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ABSTRACT. A rational rotation algebra Ap is a universal C'*-algebra generated by
two unitaries U,V with relation VU = pUV, where p = ¢*™7 0 < § < 1 is rational.
Any involutary antiautomorphism of a rational rotation algebra is corresponding to an
involution of the torus 7%, the spectrum of rational rotation algebra. In this paper,
we prove that there is no involutory antiautomorphism in Ay associated with the
involution 7, : (A, ) = (=X, ) of the torus.

Let Ag be the universal C*-algebra generated by the two unitaries U, V with VU = pUV,
where p = €79 0 < § < 1. When # = p/q is rational, Ay is called rational. A rational
rotation algebra can be regarded as an algebra of continuous function from the square I? to
the matrix algebra M,(C). The spectrum of Ay is the torus hence its centre is isomorphic
to C(Tz). Given an antiautomorphism a, it gives rise to a homomorphism & of T? with
af(x) = f(a(z)), for any € T?, f € Ag. For any antiautomorphism « of A%’ let o(a) be
the associated homomorphism. Restricting the antiautomorphism « to the centre C'(T?)
of A%’ then it establishes a bijection between the involutory antiautomorphism of A% and

the involutions (including the identity homomorphism) of T?. Now any involution of T? is
conjugate to one of the following five ones

- Tl(/\ﬂlu) = (f/\vﬂ)v

T2 : 7—2(/\7:“) = (/\nu’)L

s TsOwm) = (—A ),

Tyt Ta(A, 1),

T5 - 7—5(/\7:“) = (Hv /\)

For convenience, we will denote the identity homomorphism of T2 by 7. In [3] we
proved briefly there is no involutory antiautomorphism associated with 71. In this paper we
will employ a more general approach, which applys to other cases, to show this theorem.

According to the analysis of the case ¢ = 2 and 0(¢) = 7, in [3] and the relation between
principal bundles and their associated fibre bundles, to investigate involutory antiautomor-
phism of A% associated with 7, we can start from studying the principal PUj-bundles over
T?. As the first step we give the classification of principal PUj-bundles over T and the
conjugacy homotopy classes of their automorphisms.

Lemma 1. Let k be the transformation of C* with k(x,y) = (z, ). Then each principal
PU}-bundle over T is either isomorphic to the trivial F; = PU, x T or isomorphic to F;
which is obtained from PU} x I by pasting ([u],0) to ([ku],1).

Proof. There are two connected components, one containing I, and one containing k.
By Lemma 3.1 of [3], we obtain the principal PUj-bundles F; over T.

As was shown in Proposition 2.1 and Lemma 3.2 of [2] the conjugacy homotopy classes
of the automorphisms of a principal PUj-bundle over T are related to the fundamental

group of PUj;. The following Lemma gives m (PU,).
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Lemma 2. m(PUy) = Z,.

Proof. From [4,8.12.3] we have m(U,) = Z. From the fibration T — U, — PU, we
have 7((T) — =1 (Uy) = m1(PU;) — mo(T). The map m(T) = Z — Z = =(U,) maps
n = deg(l) to ng = deg(1?) for each loop l. So 7y (PU,) = Z/qZ = Z,. Hence 7 (PU}) = Z,.

Lemma 3. Define automorphisms of F; by
(1) aq

(4) au([u],\) = [( 0 1 > ku],A). Then each automorphism « of Fy is homotopic to

a; for some ¢ € {1,2,3,4}.
Simﬂarh if we define automorphisms of Fy by

(5) Ail([u]. )] = [(1). )]
wla=10( o § )

(™) Bl (], o))

© il =10( g 3 )bl o where A = et

Then each automorphism S of F; is homotopic to §; for some 7 € {1,2,3,4}.

Proof. Let E be a principal PUj-bundle over T. Then by lemma 3 .1 of [2] any
automorphism @ of E corresponds to & € Map(T, PUj) with (1) = e or k and with
a[([u], )] = [([@au], 8)], where A = 2. Furthermore for two automorphisms a, 3 of E, if

],8)], where \ = 27,

(6)

],
], s
],

[ul )] =1
[ul, )] =1
[ul )] =1

a is homotopic to 8 then a is homotopic to 3.
Now Tl'l(Pljé) = Z2 and ll A [IZ] ] Al —> [(

A

0 1

on [k]. The corresponding antomorphisms of Fy are ap,as,as, ay respectively, and the

A

0 (1) )] are non-homotopic loops

based on [I2]. Also ls : A v [k],l4 : A — [( )k] are non-homotopic loops based

corresponding automorphisms of Iy are 31, 82, 33, 84 respectively. Given any automorphism
a of Fy and 8 of Fy, & or 3 is homotopic to [; for some i € {1,2,3,4}. So « is homotopic
to «; for some i € {1,2,3,4} or (3 is homotopic to §; for some i € {1,2,3,4}.

