Mn � K2
0 for each n 2 N. Let z 2 F (S). Then, it follows from (5) that

kyn � zk =






�n(xn � z) + (1 � �n)
1

n+ 1

nX
j=0

(T jxn � z)







� �nkxn � zk+ (1� �n)

1

n + 1

nX
j=0

kT jxn � zk

�

 
�n + (1� �n)

 
1

n+ 1

nX
j=0

kj

!!
kxn � zk(7)

� K0kxn � zk(8)

for each n 2 N. By (5), we also obtain

kxn+1 � zk =






�n(x � z) + (1 � �n)
1

n + 1

nX
j=0

(T jyn � z)







� �nkx � zk + (1� �n)

1

n+ 1

nX
j=0

kT jyn � zk

� �nkx � zk + (1� �n)

 
1

n+ 1

nX
j=0

kj

!
kyn � zk(9)

� kx � zk +K0kyn � zk(10)

for each n 2 N. Since F (T ) 6= ;, from (8) and (10), we see that fxng is bounded if and only

if fyng is bounded.

By (7) and (9), for each n 2 N, we have

kxn+1 � zk

� �nkx � zk+ (1��n)

 
1

n+ 1

nX
j=0

kj

! 
�n + (1� �n)

 
1

n+ 1

nX
j=0

kj

!!
kxn � zk

= �nkx � zk+ (1� �n)Mn kxn � zk:(11)

Set hn = ((1 � �n)Mn � 1)+. Since hn = ((1 � �n)Mn � 1)+ � (1 � �n)(Mn � 1) for each

n 2 N, we obtain

1X
n=0

hn <1(12)
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by (6). By (11), for each n 2 N, we have

kxn+1 � zk

� (1� (1 � �n))kx � zk + (1 � �n)Mnkxn � zk

� f1 + (1� �n)(Mn � 1)� (1� �n)Mn(1� �n�1)gkx � zk

+ (1� �n)Mn(1� �n�1)Mn�1kxn�1 � zk

�
n
1 + (1� �n)(Mn � 1) + (1 � �n)Mn(1 � �n�1)(Mn�1 � 1)

� (1� �n)Mn(1� �n�1)Mn�1(1� �n�2

o
kx� zk

+ (1� �n)Mn(1� �n�1)Mn�1(1� �n�2)Mn�2kxn�2 � zk

...

�

(
1 + (1� �n)(Mn � 1) +

n�1X
i=1

n
(1� �i)(Mi � 1)

nY
j=i+1

[(1 � �j)Mj ]
o

� (1� �0)

nY
j=1

[(1� �j)Mj ]

)
kx � zk +

nY
j=0

[(1� �j)Mj ]kx0 � zk

�

(
1 + (1� �n)(Mn � 1) +

n�1X
i=1

n
(1� �i)(Mi � 1)

nY
j=i+1

(1 + hj)
o)

kx� zk

+

nY
j=0

(1 + hj)kx0 � zk

�

nY
j=0

(1 + hj)

(h
1 +

nX
i=1

(1� �i)(Mi � 1)
i
kx� zk+ kx0 � zk

)

� exp

 
1X
j=0

hj

!(h
1 +

1X
i=1

(1� �i)(Mi � 1)
i
kx� zk+ kx0 � zk

)
:

(13)

Hence by (6) and (12), we obtain that fkxn � zkg is bounded. Therefore, fxng and fyng
are bounded.

Let L0 = sup
n
fkxn � zkg: Then, it follows from (8) that

kT jxn � zk � kjkxn � zk � K0L0

and

kT jyn � zk � kjkyn � zk � K0 �K0L0 = K2

0
L0

for each j; n 2 N. Hence, fT jxng and fT jyng are also bounded for each j 2 N.

Lemma 3.2 and Proposition 3.3 were proved by Shioji and Takahashi [11].

