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ON THE APPROXIMATIONS OF SOLUTIONS TO FUZZY
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ABSTRACT. In this paper, the existence and uniqueness of Caratheodory solutions
for fuzzy differential equations of one dimension are established. Furthermore, under
some conditions, the approximations of solutions for the above differential equations
are disscused.

1 Introduction

The notion of fuzzy number originated from [1] in which fuzzy sets with some properties
on the field of real numbers are called fuzzy numbers. Because of their applications on
fuzzy control and fuzzy approximation (see for example [17, 18]), there are more and more
studies on the algebraic structure and analytic property of fuzzy numbers (see for example
[3, 11, 12, 13]). Goetschel and Voxman [5] described fuzzy numbers with the following
reference functions {(a(r),b(r),r) : r € [0,1]}. Later in [10] Wu and Ma got a series of
results on the calculus of fuzzy numbers by embedding fuzzy numbers into the Banach
space C[0,1] x C[0,1].

Fuzzy differential equations were introduced by Kandel and Bytt in [8, 9] and later
applied to fuzzy processes and fuzzy dynamical systems. In [6, 7] Kaleva studied the classical
solutions of Cauchy problem for fuzzy differential equations. Recently, Friedman, Ma and
Kandel [4] studied the numerical solutions of fuzzy differential equations. In this paper we
study the Caratheodory solutions (which is called C-solutions for the sake of simplicity) for
a class of fuzzy differential equations, and obtain more general existence and uniqueness
of C-solutions, and continuous depedence of solutions on initial values and stability of
solutions.

2 Preliminaries
First let us recall some notions and facts about fuzzy numbers and fyzzy functions.

Let R be the field of real numbers. Denote E! = {u : R — [0, 1]} where u has the

following properties:

(1) w is normal. i. e., there exists an zg € R with u(zq) = 1;

(2) w is convex, i. e, u(ra + (1 — r)y) > min(u(x),u(y)) whenever z,y € R and r € [0, 1];
(3) u(z) is upper semicontinuous;

(4) [u]® =cl{z € R:u(z) > 0} is a compact set.

For any u € E!, u is called a fuzzy number. Obviously, [u]" is bounded closed interval
for r € [0,1] where [u]” = {z € R : u(z) > r}. For u € E', there are two functions
u,u : [0,1] = R such that [u]” = [u(r),u(r)] and the two functions satisfy the following
properties (i)-(iv):
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(i) u is a bounded, left continuous, nondecreasing function;
(ii) @ is a bounded, left continuous, nonincreasing function;
(iii) w, w are right continuous at r = 0;
(iv) u(r) <u(r) for 0 <r <1.
For any u,v € E' and k > 0 we define the addition u 4+ v and the multiplication by k
ast (u+v)(r) = u(r) +o(r), (@ +0) = alr) +5(r), (hu)(r) = ku(r), (ru)(r) = ka(r).

We call § the null element of E! if § : R — [0, 1] satisfies:

1, ifx=0;
o0 =1 §

otherwise.

Define D : E' x E' — [0, +c0) by the following:

D) = sup max(lu(r) = e(r)][a(r) = (7)),

then

(a) (E', D) is a complete metric space;

(b) D(ku,kv)=kD(u,v) for any u,v € E' and k > 0;
(¢) D(u+ w,v+ w) = D(u,v) for any u,v,w € E'.

Denote C[0, 1] the set of functions which are bounded, left continuous on [0, 1], and have
right limits for ¢ € [0,1), and are right continuous at ¢t = 0. For f € [0, 1], endow it with
the norm || f|| = sup |f(¢)|, then C[0,1] is a Banach space with respect to the above norm.

t€[0.1]

In [10], Wu and Ma obtained the following Theorem:

Theorem 2.1 For u € E', denote j(u) = (u,7), then J(E") is a closed convex cone with
verter § in C[0,1] x C[0,1] and j : E' — C[0,1] x C[0,1] satisfies statements (a) and (b).