Proposition 4. All principal PUj-bundles over T? are isomorphic to one of the following
(1) F1(,1 = F1 Xaq T = vaé X Tz;
(2) Fia, = Fi X4, T which is obtained from PUJ, x T x I by pasting ([u],\,0) to

(51 )ar,

0
(3) Fiay, = Fi Xa, T which is obtained from PUj; x T x I by pasting ([u],\,0) to
([ku]. A, 1);
4) Fio, = Fi X4, T which is obtained from PU, x T x I by pasting ([u], ,0) to
; 4 4 2

(( 5§ )waany
(5) Fap, = Fy X, T which is obtained from PU} x I x I by pasting ([u],0,t) to ([ku], 1,%)

and pasting ([u], s,0) to ([u], s, 1);
(6) Fup, = Fy x5, T which is obtained from PU} x I x I by pasting ([u],0,t) to ([ku], 1,t)

and pasting ([u], s,0) to ([( 3 (1) ) u], s,1); where \ = e27i*;
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(7) Fap, = F3 x 3, T which is obtained from PU} x I x I by pasting ([u],0,t) to ([ku],1.t)
and pasting ([u], s,0) to ([ku], s, 1);

(8) Fag, = F» X, T which is obtained from PUJ x I x I by pasting ([u],0,t) to ([ku], 1,%)
and pasting ([u], s,0) to ([( 6\ 0 ) kul,s,1),\ = 2™,

Proof. This is a consequence of Lemma 2.1 of [1] and Lemma 3.2 of [2].

Proposition 5. Let Fia,, Fias, Fiag, Fia,, Fop,, Fap,, Fap,y, Fap, be the principal PUJ-
bundles over T? defined in Proposition 4. Then
(1) T(Fia, (M3(C))) = C(T?, M3(C)) with complexification isomorphic to C(T?, M (C))
5 C(T?, My (O));

A0, A0
) Do O(0) = 17 € OO 130(0) 1700 = (g 1 ) (g 7).
A € T} with complexification isomorphic to Avo @ Ago;
(3) T'(Fia,(M2(C))) 2{f € C(T x I, M>(C)) | f(A,0) = f(A,1),A € T} with complexi-
fication isomorphic to C'(T?, M2(C));
, AN O~/ N0
AT = (R, (@) 2 (7 € () L = (o ) 7o=m (1)
A\, i € T} with complexification isomorphic to C(T?, M»(C));
(5) T(Fap, (M2(C))) Z{f € C(T x I,M5(C)) | f(X,0) = f(A, 1)\ € T} with complexifi-
cation isomorphic to C(T?%, M,(C));
—( p 0
(6) T(EaMR(C) = {f & Cran(©) | fom = (4 3 )T (4 1),
A\, 0 € T} with complexification isomorphic to C(T?, My(C));
(7) T(F2p,(M2(C))) = {f € C(I2,Ma(Q)) | f(5.0) = f(s,1), f(0,t) = f(L,1),5.t € I}
with complexification isomorphic to C(T?, M2(C));

(8) T(Fap (M) 2 (£ € C(T% () | F0.0) = T 500 = (3§ ) T

( 6\ (1) ) ,8,t € I\ = 2™} with complexification isomorphic to C(T?, My(C));

Proof. (1) The fibre bundle induced from Fj,, with fibres isomorphic to M3(C) is the
trivial M>(C) x T? which has cross-section algebra C(T?, M3(C)) with complexification
C(TE, J\JQ(C)) S5, C’(T[‘Q7 _A/_/[Q(C))

(2) Since F4, can be regarded as a principal PUj-bundle over T? obtained from PUS x
IxI by pasting ([u],0,t) to ([u], 1,t) and pasting ([u], s, 0) to ([< AD ) u], s,1), by Lemma

0 1
2.2 of [2] we have

= O

—_

[(Fla,(M(C))) {f € C(I x I, My(C)) | £(0,8) = F(1.1), f(s,0)

A 0 >\ 0 27”9
(3 ) (3 4 )]
0
1

=~ {feC(TxI,Mz( ) | FN,0) = (

O >l
S >

oy $)aer)
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Define U : T — U » by U(N) = ( 6\ (1) ) Then

A(U) = {feC(TxI,Mz((C)) | F(0,0) = ( 00 )f(/\,l)( .Y ),AGT}

and deg(detUy)/2 = 1/2 and (deg(detUy,2)) = 1. Thus by Proposition 2.8 of [1] T'(F(14, (M>
(C)))) = Ay, which has complexification Ay /5 & Ay 5.