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space
E and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants fkng
such that F (T ) 6= ;. Then, for each r > 0,

lim
m!1

lim
n!1

sup
y2C\Br








1

n+ 1

nX
j=0

T jy � Tm

 
1

n+ 1

nX
j=0

T jy

!





 = 0;

where Br = fz 2 E : kzk � rg:
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Proposition 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E whose norm is uniformly Gâteaux di�erentiable. Let T be an asymptotically non-
expansive mapping on C with Lipschitz constants fkng such that F (T ) 6= ; and let P be the
sunny nonexpansive retraction from C onto F (T ). Let fdng be a sequence of real numbers
such that 0 < dn � 1; limn!1 dn = 0 and

lim
n!1

1

n+ 1

nX
j=0

kj � 1

dn
< 1:

Let x 2 C and let zn be the unique point of C which satis�es

zn = dnx + (1� dn)
1

n+ 1

nX
j=0

T jzn(14)

for n �m0, where m0 is a suÆciently large integer. Then, fzng converges strongly to Px.

Remark 3.4. The inequality

lim
n!1

1

n+ 1

nX
j=0

kj � 1

dn
< 1

yields

(1� dn) �
1

n+ 1

nX
j=0

kj < 1

for all suÆciently large integer n. So for such n, there exists a unique point zn of C satisfying

zn = dnx + (1 � dn)
1

n+1

P
n

j=0
T jzn, since the mapping Tn from C into itself de�ned by

Tnu = dnx+ (1� dn)
1

n+1

P
n

j=0
T ju is a contraction, that is,

kTnu� Tnvk � (1� dn) �
1

n+ 1

nX
j=1

kjku� vk

for each u; v 2 C:

4. Strong Convergence Theorems

Our main result is the following, which is a generalization of Shioji and Takahashi's result

[12]:

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach

space E whose norm is uniformly Gâteaux di�erentiable and let T be an asymptotically
nonexpansive mapping on C with Lipschitz constants fkng such that F (T ) 6= ;. Let f�ng
and f�ng be sequences of real numbers such that 0 � �n � 1; 0 � �n � 1;

lim
n!1

�n = 0;

1X
n=0

�n =1

and

1X
n=0

(1� �n)(Mn � 1) <1;(15)
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where Mn =
�

1

n+1

P
n

j=0
kj

��
�n+ (1� �n)

�
1

n+1

P
n

j=0
kj

��
: Let x 2 C and let fxng be the

sequence de�ned by

8>>>>>>><
>>>>>>>:

x0 2 C

xn+1 = �nx + (1� �n)
1

n+ 1

nX
j=0

T jyn;

yn = �nxn + (1� �n)
1

n+ 1

nX
j=0

T jxn

(16)

for each n 2 N. Then, fxng converges strongly to Px, where P is the sunny nonexpansive
retraction from C onto F (T ).

Proof. Set Mn =
�

1

n+1

P
n

j=0
kj

��
�n + (1 � �n)

�
1

n+1

P
n

j=0
kj

��
and set K0 = sup

n
kn.

Since F (T ) 6= ; and
P
1

n=0
(1��n)(Mn�1) <1, from Lemma 3.1, we see that fxng; fyng;

fT jxng and fT jyng are bounded for each j 2 N.
Since lim

n!1
kn � 1, we can choose a sequence fdng of real numbers such that dn >

0; limn!1 dn = 0;

lim
n!1

1

n+ 1

nX
j=0

kj � 1

dn
< 1(17)

and

 
1

n+ 1

nX
j=0

kj

!2
� 1 + dn

2(18)

for each n 2 N (see also [13]). By the reason in Remark 3.4, there exists the unique point

zm of C satisfying zm = dmx+ (1� dm)
1

m+ 1

mX
j=0

T jzm for all suÆciently large integer m.

Without loss of generality, we may assume that dm � 1=2 for all m 2 N and zm is de�ned

for all m 2 N. We know that fzng converges strongly to Px by Proposition 3.3. From (16),
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for each m;n 2 N, we have






1

m+ 1

mX
j=0

T jxn+1 � xn+1








�








1

m+ 1

mX
j=0

T jxn+1 �
1

m+ 1

mX
j=0

T j

 
1

n+ 1

nX
l=0

T lyn

!