(a) For any u,v € E',s,t >0, j(su+tv) = sj(u) +tj(v);

(b) D(u,v)=|j(u)—j(©)|| for any u,v € E', that is to say, j is an isometric 1somorphism
embedding from E' to C[0,1]x C[0, 1] where C[0,1]x C[0,1] is endowed with the norm

1(f; 9l = max{|[£]], Il }-

Denote T = [a,b]. F : T — E' is measurable if ¥r € [0,1] the set-valued mapping
Fo =[F(-)]" : T — Pgrc(R) is measurable where Prc(R) is the set of bounded closed
convex sets in R. And F' is integrably bounded if F is measurable and there exists an
integrable function h : T — [0, +0c0) such that for each = € [F(¢)]°, |z| < h(t). For each
integrably bounded function F' define its integral as:

[/T F(t)dt]" = {/Tf(t)dt : f(#) € [F(#)]" is a measurable selector}.

Now there exists u € E' such that [u]” = [ [, F(t)dt]", r € [0,1], then F is integrable on T
and fT F(t)dt = u.

We refer to [6, 10, 14, 15, 16] for the measurability and properties of the integrals of
fuzzy mappings.
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Let u,v € E'. If there exists w € E'! such that u = v + w, then we call w the H-
difference of # and y and denote it by u —v.We call a mapping F : [a,b] — E! differentiable
at to € [a,b], if there exists F'(tg) € E' such that the following limits

o Fltoth) —F(to) . Flto) = F(to — h)

h—0+ h h—0+ h

exist and equal F'(tq) where the limits are taken in (E', D). The above definition is due to
Puri and Ralescu [14].

Remark 2.1 That the function F : T — E' is integrable does not guarantee that jo F is
Bochner integrable (See Note 1 in Part II of [10]). For the function F : T — CE', where
CE" = {u € E" : u,u are continuous on [0,1]}, from Theorem 5.8 in Part II of [10], F 1s
wntegrable iff 7 o F 1s Bochner integrable. Therefore the differential equations in this paper
are discussed on CE'. By Theorem 2.1, j(CE') C C[0,1] x C[0,1] (C[0,1] denotes the set

of continuous functions on [0, 1]).

3 Main Results

We consider the following Cauchy problem of differential equations:

i = F(t,z(t), t€]la,bl;
(3.1) { x(a) = 20, 20 € CE'.

Suppose that F(t,u) : [a,b] x CE'" — CE' satisfies:

(A) For each u € CE', F(t,u) is measurable with respect to ¢;

(B) There exists integrable function m € L([a,b], R) such that
D(F(t,u), F(t,0)) < m(t)D(u,v);

(C) There exist integrable functions «, 8 € L([a,b],R) such that for u € CE"
D(F(t,u),6) < a(t) + B(t)D(u, ).

Remark 3.1 Let a be a Lebesgue integrable function on [a,b] and [ : [a,0] x R — R be

defined by "
a(t x <0
e
7oz L> 0.

For each uw € CE', denote
o(t,r) = min{f(t2) - 2 €[]}, r € [0,1],

o(t,r) = max{f(t,x) : x € [u]"}, r €]0,1],

then the r level set of F(t,u) is [F(t,u)]” = [v(t,r),v(t,r)], which means that F(t,u) :
[a,b] x CE' — CE? satisfies (A)-(C).

Definition 3.1 x(t) : [a,b] — CE" is absolutely continuous if Ve > 0 there exists § > 0

n

such that whenever > (b; —a;) < & we have > D(x(b;), x(a;)) < & where {(a;,b;)}7_, are
=1 =1
disjoint open subintervals of |a,b].
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Definition 3.2 z(t) : [a,b] — CE" is called a Caratheodory solution of (8.1) if x(t) is
absolutely continuous, and differentiable a. e. on [a,b], and z(a) = xg, 2'(t) = F(t,2(t))

a.e..

Denote L([a,b], CE') the set of integrably bounded functions z : [a,b] — CE'. Let m
be a nonnegative function and m € L([a,b],R). For x,y € L([a,b], CE") we introduce the
following metric:

das) = [ Dlalt). u(t)d

where y is an absolutely continuous measure on [a,b] and we define du = e=2"Odt, h(t) =

fat m(s)ds.
Lemma 3.1 j(CE") is closed in C[0,1] x C[0, 1].