(3) Similarly, Fi,, can be regarded as a principal PUj-bundle over T? obtained from
PUj x I x I by pasting ([u],0,t) to ([u], 1,%) and pasting ([u], s,0) to ([ku],s,1). Making the
homeomoephic transformation (z,y) — (y,2) on T? we get a weakly isomorphic principal
PU}-bundle over T? obtained from PUj x I x I by pasting ([u], s,0) to ([u],s, 1) and pasting
([u],0,t) to ([ku],1,t). By Lemma 2.2 of [2]we have

My (C))) 2 {f € C(I x I, Ma(C)) | f(5,0) = f(s,1), £(0,) = k" f(1,t)k}
I MG(©) | £(0,0) = KL f(1, k)
{f e C(T xI,M:(C)) | f(N0)=f(\1)
{f €C() | £(0) = f(1)} @r C(T,R) @r Ma(R)

= {feC(T)] f(=)) = F(N)} @ O(T,R) @r My(R)

Let R = {f € C(T) | f(=\) = f(\)}. Thus it is to show that the complexification
of R is isomorphic to C(T). Thus I'(Fia,(M2(C))) has complexification isomorphic to
C(T) ® C(T) @ My(C) = C(T?, My(C)).

(4) The same argument as in (3) shows that

D(Fia,
{fecC

12

12

f\/ﬂ/—\/_\

T(Fia, (M:(C)))

1

{f € C(I x I,M(0)) | £(5.0) = f(s,1), £(0.1) = b~ (

\ = 627Tit c T}

~ {feC(TxI,MQ((C))|f(/\,0):<E)\ ?)m,l)(g ?),AGT}

O >l
= O
—
~
—
—
o~
=
TN
S >
= o
N
>

Let R = {f e ceran©) o= (o ) o=m (g | }
Define @ : R — C(T x I, M2(C)) by ®f(\,t) = f(\,e™). Then

f(,0) = f(A1) = (6\ ?))f(/\_l)<3 (1)>

and @F(\,1) = F(\,—1). So BF(),0) = é ; )(I)f(/\,l) ( - )
Hence @f € T(Fia,(M2(C))). Obviously ® is injective. To show that @ is onto
[D(Fia,(M3(C))), let g € C(T?, M2(C)) be defined by

f(A) if p=e" tcl

g(A,u)z{ (/0\ ?)m(é ?) if p=—ert tel
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for any element f € I'(Fiq,(M2(C))). Then

s =100 = (3§ )T (g ) =atn-e

and )
sy =t = (9 )T § ) = atn-e

So g is well-defined. As a function of y, g is continuous at +1 and also we have ®g(\, 1) =
g\, e™) = f(\,t). So we are left to show g € R. However, when i = ™!, we have

MNMZﬂNﬂZ(S?)MNﬂQ<X?>

, we have

(s 4)-(3 )

Therefore T'(Fyq,(M:(C))) is isomorphic to

{feawwmonﬂxm—(éﬁ)ﬂTTU(é?)}

Define an autiantomorphism ¢ of C(TZ, M,(C)) by

et = 9 )s0m (5 7)

cr = (5 1 )ero-w (5 0)
- (G e
A

So ¢ is involutory and ¢ f(A, i) = f*(A, p) if and only if

o= (o V)= 7))

Hence the complexification of I'(F14,(M2(C))) is isomorphic to C(TZHWQ((C)).
(5) By Lemma 2.2 of [2] we have

o

and when py = —e™

A
0

= O

g\ p) = (

O >l
= O
N

Then

S >l

S >l
—_— O
N
N———

I
TN
O >l
— O
N—

D(Fop, (M2(C)))

1%

{f € CUI x I, M:(C)) | f(5,0) = f(s,1), f(0,8) = k' f(1, )k}
= D(Fia,(M(C)))

which has complexification isomorphic to C(T?, M, (C)).
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(6) By Lemma 2.2 of [2] we have

=

N(Fap (M6(0) = {fecu%Mz«c»f<s.,o>=(3 D) (g ) s

=k AL RN = 62“3}

Let u(s,t) = 8_ ™ (1) > andlet g(s,t) = u(s,t)f(s,t)u(s,t)* for any f € T'(Fap, (M-
(C))). Then
g9(0,t) = «(0,%)f(0,t)u(0,t)"
= J(0,8) = f(1,7)
= u(l,t)*g(L,t)u(l,t)
()
9(s,0) = u(s,O)f(s,O)u(s,Q)*

_ ( fzm (1) )u,(s,l)*g(s-,l)u(&l)( 62(7;5 (1) )

= g(S, 1)

—2mit
Conversely, if g € C(I x I, M,(C)) with ¢(s,0) = g(s,1) and g(0,t) = ( ‘ 0 (1) >

2wt
g(l,t>( ey )Jet

then
£0,8) = u(0.1)"g(0,)u(0,1)
= ¢(0,%) =u(l,t)g(1,t)u(l,t)*
= u(l,t)u(l,t)f(1,)u(l, t)*u(l,t)*
= f(1.1)
f(s,0) = u(s,0)"g(s,0)u(s,0) =g(s,0) =g(s,1)
u(s, 1.)f‘(3, Du(s, 1)*
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Therefore
[(F25,(M2(0)))

