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SEMILINEAR WAVE EQUATIONS WITH SOME KIND OF
NONLINEAR DAMPING IN HIGHER SPACE DIMENSIONS

SOICHIRO KATAYAMA
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AgsrracT. We consider the initial — boundary value problem for semilinear wave equa-
tions with nonlinear damping;:

ury — Au + alu]™ Tur = blulP " u  in (0,00) x €,
where 2 is a domain in R™ with a smooth boundary, m > 1 and p > 1, while a and b are
positive constants. We impose the Dirichlet condition on the boundary. In this paper,

we prove global existence and uniqueness of a certain weak solution to this problem
under the condition p < m.

1. INTRODUCTION

Let © be a domain in R™ with a smooth boundary. All the functions which will appear
below are supposed to be real-valued. We consider the initial — boundary value problem in
Q for seminlinear wave equations with nonlinear damping:

(1.1) Ou+ Q(u,uy) = F(u) in (0,00) x Q,
(1.2) u(0, ) = ug(x), ue(0,2) = uy(x) for x € Q,
(1.3) u(t,z) =0 for (¢,2) € (0,00) x 99,

where [] is the d’Alembertian (1 = 97 — A,), and @ represents nonlinear damping, i.e., we
assume

(1.4) Q(u,v)v > 0 for any u,v € R.

If @ = R™ we regard the problem as the initial value problem, and always neglect the
boundary condition (1.3) in the following.

We want to look for solutions to (1.1) — (1.2), which are at least in H} () for almost
every t > 0.

For a while, let Q(u,v) = alv|™ v and F(u) = blulP~'u, where m, p, a and b are
constants satisfying m > 1, p > 1 and ¢ > 0. The case where ¢ > 0 and b < 0, or the
case where a = 0 and b > 0 are studied by many authors (for example, see Lions — Strauss
[8], Haraux — Zuazua [3] and Glassey [2]). Roughly speaking, @ makes the solution exist
globally when a > 0, while F' may make the solution blow up in finite time when b > 0.
Therefore it is interesting to see the relationship between @ and F for the case where both
of a and b are positive. This problem under the assumption

l<p< ", n>3,
n—2 '
1< p< oo, n=12

(1.5)
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was studied by Georgiev—Todorova [1] when € is bounded, and by Todorova [10] when
) = R™ (see also Levine — Park — Serrin [7], Ikehata [4] and Ono [9]). We note that the
condition on p is imposed to ensure |u|?? € L% In [1] and [10], they proved that for any
up € H3(Q) and uy € L*(Q), there exists a global solution u to (1.1) — (1.2) which satisfies

u € C([0,00); Hy(2)) N C'([0,00); L*(2)),
ug € L™ ((O,T) X Q) for any T > 0,

provided that p < m. In contrast to this, when p > m, they also proved that the solution
blows up in finite time for some data, and there exists no global solution of the above
regularity for such data.

Now we want to consider another kind of nonlinear damping. More precisely, we treat the
problem with Q(u,v) = alu|™ v, where a > 0 and m > 1. Lions — Strauss ([8]) considered
the equation

(1.6) Ou 4 alu™ Yu, = f(t,2)

with initial data v = ug and uy = uy at t =0, and showed that there exists a unique global
(weak) solution. More precisely, they proved that if ug € HJ(Q) N L2*™(Q), uy; € L*(Q)
and f € Wﬂ’x’(O,T; L*(Q)), then for any T > 0, (1.6) admits a unique weak solution
w € L>((0,T); Hy () N L*™(Q)) with uy € L>=((0,T); L*()). Note that the initial data
make sense in this framework, because from the equation we find u € C([O,T);L2(Q))
and u, € C([0,T7);H Q) + Lq(Q)), where ¢ = 1 when m > 2, and ¢ = 2/m when
1 <m <2 Hereve H'(Q) + LYQ) means that v can be written as v = vy + vo using
some v € H™1(Q) and vy € LY(Q). This space is a normed vector space endowed with
the norm |[v]|g-140a = inf(y, woyeac lv1lla-1q) + llv2llza@), where A(v) = {(v1,v2) €
HY(Q) x L1YQ);v1 +vg = v} for ve H Q) + L1(Q).
Their idea of the proof is based on the fact that we have

A (|~ ag) = mlu|™ " (ty)s

for a sufficiently smooth function u. Roughly speaking, by introducing a new unkown u

satisfying u; = u, they reduced the problem to the known case where the nonlinear damping

|m—1~

has the form |u; Ug.

