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ABSTRACT. Let L be a lattice ordered effect algebra. We prove that the lattice
uniformities on L which makes © and @ uniformly continuous form a Boolean algebra
isomorphic to the centre of a suitable complete effect algebra associated to L. As a
consequence, we obtain decomposition theorems - such as Lebesgue and Hewitt-Yosida
decompositions - and control theorems - such as Bartle-Dunford-Schwartz and Rybakov
theorems - for modular measures on L.

Introduction. Effect algebras have been introduced by D.J. Foulis and M.K. Bennett in
1994 (see [B-F]) for modelling unsharp measurement in a quantum mechanical system. They
are a generalization of many structures which arise in quantum physics (see [B-C]) and in
Mathematical Economics (see [E-Z], [B-K]), in particular of orthomodular lattices in non-
commutative measure theory and MV-algebras in fuzzy measure theory. After 1994, there
have been a great number of papers concerning effect algebras (see [D-P] for a bibliography).

In this paper we study modular measures on lattice ordered effect algebras.

Starting point of our paper is observing that the lattice structure of lattice uniformities
plays a key role in non-commutative measure theory and in fuzzy measure theory (see [Ws],
[B-W] and [G]). Since modular measures on effect algebras generate a D-uniformity, i.e.
a lattice uniformity which makes © and @ uniformly continuous, it seems reasonable to
expect that D-uniformities play a similar role in the study of modular measures on effect
algebras.

In this paper we prove that the exhaustive D-uniformities on a lattice ordered effect
algebra L form a Boolean algebra isomorphic to the centre of a suitable complete effect
algebra associated to L (see Theorem (2.9)). As a consequence, we can apply a result of
[Ws] (3.14) to obtain a decomposition theorem for modular measures on L, which contains as
particular cases Lebesgue and Hewitt-Yosida type decompositions (see (3.5) and compare
with [D-D-P]). Moreover, we can derive a technique which allows us to transfer control
theorems known for measures on Boolean algebras - such as Bartle-Dunford-Schwartz and
Rybakov theorems - to modular measures on L (see Section 4).

1. Preliminaries

An effect algebra (L, ®,0,1) is a structure consisting of a set L, two special elements 0
and 1, and a partially defined binary operation & on L x L satisfying the following conditions
for every a,b,c € L :

(1) If a ® b is defined, then b@® a is defined and a ® b = b ® a.

(2) If b ¢ is defined and a® (b c) are defined, then a b and (a ® b) & ¢ are defined and
a®d(bdc)=(adb)De.
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(3) For every a € L, there exists a unique a* € L such that a®a™ is defined and a®a’ = 1.

(4) If a ® 1 is defined, then a = 0.

In every effect algebra a dual operation © to & can be defined as follows: a © ¢ exists and
equals b if and only if b & ¢ exists and equals a.

Moreover we can define a binary relation on L by a < b if and only if there exists ¢ € L
such that ¢ ® a = b and < is a partial ordering in L, with 0 as smallest element. We say
that two elements a,b € L are orthogonal, and we write a L b, if a & b exists. Then a L b
if and only if a < b*. Moreover, for every a,b € L, we have a* = 1S a, a®b = (b* Sa)*,
and a < b if and only if a* > bt.

If (L, <) is a lattice, we say that the effect algebra is a lattice ordered effect algebra or a
D-lattice.

Effect algebras are a common generalization of orthomodular posets and MV-algebras.
For a study, we refer to [D-P].

If L is a D-lattice, we set aAb= (a VD) © (a AD).

It is helpful to recall from [D-P] and [A-V] (2.3) the following result.

Proposition (1.1) Let a,b, c,d elements of an effect algebra L. Then:
1) IfaLlb,thena<a®band (a®b)Sa=h.

(
(2) Ifalbanda®b<c thenco(a®b) =(coa)ob=(cebd)Sa.
B)Ifa<bandb lc, thena®c<bdcand (bdc)o(adc)=bOa.

4) Ifa<b<c, thena® (cob)=co(bea) and (cob)® (boa)=coa.