Proof Suppose that uy € CE! satisfies that j o uy — f is in C[0,1] x C[0,1]. Then

{ux} is a Cauchy sequence in (CE', D). As (E', D) is complete, there exists u € E' such

that D(ug,u) — 0, or sup |ug(r) — u(r)] = 0, sup [ugp(r) —u(r)] = 0. In view of
T [0,1]

ref0,1] re

g, Uy, € C[0,1], we know that u,w € C[0,1] and further u € CE', or f = jou € ](C’El)
O

Lemma 3.2 (see Wu and Ma [10]) If x : [a,b] — CE", then the following conditions are

equivalent:
(1) z € L([a,b],CEY);
(2) joa is Bochner integrable;

(3) For any r € [0,1], z(-)(r),2(-)(r) are all Lebesgue integrable functions. Furthermore,
for t € [a,b] we have

[ et =10 [ ate)nds (@) [ 3] re 0.1l

Lemma 3.3 L([a,b],CE") is complete with respect to the metric d.

Proof Let {z,,} be a Cauchy sequence in L([a,b], CE'). As

d(wn,em) = [) D(@n(t),om(t))dp
= [} 7 0 xat) = G o xm(®)lldp,

{j o2,} is a Cauchy sequence in the Bochner integrable function space L,([a,b], C[0,1] x
C[0, 1]) where L, ([a,b], C[0,1]xC[0, 1]) is a Banach space of all Bochner integrable functions
f:[a,b] = C[0,1] x C[0,1] endowed with the following norm

b
1= [ ol

Then there exists f € L,([a,b],C[0,1] x C[0,1]) such that

b
(3.2) / 17 0 2a(t) — F(£)]ldu — 0.
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Further there exists a subsequence {j o x,, } such that joxz,, — f a. e. in C[0,1] x C[0, 1].
By Lemma 3.1, there exists z : [a,b] — C B! such that f = jox. As f is Bochner integrable,
by Lemma 3.2, v € L([a,b], CE"). Finally by (3.2), we have

b
dlzn) = [ N0 an(t) - F)ldn 0. O

For simplicity, denote the complete metric space formed by L([a,b], CE") with respect
to the metric d by L,([a,b], CE").

Lemma 3.4 Let v : [a,b] — CE" be integrably bounded. Denote y(t) = [;CE(S)dS Then
y : [a,b] = CE" is absolutely continuous and differentiable a. e. on [a,b], and y'(t) = z(t)

2

a. e..

Proof For t1,t2 € [a,b],t1 < ta, y(t2) = y(t1) + 'fttf z(s)ds, then

D(y(t),y(t)) = D(y(t1) + [, x(s)ds,y(tr))
= D(/,? x(s)ds. )
= [ D(x(s),8)ds.

=Jy

By the Lebesgue integrability of D(z(s),6), y is absolutely continuous on [a,b]. For h > 0,

e i)

A

As j oz is Bochner integrable, by [2, P. 49, Theorem 9] we get

1 [i+h
lim —/ l7 02(s) — joa(t)][ds = 0 a. e..
'

h—ot+ h

Therefore hlim+ D(M, 2(t)) = 0 a. e.. Similarly we can obtain hlim+ D(w7 z(t)) =
-0 -0

0. Thus y is differentiable a. e. on [a,b] and y'(t) = z(¢) a. e.. O
Remark 3.2 In the Proof of Lemma 5.4, %ftﬂ_h z(t)ds = z(t). See the result of Ezample
4.1 in [6] for it.

Theorem 3.1 If F(t,u) satisfies conditions (A)-(C), then there ezists unique C-solution
to (3.1).