We want to investigate a similar problem to [1] and [10] for this Q(u,us) = a|u|™ Tuy
with nonlinear force terms. More precisely, we consider the semilinear wave equations of

the type

Ou + alu|™ tuy = blulP~tu in (0,00) x Q,
(1.7) u(0,7) = uo(w), u(0,x) =uy(x) forz e Q,
u(t,r) =0 for any (t,z) € (0,00) x 082,

where ) is a domain in R" with a smooth boundary (or  =R"), a > 0,5 >0, m > 1 and
p satisfies (1.5). In [5] the author et al. considered this problem in one space dimension
(n = 1), and showed that the condition m > p implies the existence and the uniqueness of
a global solution in the class C'([0,00); H}(Q)) N C*([0,00); L2(2)), while p > m implies
blowing up of the solution for some data. In the proof, a similar idea to that in [8] was
used. Unfortunately, our proof in [5] is only applicable to the case n = 1, because the proof
relies on the embedding H} C L°°, which is only available for the case n = 1.

In this paper, we will prove existence and uniqueness of a global weak solution, which is
similar to that in [8], for higher space dimensional cases under the condition m > p. Our
main result is the folllowing:
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Theorem 1.1. Assume that (1.5) is fulfilled. Suppose that ug € HI(Q) N L*™(Q) and
Uy € LZ(Q)

If m > p, then there exists a unique solution u to the problem (1.7), satisfying

w e L™ (O,T; HY Q)N LZ"’(Q)), uy € L™ (O,T; LZ(Q)) for any T > 0,
and
u € C([0,00); L*()), us € C([0,00); H () + LU()),
where
1 when m > 2,
1= 2/m  when 1 < m < 2.

Our strategy is as follows: First, we will introduce a reduced problem, following the
method of Lions — Strauss [8]. The existence part of the theorem is proved by applying
the compactness method of Lions — Strauss to the reduced problem, with the help of an a
priori estimate which was essentially used in [5]. The proof will be given in Section 3.

The uniqueness part of our theorem is rather delicate, because our solution is not regular
enough for us to apply the classical uniqueness result directly, and careful treatment of
nonlinear terms is needed. The proof of uniqueness will be given in Setion 2.

2. PROOF OF THE UNIQUENESS

In this section, we will give a proof for the uniqueness.
For y € R and m > 1, we define Q,,,(y) = |y|™ 'y. Note that Q,, belongs to C"', and we

have @1, (y) = mly|™~!

(2.1) {Qm(y) = Qu(2)} (y—2) >0
for any y, z € R.

. Hence @, is an increasing function of y, and we have

Let u be a solution to (1.7) with the regulaity mentioned in Theorem 1.1. Set

(2.2) v(t,z) = /O/U(Tj.fl?)dT.
Then we have
v € C([0,00); HY(2) N L*™(2)) N C* ([0, 00); L2(R)),
(2.3) vy € L (07 T; H3(2) N LQm(Q)) N C'([O, ) LZ(Q))7
Vit S LOO (0 T; LZ(Q))

for any T > 0. By integrating (1.7), we obtain

vi(7, ) [P oy (1, 2)dr

i
Oov(t,x) + g\m(’t,m)\m_lvt(’t,m) =b /
mo ‘ Jo

+ ()" o) + i ()