(5) If L is a D-lattice, a L b and aAb =0, thena®b=aVb.

(6) Ifa<b,thenboa<bandbo (boa)=a.

(M) Ifa<b<c, thencob<coaand (coa)o(ceb) =bsa.

(8) If L is a D-lattice, ¢ < a < d and ¢ < b < d, then (aSc)A(bSc) = aAb = (dSa) A(dSD).
(

9) If {bo} C L, b = sup, b, ezists and a L b, then sup,(a ® by) ezists and a ® b =
sup, (a @ ba)-

)
)
)
)
)
)
)
)

We write a,, 1 a (respectively, a,, | a) whenever {a,} is an increasing sequence in L and
a = sup,, a,, (respectively, {a,} is decreasing and a = inf,, a,).

L is said to be complete (o-complete) if every (countable) set in L has a supremum
and an infimum. We set A = {(a,b) € L X L : a = b}. If a,b € L and a < b, we set
[a,b] ={c € L:a<c<b}

Ifay,...,a, € L, we inductively define a1 ® ... D a, = (a1 D ... D an—1) D a, provided that
the right hand side exists. The definition is independent on permutations of the elements.
We say that a finite subset {a1,...,a,} of L is orthogonal if a; & ... ® a,, exists.

For a sequence {a,}, we say that it is orthogonal if, for every n, @, a; exists. If,
moreover, sup,, @, .,, a; exists, we set P, .\ an = sup, P,-,, ai. -

An element a € L is said to be principal if b L ¢, b < a and ¢ < a imply b @ ¢ < a.

An element a € L is said to be central if, for every b € L, b = (bAa) V (b A a’). The
set C(L) of all central element of L is said to be the centre of L. By [R1] (5.5), a € L is
central if and only if a is principal and, for every b€ L, b= (bAa) @ (bAat). By 1.9.14 of
[D-P], C(L) is a Boolean algebra.

If G is an Abelian group, a function p : L — G is said to be a measure if a 1 b implies
wla ® b) = p(a) + w(d). It is easy to see that p is a measure if and only if a < b implies

u(b© a) = p(b) — p(a).
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If G is a topological group, pu is said to be o-additive if, for every orthogonal sequence
{a,} in L such that @, a, exists, u(D,, an) = > o, nlan), exhaustive if, for every mono-
tone sequence {a,} in L, {u(a,)} is a Cauchy sequence in G, o-order continuous (o-o.c.)
if a, T a or a, | ain L implies lim,, u(a,) = p(a), and order-continuous (o.c.) if the same
condition holds for nets. By 2.2 of [A-B], a measure p is o-additive if and only if 4 is -o.c.

In the sequel, we denote by L a D-lattice.

A function p : L — G is said to be modular if, for every a,b € L, pu(a V b) + p(a A b) =
p(a) + u(b). By [F-T], every modular function on any lattice generates a lattice uniformity
U(p), i.e. a uniformity which makes uniformly continuous the lattice operations V and A,
and U(p) is the weakest lattice uniformity which makes p uniformly continuous (see 3.1
of [W4]). Moreover, by 4.2 of [A-B], if 4 is a modular measure on L, then U(u) is a D-
uniformity, i.e. U(u) makes © (and therefore @) uniformly continuous, too, and a base of
U(p) is the family consisting of the sets {(a,b) € L x L : u(c) € W for every ¢ < aAb},
where W is a neighbourhood of 0 in G.

A D-uniformity is said to be ezhaustive if every monotone sequence in L is a Cauchy
sequence in U, o-order-continuous (c-o.c.) if a, T a or a, | a in L implies that {a,}
converges to a in U, and order-continuous (o.c.) if the same condition holds for nets.

It is also helpful to recall the following result of [A-V] (2.3 and 2.4).

Theorem (1.2) Let U be a D-uniformity on L and F the collection of neighbourhoods of 0
in U. Then:

(1) A base of U is the collection consisting of the sets F*~ = {(a,b) € L x L : aAb € F},
where F' € F.