+








1

m+ 1

mX
j=0

T j

 
1

n+ 1

nX
l=0

T lyn

!
�

1

n+ 1

nX
l=0

T lyn







+





 1

n+ 1

nX
l=0

T lyn � xn+1







�

 
1

m+ 1

mX
j=0

kj + 1

!




xn+1 � 1

n+ 1

nX
l=0

T lyn







+

1

m+ 1

mX
j=0






T j

 
1

n+ 1

nX
l=0

T lyn

!
�

1

n+ 1

nX
l=0

T lyn







� (K0 + 1) � �n






x� 1

n+ 1

nX
l=0

T lyn







+

1

m+ 1

mX
j=0






T j

 
1

n+ 1

nX
l=0

T lyn

!
�

1

n+ 1

nX
l=0

T lyn







� (K0 + 1) � �n

�
kxk + sup

j;n

kT jynk
�

+
1

m+ 1

mX
j=0






T j

 
1

n+ 1

nX
l=0

T lyn

!
�

1

n+ 1

nX
l=0

T lyn






 :
It follows from Lemma 3.2 that

lim
m!1

lim
n!1

1

m+ 1

mX
j=0






T j

 
1

n+ 1

nX
l=0

T lyn

!
�

1

n+ 1

nX
l=0

T lyn






 = 0:

Hence by limn!1 �n = 0, we have

lim
m!1

lim
n!1








1

m+ 1

mX
j=0

T jxn+1 � xn+1







 = lim
m!1

lim
n!1








1

m+ 1

mX
j=0

T jxn � xn







 = 0:

Then, we may also assume that

lim
n!1








1

m+ 1

mX
j=0

T jxn � xn







 � d2
m

(19)

for each m 2 N. Set R = sup
�
fkT jzmk : j;m 2 Ng [ fkT jxnk : j; n 2 Ng

�
: From

(1 � dm)

 
1

m+ 1

mX
j=0

T jzm � xn

!
= (zm � xn) � dm(x � xn);
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we obtain

(1 � dm)
2








1

m+ 1

mX
j=0

T jzm � xn








2

� kzm � xnk
2 � 2dmhx � xn; J(zm � xn)i

= kzm � xnk
2 � 2dmhx � zm + zm � xn; J(zm � xn)i

= (1� 2dm)kzm � xnk
2 + 2dmhx � zm; J(xn � zm)i

for each m;n 2 N. Then, it follows from (18) that

hx � zm; J(xn � zm)i

�
1

2dm

 
(1� dm)

2






 1

m+ 1

mX
j=0

T jzm � xn







2

� (1 � 2dm)kzm � xnk
2

!

=
1� 2dm

2dm

 




 1

m+ 1

mX
j=0

T jzm � xn







2

� kzm � xnk
2

!
+
dm

2






 1

m+ 1

mX
j=0

T jzm � xn







2

�
1� 2dm

2dm

 (




 1

m+ 1

mX
j=0

T jzm �
1

m+ 1

mX
j=0

T jxn






+





 1

m+ 1

mX
j=0

T jxn � xn







)2

�kzm � xnk
2

!
+ 2R2dm

�
1

2dm

 




 1

m+ 1

mX
j=0

T jzm �
1

m+ 1

mX
j=0

T jxn







2

+ 2 � 2R






 1

m+ 1

mX
j=0

T jxn � xn







+






 1

m+ 1

mX
j=0

T jxn � xn







2

� kzm � xnk
2

!
+ 2R2dm

�
1

2dm

0
@
( 

1

m+ 1

mX
j=0

kj

!2
� 1

)
kzm � xnk

2
+ 6R






 1

m+ 1

mX
j=0

T jxn � xn







1
A+ 2R2dm

�
1

2dm

 
d2
m
kzm � xnk

2 + 6R






 1

m+ 1

mX
j=0

T jxn � xn







!
+ 2R2dm

� 4R2dm +
3R

dm






 1

m+ 1

mX
j=0

T jxn � xn







for each m;n 2 N. Hence by (19), we have

lim
n!1

hx� zm; J(xn � zm)i � (4R2 + 3R)dm

for each m 2 N. Since fzmg converges strongly to Px and the norm of E is uniformly