Proof Existence. For x € L,([a,b],CE') define a mapping by (Tx)(t) = F(t,z9 +
f{:l(s)ds) Denote y(t) = o + f; z(s)ds, then y : [a,b] — CE' is continuous and
there exists a sequence of simple functions {y,} such that y, — y uniformly. Here
Yo = Y, Yn = T"(yo) = T(T" Yyo)) for n = 1,2,---. According to condition (B),
F(t,y(t)) = nh_}n;O F(t,yn(t)). Further by condition (A) and Lemma 3.2, F(-,y(-)) is mea-

surable. In view of condition (C),

D(F(t,y(t)),6)
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where M = m{a};:)] D(y(t),6). Then F(-,y(-)) is integrably bounded and T is a mapping
te|a,

from L#([a’vb]acE1) to L ([
fact, for xy, 79 € Lu([a,b},c

CE . Next we prove that T is a contraction mapping. In
P ppig
) by (‘ondition (B) we have

(T )(#), (T2)(1))dps
(Ft%+f%1)> (t,20 + [, w2(s)ds))dp
(t)D fn L : ds d,u
M(m(>xwa

Dl <,<»wkﬁw>

DjQ
—‘0“

d(T"ﬁ ) T”Cg)

I
STRETRATR

"D
D
m
m

2

IAIA
s

b=

Integrating by parts, we get

fwwmm  23(s))ds)de=2h D)

_1 [ D(gc1 s),22(s))ds)e2h Db 4 %f; D(x1(t), 25 (t))e= 2D gt
1 =20 [ D(ay(s), 22 (s))ds + (a1, 22)

*d(ll,$2)

IA

By Lemma 3.3 and the contraction principle, there exists z.(t) € L,([a,b], CE") such that
Ty, = x4, Or

t

(3.3) z. = F(t, 29 —1—/ r.(s)ds) a. e

Denote y.(t) = o + f s)ds, then y.(a) = z¢. By (3.3) and Lemma 3.4, y, is a solution
o (3.1).

Uniquene@q Let y1 be a solution of (3.1), then y| is integrably bounded. Denote
z(t) = xo + f y1(s)ds. By Lemma 3.2, for each r € [0, 1] we have

(3.4) ww/%WW=QMHD/MmWMWH@MM@@M

By the properties of Lebesgue integrals and yy(a) = xq, we know

L) Jyn) s = pd)(),
(3.5) L o
L) [iiG)r)ds = piB)()
From (3.4) and (3.3), it is immediate that [y (t)] = [z(¢)]", or yi(t) = z(¢),t € [a,b].

Therefore (Ty{)(t) = F(¢,y1(¢)), that is to say, y] is a fixed point of T. By the uniqueness
of fixed point of T, y{(t) = z.(t) a. e., or y(t) = y«(t) (¢ € [a,b]). O

Theorem 3.2 If F satisfies conditions (A)-(C), then corresponding to any initial values
zo,Yo € CE' respectively, the solutions y(-,x0),y(-,yo) of (3.1) satisfy

D(y(t7 170), y(tv yO)) < €2h(h)D($07 yO)
for each t € [a,b].

Proof Let x0,y0 € L,([a,b],CE"). Define two mappings T, Ty, as the following:

F(t,zo + fat u(s)ds),
F(t.yo + fat u(s)ds).

—_—
S
Q o
< =
~ —
—
~ T~
=
I
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According to the Proof of Theorem 3.1, T}, Ty, are contraction mappings and have fixed
points x4, y« respectively. Then

z(t) = F(t,xo -I-f (s)ds),
y*(t) = F 7y0+fa’ y* ..).
As
d(bm*,y*)
= fa D(F(t,xo ‘I'f «(8)ds), F(t, yo + f y«(s)ds))du
< [l m()D(wo + [, wu(s)ds,yo + [ yu(s)ds)dp
b
< fahm(f)[DUano)JrD(f ra(s)ds, f x4 (s)ds)]du
< (fPm(t)e 2Dt D(xo, yo) + [ m(t)( [ D(ws(s), yu(s))ds)e 2D dt,
integrating by parts we have
[ m@)(f) D(wa(s), y(s))d )_Zh(t)dt
= —% w7 D (), (0)dE + L [0 D(@a(t), ya(t))e 21O it
S %d(l*,y*),
Therefore , 1
d<$*,y*) S 5(1 - 6_2h(b))D<$07y0) + id(l*vy*)v
or

d(,f*,y*) < (1 - eizh(b))D(xoayO)'