(2) F has the following properties:

(a) For every F' € F, there exists G € F such that aAb € G implies (aVe)A(bVe) € F
for every c € L.

(b) For every F € F, there exists G € F such that aAb € G implies (aAc) A(bAc) € F
for every c € L.

(c) For every F € F, there exists G € F such that aAb € G and bAc € G imply
alAc € F.

(d) For every F € F, there exists G € G such that a € G implies (aV ) ©c € F for
every c € L.

(e) For every F € F, there exists G € F such that a € G and b < a imply b € F.

2. D-uniformities on lattice ordered effect algebras

In this section we prove that the exhaustive D-uniformities on L form a Boolean algebra.
First we need some results.
Lemma (2.1) Ifa,b,c€ L,a L band c<a, then (a®b)Sc=(aOc)Db.

Proof. By (1.1)-3, we have (a @ b) © (c®b) = aSc. Since a©c < a and a L b, then
a ©c L b. Therefore, by (1.1)-1, 4, we have (a ©¢) @b = ((a D) ©(c@db)) db =
((a®b)o(cdb)®((cdb)oc)=(adb)Oec.

Lemma (2.2) Let a,b,c,d € L be such that a L b, ¢ < a andd <b. Then (a®b)o (cdd) =
(@acc)® (bod).

Proof. By (1.1)-2 and (2.1), we have (a®b) © (c®d) = ((a®b)od)oc=(a®(bod))Sc=
(@aec)@ (bod).
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Lemma (2.3) Let p be a central element of L and a,c € L be with ¢ < a. Then (a©c)Ap =
(@ Ap)© (cAp).

Proof. The assertion can be obtained as a consequence of (2.1)-2 of [A-B-C]. Here we give
a direct proof.

Since p is principal, we have (c Ap) ® ((a © ¢) A p) < p. Moreover, by (1.1)-1, we have
(cAp)®((acc)Ap) <cd(a©c)=a. Then we get (cAp)® ((a©c)Ap) <aAp, from
which, by (1.1)-1, we obtain

* (aAp)©(cAp) > (aSc)Ap.

Since pt is principal, too, in similar way we obtain

o (aApt)o(cAph) > (@oe)Aph.

Moreover, since p is central, we have a = (a Ap) @ (a Apt) and ¢ = (c Ap)  (c A pt).
Then, by (2.2), we have a© ¢ = ((a Ap) ® (aAph)) & ((cAp) @ (cAph)) = ((arph) o
(cAph)) ® ((aAp) © (cAp)). By (1.1)-1, we obtain

. (@oc)e ((anpt) o (cAph)) =(aAp) e (cAp).

On the other hand, we have also a©¢ = ((a@c)/\p) < ((aec) /\pl). Then, by (1.1)-1, by
(**) and by (***) we get (aSc)Ap = (a©c)© ((a©c)Apt) > (a0c)o ((anph)S(cAph)) =
(a Ap) © (c A p). By (*) and the last inequality, we obtain the assertion.

A D-congruence on L is a lattice congruence with the following property: for every
a,b,ce Lya~c,b~d,a<band c<dimplybea~doc.

A D-ideal is a lattice ideal I on L with the following properties:

(1)For every a,b€ I, witha L b, a® b€ I.
(2)For every a € I and every be L, (aVb)©be 1.

It is easy to see that, if &/ is a D-uniformity, then N(U/) = ({U : U € U} is a D-
congruence and the closure of {0} in ¢/ is a D-ideal.

Lemma (2.4) If L is complete and U is a o.c. D-uniformity on L, then there ezists a
central element p in L such that the closure of {0} in U coincides with [0, p].

Proof. Denote by I the closure of 0 in ¢/ and set p = sup I. Since I/ is o.c., the increasing net
{b:b € I} converges to p in (L,U). Since I is closed, then p € I. Since I is a lattice ideal,
we get that I = [0, p]. We prove that p is central. It is clear that p is principal since I is a
D-ideal. Then pAp* = 0. Hence, if a € L, we have a > (aAp)V (aApt) = (aAp) D (aApt),
from which a © (a A pt) > a A p. Moreover we have that, for every a € L, a © (a Ap*) € T
since by (p,0) € N(U) we get (a Apt,a) € N(U), from which (a © (a A p*),0) € N(U).
Therefore we have a © (a Apt) < aAp. Then we have a Ap = a© (a Apt) for every a € L.
By 2.5 of [Ry], we get that p is central.