Gâteaux di�erentiable, we have

lim
n!1

hx � Px; J(xn � Px)i � 0:

Let " > 0. Then, there exists n0 2 N such that hx � Px; J(xn � Px)i < "

2
for each n � n0.

From

(1� �n)

 
1

n+ 1

nX
j=0

T jyn � Px

!
= (xn+1 � Px) � �n(x � Px);
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we also obtain

kxn+1 � Pxk2 � 2�nhx � Px; J(xn+1 � Px)i + (1� �n)
2






 1

n+ 1

nX
j=0

T jyn � Px







2

(20)

for each n 2 N. So, we get

kxn+1 � Pxk2

� �n"+ (1� �n)
2

 
1

n+ 1

nX
j=0

kj

!2
kyn � Pxk2

� �n"+ (1� �n)
2

  
1

n+ 1

nX
j=0

kj

!2�
�n+(1��n)

 
1

n+ 1

nX
j=0

kj

!!2
kxn � Pxk2

= �n"+ (1� �n)
2Mn

2 kxn � Pxk2

(21)

for each n � n0. Set pn = kxn � Pxk2, Ln = Mn

2 and cn = ((1 � �n)Ln � 1)+. Then, for

each n 2 N, we have

cn = ((1 � �n)Ln � 1)+ � (1 � �n)(Ln � 1)

= (1� �n)(Mn + 1)(Mn � 1) � (K0
2 + 1)(1 � �n)(Mn � 1):

Hence by (15),
1P
i=0

ci <1: Let n 2 N with n � n0. Then, for each m 2 N, we have

pn+m � �n+m�1"+ (1� �n+m�1)
2Ln+m�1pn+m�1

� f�n+m�1 + (1 � �n+m�1)
2Ln+m�1�n+m�2g"

+ (1� �n+m�1)
2Ln+m�1(1 � �n+m�2)

2Ln+m�2pn+m�2

...

�

8<
:�n+m�1 +

n+m�2X
j=n

 
�j

n+m�1Y
i=j+1

�
(1� �i)

2Li

�!9=; "+

 
n+m�1Y
i=n

[(1� �i)
2Li]

!
pn

�
n+m�1Y
i=n+1

(1 + ci)

8<
:�n+m�1 +

n+m�2X
j=n

 
�j

n+m�1Y
i=j+1

(1� �i)

!9=
; "

+

n+m�1Y
i=n

(1 + ci) �
n+m�1Y
i=n

(1 � �i) � pn

�
n+m�1Y
i=n+1

(1 + ci)

 
1�

n+m�1Y
i=n

(1� �i)

!
"+

n+m�1Y
i=n

(1 + ci) �
n+m�1Y
i=n

(1 � �i) � pn

� " � exp

 
n+m�1X
i=n+1

ci

!
+ exp

 
n+m�1X
i=n

ci

!
� exp

 
�
n+m�1X
i=n

�i

!
� pn

� exp

 
1X
i=0

ci

!(
" + exp

 
�
n+m�1X
i=n

�i

!
� pn

)
:



STRONG CONVERGENCE 375

By
1P
i=0

�i =1, we get

lim
m!1

pm = lim
m!1

pn+m � " � exp

 
1X
i=0

ci

!
:

Since exp
�1P
i=0

ci

�
<1 and " > 0 is arbitrary, fxng converges strongly to Px 2 F (T ).