(2.4)

with v =0 and vy = ug at + = 0.
t
Now let @ be another solution to (1.7), and set v = / u(7, x)dr as above. Since we have
Jo

the same equation as (2.4) for v, we obtain

O(v—2)(t,x)+ % {Qm (vt(t: T)) —Qm (at(t’ $)>}

(2.5) t ’ -
= [)/O {Qp (m(r,m)) — Qp(Ve(r, T)) } dr.
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We write v(t,2) —v(t, x) as w(t, ), and the right-hand side of (2.5) as G(t, z), respectiveily.
By integrating the equation (2.5) multiplied by w; over €, we find

d w2 + |V wl|? a ~
E o ff(t,éb)dx + E /Q {Qm (Ut) - Qm (vt)} wt(tv$)dx

(2.6)
= / G(t, z)w:(t, z)dz.
Jo

Thanks to (2.1), we see that the second term in the left-hand side of (2.6) is non-negative.
Therefore, noting that w = wy; = 0 at t = 0, we obtain

t
(2.7) E(t)? S/ /G(s,rx;)wt(s,m)dmds,
0o Ja

where .
B(0? =5 [ {lodt o)+ [Vau(t0) ) do
Q

The above derivation of (2.7) is formal, but we can justify it because, as we will see in
the below, (2.3) implies w € C([O,T);Hé(&l)) N Cl([O,T);LZ(&Z)), wy € L*(0,T; H}) and
Gy e L=(0,T; L% 7).

Now we would like to estimate the right-hand side of (2.7). By integration by parts, we
obtain

(2.8) /Ot/ﬂ(th)(s,:c)dxds :/QG(t,:c)w(t,;v)d:c ./Ot/QGt(s,x)w(s,;v)dxds.

By Hoélder’s inequality, we have

(2.9) / /|Gt s,x)w(s, x)|deds </ |Ge(s, H 2z ds sup lw(s, )| r2e -

0<s<t

Similarly we have

/Q Gl wyut, o)l <CIGE, [t )|
(2.10)
<0/ G, Iz dsllo(t, )

From the definition of G, using the mean value theorem and Hoélder’s inequality, we find

G, 2o SC[(foet )P+ B, )Pz (00 =20 (E )22

<C(|lvelt, Mgz + 1Bt M z2e)"™ it 22

Because of (1.5), we have 2 < 2p < n/(n —2) forn > 3, and 2 < 2p < oo for n = 1,2.
Hence by Sobolev’s embedding theorem, we have

(212) HfHLZp(Q) < CHfHHé(Q) for any f € H&(Q)
From (2.8) — (2.11) with the help of (2.12), we obtain

(2.13)

G(s,z)w(s, x)deds

t
<My [ s laads s s,
0 0<s<t

for 0 <t < T, where My = sup,¢o 1 {Hv 8,+)] |H1 (@) + vt (s, ')HHl(Q)}
Set Ex(t) = supg<s<; E(s). We have [[wy(t,-)||zz < CEL(t) and ||[Vyw(t,-)|[z2 < CEL(1).
We also have B

t
llew(t, )2 < / lwe(s, HL2ds < TE.(t) for 0 <t < T,
0
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and hence we get supg< <y [[w(s.*)|m < C(1 + T)EL(t). Now, using (2.7) and (2.13), we
obtain o

t
(2.14) E(t)? <CME M1+ T)E*(t)/ E.(s)ds for 0 <t <T.
0
Gronwall’s lemma applied to (2.14) implies E,(t) = 0 for any ¢ € [0,7], which leads to
u(t,-) = u(t,-) for 0 <t < T, since we have

(e = @)tz 0y = [[(ve = 00t )l 120y < Ex(?)

by the definition of v and v. This completes the proof of uniqueness.