For the next results, we use the following:

Notation. If W is a D-uniformity, we denote by (L, V) the quotient of (L, W) with
respect to the D-congruence N(W) = ({W : W € W}, by (L, W) the uniform completion
of (L,W), and by W the restriction of W to the centre C(L) of L.

Moreover we denote by LU (L, W) the lattice of all lattice uniformities finer than ¥V and
by DU(L,W) the set of all D-uniformities in LU (L, W).
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It is easy to see that DU(L, ) is a complete sublattice of LU(L,W).
We use similar notations for L, L and C(L).

It is also helpful to recall the following result.

Proposition (2.5) Let W be a D-uniformity on L. Then:

(1) L and L are D-lattices and W, W, W are Hausdorff D-uniformities.

(2) If W is exhaustive, then W and W are exhaustive and o.c., and (L, <), (C(L),<) are
complete.

Proof. (1) has been proved in 4.2 of [A-B].

(2) By 3.7 of [W,], W is exhaustive and o.c., and (L, <) is complete. Moreover, by
3.4 of [Wg], C(L) is a complete Boolean algebra with the following property: if ao 1 a
(respectively, aq | @) in C(L), then aq 1 a (respectively, a, | a) in L. Therefore it is clear
that W is exhaustive and o.c., too.

Recall also that, by 4.1 of [A-B], a lattice uniformity W is a D-uniformity if and only if,
for every U € W, there exist V' € W such that V &V C U, where

VeV ={aocbod): (a,b) eV, (cd) e€V,c<a,d<b}.

Moreover, by (1.2), a base of a D-uniformity W is the family consisting of the sets {(a,b) €
L x L:alAbe Uy}, where Uy is a neighbourhood of 0 in W.

Proposition (2.6) Let W be a D-uniformity on L. Then the lattices DU(L,W) and
DU(L,W) are isomorphic.

Proof. For a € L, denote by a the equivalence class of a in L. For every U € LU(L,W),
set U = {(a,b) : (a,b) € U} for U € Y and U = {U : U € U}. By [Wi] (page 381), the
map U — U is a lattice isomorphism between LU (L, W) and LU(L,W). Then we obtain
the assertion observing that ¢ is a D-uniformity if and only if ¢{ is a D-uniformity.

Proposition (2.7) Suppose that W is a Hausdorff exhaustive D-uniformity on L. Then the
lattices DU (L, W) and DU(L,W) are isomorphic.

Proof. By 3.8 of [Wy], the map U € LU(L,W) — Z;{‘L € LU(L, W) is a lattice isomorphism.
Then we have only to prove that ¢/ € DU(L, W) if and only if Z/I‘L € DU(L,W).

Let / be a D-uniformity on L. If U,V € i and V &V C U, then obviously we have
(VN(Lx L))o (VN(Lx L)) CUN(L x L). Therefore, it is clear that Z/{‘L is a D-uniformity,
too.

Conversely, let U/ be a D-uniformity in LU(L,W). By 1.5 of [W1], U has an extension
U € LU(L,W) which has as base the family {U : U € U}, where U denotes the closure of
U in the product uniformity ¥V x W on L x L.

We have to prove that, for every U € U, there exists V € ¢ such that VeV C U.

Let U,V € U be such that U C U and V &V C U. It is sufficient to prove that
VoV CVaV. Leta,bc,de L be such that ¢ < a, d < b, (a,b) € V and (c,d) € V.
Recall that a base in W x W consists of all sets {((a,b), (c,d)) : (a,c) € W, (b,d) € W},
where W € W. Then, for each W € W we may choose aw,bw,cw,dw € L such that
(aw,a), (bw,b), (cw, ) (dw,d) € W and (aw,bw), (cw,dw) € V. Since W is a lattice
uniformity, we may assume cy < aw and dw < by . Clearly {aw : W € W} {bw : W €
W}, {ew : W € W} and {dw : W € W} are nets which converge, respectively, to a,b,c,d
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in W. Then we have that {aw © cw } converges to a © ¢ in W and {by © dw} converges to
bodin W. Therefore (aoc,bod) e VaV.