{fGC““sz(Q)|f<s,o>—f<s,1>,f(ovt>—<e_ém 2>f(1,t)<62(jit (1])}

1%

1

f€CUxTJMQHf@M_(3 ?>ﬁf§<3 2)}
= D(Fpa,(Ma(0))

which has complexification isomorphic to C(T?, My(C))).
(7) By Lemma 2.2 of [2] we have

F(Fzﬂa(ﬂ/fz((c))) = {f € 0(127]‘12((:)) | f(S,O) = k’ilf('sv 1)k‘,f(0,t) = kilf(lvt)k}
= {feC(I*,M:(C)) | f(5,0) = f(s,1), f(0,1) = f(L, 1)}

C fsH LI oif s< 2
g(gf){f(szt)” if 92%

Then f(s,0) = f(s,1), f(0,%) = f(1,t) shows that ¢ is continuous and ¢(s,0) = f(s £
1/2,0) = f(s £ 1/2,1) = g(s. 1), g(0,4) = F(1/2,1)"" = g(1,1). So g € C.
Let ®f = g. Then

2 _ _ g 29 f
(ﬁf - (I)g{g(slt)tr if

So ®f = g defines an involutory anti-homomorphism, hence surjective, from C onto itself.
Clearly @ is injective. Thus @ is an involutory antiautomorphism of C'. The associated real

algebra is
M@={fe€f@w:{f§+?w§f3§ }

Let A= {(s,t) € I? |1 < 25+t < 2,0 <t < 1}, and note that the map (s,t) — (2s+t—1,)
is a homomorphism from A onto I?. Then, noting that restriction to A is an isomorphism

on R(P).

N[ o[

R@) = {1 eC@MO)] fs.0) = fls - 3.1 S50 = - g}
= {f € C(IE*AI2(C)) ‘ f(SO) = f(& 1)7f(07t) = f(lvt)}
= T(Fpp,(M2(C)))

Thus the complexifiction of T'(Fyg,(M2(C))) is isomorphic to C' which is isomorphic to
C(T?, M»(C)).
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(8) By Lemma 2.2 of [2] we have
[(Fyp,(M;(C)))

{fecu%MaQ)fmw

zk”ﬂLﬂhﬂ&®=k4< 2>ﬂ&m<é 2)hA:gﬂﬁ

A
0
= {recran©) i re0= (5 1 )0y §)-f0.0 =TT}

Let C asin (7), let A ={(s,t) € [? |1 <542t <2,0<s <1} and note that the map
(5,t) + (s,5+2t —1) is a homomorphism from A onto I?. For any f € C, define a function

12

o A A
0 1ver 0 . 1
g(s,t) = <0 1)'f(t7t+2) (0 1) s,
A A0 , VR AP . '
Where \ = €27, Then f(s,0) = f(s,1), f(0,#) = f(1,#) show that ¢ is continuous and

s 0= (5 1 )7 (5 1) =oleiDat0.0) = 004 1) = gi10,

SogeC. Let f =g, then

(o9 )atserr ()
By — 0 1 0 1
A0 A0
0 1 0 1

(6 et w( :
- (G D) (51) ()

= f(svt)

So, @ f = g define as involutory anti-homomorphism hence surjective, from C onto itself.
Clearly ¢ is injective. Thus @ is an involulory antiantomorphism of C'. The associated real
algebra is

A0 A
0 1 f(s,t-l-%)(o 1> if 1<y
R(®) = {feC|f(st)= A0 i A0 1

12

[recsmannz2-(3 D)5 (5 1)

.., L
fmw—fuﬁ—y}

} {fequbmm'ﬂ“®:<3 V)7 (G ?)J@wzfu@}
D(Fys,(Ma(©)))
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Thus the complexification of I'(Fzg,(M2(C))) is isomorphic to C which is isomorphic to
C(T?, M»(C)).

So all the cross-section algebras of fibre bundles over T? with fibres ismorphic to M(C)
and with group PUj have complexification not isomorphic to A;/,. Hence we have the
following corollary.

Corollary 6. There is no involutory antiautomorphism in A;/, associated with 7y :
(/\7 /U‘> = (_/\7 /u)

Proof. Let ® be an involutory antiautomorphism in Ay, associated with 7;. Since 7
has no fixed point, by Proposition 2.7 of [3], R(®) is a complex type algebra with spectrum
T? /71 which is homomorphic to T?.  So, by Proposition 2.5 of [3], R(®) = T(R) for
some fibre bundle over T? with fibres isomorphic to Ms(C) and with group PU} and the
complexification of R(®) is isomorphic to A;,. This contradicts Proposition 5.
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