3. PROOF OF THE EXISTENCE

In the following, we write v’ for vy, and v" for vyy. Fix arbitrary T > 0. We will construct
a global weak solution v of (2.4) satisfying
v e L=(0,T; Hy (),
(3.1) v e L™ <O,T; H} Q)) nLmt! ((O,T) X Q),
v’ e L°C<O,T; ? Q))

For a while, let us assume that there exists a solution v of (2.4) satisfying (3.1). Define

—~ o~

(82)  flta) =} / [ () [P0y )+ o) o) + (),

Then we have

1t )z < CT sup |Jo'(r, )7 + Clluol|Tam + [[ur] 12 < oo,
0<s<T o

and we find that f belongs to L!(0, T;L2(Q)). Similarly, we have f/ € L! (O,T;LZ(Q)).
Therefore we can apply the regularity theorem of Lions —Strauss (see Theorem 1.2 in [8])
to conclude that the regularity of v in fact is (2.3). Set u(t,z) = v'(¢,2). It is not difficult
to check that u is the desired solution to (1.7).

It remains to construct v satisfying (3.1). Since HJ(Q) N L™*T1(Q) is separable, we can
find a basis W = {w;}32, of H} N L™ In other words, we can find a subset W of
HE N L™ such that elements in W are linearly independent, and that the set of functions
which are finite combinations of elements in W is dense in Hj N L™t We may assume
wy = ug unless ug = 0, because ug € Hol N L?™ C H& N L™+,

We construct approximate solutions {vn }37_; by solving the following:

(3.3) vy (t,z) = ZaNi(f)wi($)7

n a ‘ )
(34) (W) + Y (Orow, Do) + (@l )owy) = (fowy) for 1<j <N,

=1

(3.5) on(0,2) =0, vy (0,2) = uo(x),

where (-, -) denotes the inner product in L*(Q2), and fy is defined by

t

fn(t,z) = b/o o (7, 2) [P~ oy (7, 2)dr + %|u0(l’)|m_1u0(fﬂ) + ur ().
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Writing an(t) = (ani(t), -+ ,ann(t)T and By = (b;))i j=1,-. N With b;; = (w;,w,;), we
can see (3.4) is a system of ordinary differential equations of the form

(36) BNGX;(t) = CN(QN , N / DN aN

where C'y and Dy are C'-functions of their arguments. Observe that By is a regular
matrix since elements in W are linearly independent. By the classical argument, we can
easily show the existence of C*-solution an(t) to the systems of the form (3.6) in some time
interval [0,dy], where dn depends only on |an(0)| and |ay(0)]. Consequently we also get
the solution vy to (3.4) — (3.5) for 0 <t < én.

Now we are going to get a priori estimates to show that |an(t)| and |a’y(¢)| stays bounded
as far as ay exists. Once we get such estimates, we can choose éx = T. By (3.3) we have
an(t) = BK,IXN with X%: = ((vn,w;))j=1,...,n. Therefore we get
(3.7) lan ()] exllon(t ez < exT sup foy (@l lan ()] < enflon(t )]z
for 0 <t < T, where ¢y is a constant depending only on N. It has turned out that our
task is to get a bound for ||v\ (¢, )| 2.

We differentiate (3.4) to get

(o}, wj) + Z Or: Vv, Oy w;) + allon " TH o, wy) = bloi [P ol wy) (G =1, N).

=1
By multiplying each of the above equations by a/(#) and then summing them over 1 <7 <
N, we obtain

(3.8) (N, vR) +Z O vy, O, v ) + a{|oly [ I, o) = B|on [P oy, vR).

=1

Now we define Hy(t) by

1 b +1
(3.9) Hy(t) = 5 (I @O + Z 020 (D13 ) + I (IR
Let Py be the orthogornal projection in L?(Q) onto the subspace generated by wy, - - - w .
Then we have v} (0) = Pyu; since we have (v{(0),w;) = (u1,w;) for 1 < j < N from
(3.4) and (3.5). Therefore we conclude |[vR(0)]/z2 < |Jui|lzz. We also have ||ug|[zs+: <
C(luollz2e + |Juol[z2) < Clluoll 1. Hence we get

(3.10) Hx(0) < O (luollyy + Il + ol

where C' is a constant independent of N.
By straightforward calculation, we get

(3.11) n(t) = (vl o) +Z (0,0, Ozy0) + b0y [P 1ol vR).
=1

From (3.8) and (3.11) we find

(3.12) Hy(t) = —a(Joly|" ol o) + 20y [P 1ol ).