Theorem (2.8) Suppose that L is complete. Let VW be a o.c. Hausdorff D-uniformity on
L. Then DU(L,W) is a Boolean algebra isomorphic to the centre C(L) of L.

Proof. For every U € DU(L,W), denote by I(i) the closure of {0} in ¢/, and let
¢:U € DU(L,W) — supI(UU) € C(L).

By (2.4), ¢ is well defined. We prove that ¢ is a dual lattice isomorphism.
Let p € C(L). We first show that there exists &/ € DU (L, W) such that I(U) = p.
Set By = {Uw : W € W}, where, for each W € W,

Uw ={(a,b) e Lx L:(aAp-,bAp-) € W}.

We prove that By is a base of a D-uniformity.
It is clear that, for every Wi, Wy € W, we have

UW1 n UWz = UW10W2) le—l = (UW1)71) UW1 ° UW2 - UW10W2'

Now let W, W’ € W be such that W' © W’ C W. We show that Uy © Uw C Uw.
Let (a,b), (¢,d) € Uw: be such that ¢ < a and d < b. Then we have

((aApl)e(cApl),(bApL)e(dApL)) eW oW' CW.

By (2.3), we obtain ((a ©c) Ap-, (bod)Apt) e W o W' C W, ie. (a©c,bOd) € Uw.

Now let W, W’ € W be such that W' AW’ C W. We have Uy A Uy C Uw since, if
(a,b),(c,d) € Uy, we have (a AcApt,bAdApt) = (aApt,bApt) A(eApt,dApt) €
W' AW' C W, from which we get (a,b) A (¢,d) € Uy .

Since aVb =106 ((1©a) A (1©b)), we have that also V is uniformly continuous.
Hence By is a base for a D-uniformity Up.

Moreover we see that Uy < W. Indeed, for each W € W, we can find V € W such that
and VAA CW, whence V C Uy .

Finally we have I(Up) = [0, p]. Indeed, since p is central and therefore a = (aAp)®(aApt)
for every a € L, we have that ¢ € I(Up) < (c,0) € N(Up) & (cApt,0) € NW) = A &
cApt=0sc<p.

Now let U,V € DU(L,W). It is clear that &/ < V implies ¢(U) > ¢(V). Conversely,
let ¢(U) < ¢(V). By (2.4) we get that I(U) C I(V). Since (a,b) € N(U) if and only if
alNb € I(U), we have N(UU) C N(V). By 6.7 of [W>], we obtain that the topology generated
by U is finer then the topology generated by V. By (1.2)-1, we obtain that ¢/ > V.

Corollary (2.9) Let W be an ezhaustive D-uniformity on L. Then the lattices

DU(L,W), DU(L,W), DU(L,W) and DU(C(L), W) are Boolean algebras isomorphic to
C(L). In particular, the lattice of all exhaustive D-uniformities on L is a Boolean algebra.

Proof. By (2.6) and (2.7), DU(L, W), DU(L, W) and DU (L, V) are isomorphic. Moreover,
by (2.5), W and W are o.c. and Hausdorff, and (L, <), (C(L), <) are complete. Then, by
(2.8), DU(L, W) and DU(C(L), W) are isomorphic to the Boolean algebra C/(L).

For the second part of the statement, take as YW the supremum of all exhaustive D-
uniformities.

Remark (2.10). Let W be an exhaustive D-uniformity on L. For &/ € DU(L, W), denote
by U the element of DU(C(L),) which correspond to U in the isomorphism of (2.9)



DECOMPOSITION AND CONTROL THEOREMS 7

between DU (L, W) and DU(C(L), W). By the proofs of (2.8) and (2.9), we obtain that the
isomorphism between DU (L,)) and C(L) in (2.9) is the map

¢:U € DU(L,WV) — (supmﬁ )L € C(L).