Remark 4.2.
P
1

n=0
(1��n)(Mn�1) <1 yields

P
1

n=0
cn <1: So, by the proofs of Lemma

3.1 and Theorem 4.1, we see the following: Let E, C, T , x and fkng be as in Theorem 4.1.

Let f�ng be a sequence of real numbers such that 0 � �n � 1; limn!1 �n = 0 andP
1

n=0
�n =1, and let f�ng be a sequence of real numbers such that 0 � �n � 1. Assume

1X
n=0

�
(1� �n)Mn

2 � 1
�
+
<1;

where Mn =
�

1

n+1

P
n

j=0
kj

��
�n + (1 � �n)

�
1

n+1

P
n

j=0
kj

��
: Let fxng be the sequence

de�ned by (16). Then, fxng converges strongly to a �xed point of T if and only if fxng is

bounded.

Since
P
1

n=0
(1��n)

�
1

n+1

P
n

j=0
kj � 1

�
<1 yields

P
1

n=0
(1��n)(Mn � 1) <1; we get

the following.

Corollary 4.3. Let E, C, T , x and fkng be as in Theorem 4.1. Let f�ng be a sequence
of real numbers such that 0 � �n � 1; limn!1 �n = 0 and

P
1

n=0
�n =1, and let f�ng be

any sequence of real numbers such that 0 � �n � 1. Assume

1X
n=0

(1� �n)

 
1

n+ 1

nX
j=0

kj � 1

!
<1:

Let fxng be the sequence de�ned by (16). Then, fxng converges strongly to Px, where P is
the sunny nonexpansive retraction from C onto F (T ).

In the case when T is nonexpansive, by
P
1

n=0
(1 � �n)(Mn � 1) = 0, we can directly

obtain the following.

Theorem 4.4. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux
di�erentiable and let C be a nonempty closed convex subset of E. Let T be a nonexpansive
mapping of C into itself such that F (T ) 6= ;. Let f�ng be a sequence of real numbers such
that 0 � �n � 1, limn!1 �n = 0 and

P
1

n=0
�n = 1, and let f�ng be a sequence of real

numbers such that 0 � �n � 1. Let x 2 C and let fxng be the sequence de�ned by (16).
Then, fxng converges strongly to Px, where P is the sunny nonexpansive retraction from
C onto F (T ).

References

[1] S. Atsushiba and W. Takahashi, Approximating common �xed points of two nonexpansive mappings

in Banach spaces, Bull. Austral. Math. Soc., 57 (1998), 117{127.

[2] R. E. Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc., 76 (1970), 384{386.

[3] K. Goebel, W.A.kirk, A �xed point theorems for asymptotically nonexpansive mappings, Proc. Amer.

Math. Soc., 35 (1972), 171{174.

[4] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957{961.

[5] N. Hirano and W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces,

Kodai Math. J., 2 (1979), 11-25.

[6] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506{510.



376 S. ATSUSHIBA

[7] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44 (1973),

57{70.

[8] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal.

Appl., 67 (1979), 274-276.

[9] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math.

Anal. Appl., 75 (1980), 287{292.

[10] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive map-

pings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641{3645.

[11] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonex-

pansive mappings in Banach spaces, J. Approximation Theory, 97 (1999), 53{64.

[12] N. Shioji and W. Takahashi, A Strong convergence theorem for asymptotically nonexpansive mappings

in Banach spaces, Arch. Math., 72 (1999), 354{359.

[13] T. Shimizu andW. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings,

Nonlinear Anal., 26 (1996), 265{272.

[14] T. Shimizu and W. Takahashi, Strong convergence to common �xed points of families of nonexpansive

mappings, J. Math. Anal. Appl., 211 (1997), 71{83.

[15] R. Wittmann, Approximation of �xed points of nonexpansive mappings, Arch. Math., 58 (1992), 486{

491.

(S. Atsushiba) Department of Mathematics, Shibaura Institute of Technology, Fukasaku,

Saitama-City, Saitama 330{8570, Japan

E-mail address: atusiba@sic.shibaura-it.ac.jp