Let € > 0. Taking the condition 1 < p < m into account, we get
Prlyfoo| eloly PTHOR P + (4e) T ol [P

Se(Jor* + Jon ™ok ?) + (4) 7 ol

(3.13) 1ok
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Fix some ¢ sufficiently small to satisfy 2bs < a. Then by (3.12) and (3.13) we obtain
(3.14) Hiy(t) < 2be|[of |72 +b(2e) o 730 < CHN(Y).
()| z2 < Hyn(0)eCT for 0 <t < T, which leads to
(3.15) sup_([loiy (¢ )l gz + [0R (t,)ll2) < Cr

0<t<T

with some constant C'r which depends only on T, Hu0||yé and ||uy||z2, since we have

lor(@)llz2 < lor (O 22 + fg 10K ()]l 2ds.
From this, as we have stated in the above, we see that the solution vn(t) to (3.4) — (3.5)
exists in the time interval 0 < ¢ < T for each N. We also have

(3.16) sup_ || f(t )12 < Cr.
0<t<T

Next we want to take the limit of vy to obtain the solution to (2.4). Returning to (3.4),
and going in a similar way to the derivation of (3.8), we get

e S £ |

2(| vN(tv )HL2 —I—;Haxiv]\/(t7 )HLQ) + m Jo o
1 :

= gllwlie [ U)o (st

From this, using (3.15) and (3.16), we find

vy (s, )| deds
(3.17)

(3-18:) OZ‘tlp H”N( )HHl (Q) + H7 NHzln_El((o TyxQ) = < Cr.

From the uniform bounds (3.15) and (3.18), we conclude that there exists some function
v such that
vy — v weakly star in L™ (O,T; H&(Q)),
vy = v' weakly star in L*°(0,T; Hj (2)) and weakly in L™+ ((0,T) x Q),
o, = v weakly star in L*® (O,T; L2)
as N — oo, if we take an appropridte subsequence.
We also see that [v}y|™ "oy is bounded in L =t <(0, T) x Q) from (3.18), and that fy is
bounded in L2 ((07 T) x Q) from (3.16). Hence there exist two functions & and ¥ such that

(3.19) {Qm(vfw) = [l ™~ Ly v — ®  weakly in LmTJrrl((O,T) X Q),

IN—=>U weakly in LQ((O,T:) X Q),

as N — oo, if we take an appropriate subsequence. Let K be a compact subset of (0, T') x €.
From (3.15) and (3.18), we also have v}y, — v’ weakly in H}(K), and since H (K) is compact
in L*(K), taking a further subsequence if necessary, we get vhy — v’ strongly in L?(K).
Hence, taking a further subsequence again if necessary, we find that v}, — v’ a.e. in
(0,T) x Q. This is sufficient to conclude that ® = |[v'|™ 10’ and ¥ = f in the above, where
f is given by (3.2). Now we get

(3.20) Qm vy )) ’ wj> o(t)dt — <Qm (U'(t, )) ) wj> o(t)dt,

T T
(3.21) / Nt [ (F(t ) w)et)dt
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for any ¢ € C(S’O((O,T)), since w; € L*(2) N L™+1(2). Finally we can pass to the limit in
(3.4) and we find that

(3.22) (0" (1), ) + D (D0 0(8),Dr10) + (@ (0 (). ) = (F(8), )

for any w € W in the sense of distribution over (0,7). Since W is a basis of Hj N L™t!,
(3.22) remains true for any w € HJ(Q) N L™T1(Q2), and we see that v satisfies the desired
equation (2.4) in the sense of distribution over (0,7) x . Obviously v(0) = 0, v'(0) = uo,
and v satisfies (3.1). This completes the proof of the existence part of Theorem 1.1.
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