Now the two solutions of (3.1) corresponding to initial values xq,yo can be respectively
written as

y(t,mg) = wo+ ft T (s)ds,

y(t,yo) = wyo+ [, ys(s)ds

So for ¢ € [a,b], we get, by (c) in Section 2,
y(t, 7o),y(f Yo))

(

(20 + [ w(s)ds yo-l-f ys(s)ds)
(mo,yo -I-f D (8), ya ())ds
(7o
(

bbbb

Yo) + PZh(b) fn, D(z.(s), y« (s):)e_‘zh(s)ds
D(zo, yo) + 2O d(z,,y,)
D(zg,y0) + "1 — e=2") D(x0, yo)
MO D(xg, y0).0

(I VAN | B VANR VAN

Theorem 3.3 Suppose that {F,(t,u)} and F(t,u) satisfy the following conditions:
(A’) For each u € CEY, F,(t,u), F(t,u) are measurable with respect to t;

vere erists integrable function m € a, such that for all u,v € an
(B’) Th ) integrable fi ) L([ /b},R) h that f 1w, CE! d

G e {F.} U{F},
D(G(t,u),G(t,v)) < m(t)D(u,v);
(C’) There ezist integrable functions o, 8 € L([a,b],R) such that for G € {F,} | J{F},

D(G(t, u),0) < a(t) + B(t)D(u,8);
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(D) For (t,u) € [a,b] x CE",

lim D(F,(t,u), F(t,u)) = 0.

n—oQ

Then the solutions y, to

(3.6) { z&);iz(ty(t));
and the solution y to

(3.7) { z(z)F_(tQ;(‘)y(t));
satisfy

lim D(Un(t)vy(t)) =0

n—>0C

uniformly for t € [a,b].

Proof On L,([a,b], CE") define the mappings T, T as the following:

(Thx)(t) = Fu(t,zo0+ {j x(s)ds),
(Tx)(t) = F(t,xo+ [, x(s)ds).

Denote the fixed points of Ty, T by x,,,x respectively. Then

(Than)(t) = Fu(t, 20 +f Tn s)ds),
(Tx)(t) = F t/Io-l-fa )
As
d(zn,z) =d(Thr,, Tr)
< d(Tpan,Thx) +d(Thx, Tx)
< id(zy, )+ d(Tyz, Ta),
we have
(3.8) d(z,,z) < 2d(Thx, Tx).

Next we consider

b t t
(3.9) d(Tpz,Tx) :/ D(:Fn(t,mo%»/ z(s)ds), F(t,zq +/ x(s)ds))dp.
Denote y(t) = 20 + f;x(s)ds By condition (C’),we get

D(Fn(tvy(t>>7F(t y(t)))
( y(t)),8) + D(F(t,y(t)),8)
2a(t )+ 26(t)D(y(t),0)
2a(t) + 26(t)M

INIAIA

where M = m{a}g]D( y(t),6). From condition (D’) we know
t€la

lim D(F,(t,y(t)). F(t,y(t))) =0,

n—roo
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further by Dominated Convergence Theorem we have

b
liw [ DUE, (t.u(0). Flt.u(t))du =0,

n—oo

In view of (3.9) we conclude

lim d(Tpz,Tx)=0.
n—>0o0

Denote y,,(t) = x9 + f; z,(s)ds. By (3.8) we obtain

D(yn(t), y(t))

D(zq + faf Tp(s)ds, xg + faf x(s)ds)
D(fat 2, (8)ds, f; z(s)ds)

[ D(,(s),2(s))ds

2O [ Dlin(s), 2(s))dp

M d(z,, x)

22" (T, Tar).

IA A IA A

Therefore

lim D(yn(t),y(t)) =0

n—>00

uniformly with respect to t € [a,b]. O

1]
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