3. A decomposition theorem

In this section we derive from the results of Section 2 and a result of H. Weber a
decomposition theorem for modular measures on L, which contains as particular cases
Lebesgue and Hewitt-Yosida type decompositions.

We denote by G, G’ complete Hausdorff topological Abelian groups.

If u: L — G is a modular function, we denote by U(u) the lattice uniformity generated
by i (see Section 1).

We say that two lattice uniformities &/ and V are permutable if, for every U € U and
V €V, there exist U' € U and V' € V such that V' o U’ CUo V.

U AV = 0 means that the infimum of ¢/ and V is the trivial uniformity.

By 3.14 of [W3], the following result holds.

Theorem (3.1) Let L' be a lattice, LU(L') be the lattice of all lattice uniformities on L'
and B be a Boolean sublattice of LU(L'") which contains the trivial uniformity and a greatest
element WW. Assume that every two elements of B are permutable. LetUd € Band p: L' — G
be a W-uniformly continuous modular function. Then there exists unique modular functions
Nv i L' = G such that p = X+ v, UN) S U, Uv) NU = 0, and U(p) = UN) VU(V).
Moreover, if L' is a D-lattice and p is a measure, then A and p are measures, too, and
ML), v(L'") are contained in the closure of u(L').

To derive by (3.1) a decomposition theorem in L, we need some definitions and results.
Proposition (3.2) If U and V are D-uniformities on L, then U and V are permutable.

Proof. Denote by F and G the systems of neighbourhoods of 0, respectively, in ¢/ and in V.
Let U € Y and V € V. By (1.2) we can choose F € F and G € G such that FA C U and
G? C V. Choose Fy, Fy, F3 € F such that I satisfies (c) of (1.2), F satisfies (b) of (1.2)
with respect to Fy and F3 satisfies (a) of (1.2) with respect to F». In similar way we choose
G1,G2,G3 € G. Note that Fy C Fy and G - Gy

We prove that G o F2 C FAoGA CUoV.

Let (a,c) € G o Ff and choose b € L such that (a,b) € G5 and (b,c) € F{. Then we
have aA(aVb) = (aVa)A(bVa) € Gy and (aVbVe)e (bVe) = (aV (bVe) AV (bVe)) € Gs.
In similar way we obtain (bV ¢)Ac € F» and (a VbV ) O (aVb) € Fy. Set

ag =(aVvVbve)o (bVe), co=(aVbVe)o(aVh).

By (1.1)-6, we have (a VbV c¢)©Sa; =bVecand (aVbVce)Sep = aVb Observe that
cp Laanda; Le,andsete=a®c, f=a @candd=-¢eA f. By (1.1)-4, we have
e=ad((avbve)e(avbd) = (aVvbVve)e ((avb)©a) < aVbVec and, similarly,
f <aVbVe Moreover we have aNe = e S a = ¢; € Fy and, by (1.1)-8, eA(aVbVe) =
(e9e)A((avbVe)Ser) = aA(aVvb) € G,. In the same way we obtain fAc = foc = a; € G
and (aVbVe)Af = (bVc)Ac € Fy. Therefore eAd = (e A(aVbVe)AeA f) € Fy and
ale € Fy C Fy. Then we get aAd € F, ie. (a,d) € FA. Similarly we get dAf =
(eANf)A((aVbVe)A f) € Gy, ie. (d,c) € GA. We conclude that (a,c) € F2 o G2,

If u: L - @G is a modular measure and ¥/ is a D-uniformity, we write p << U if pu is
U-continuous in 0.
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If A\: L —» @ is another modular measure, y << A means pu << U(N).

Recall that a base of neighbourhoods of 0 in ¢/(A) is the family consisting of the sets
{a € L: \(b) € W V b < a}, where W is a neighbourhood of 0 in G’ (see Section 1). Then
we have that p << X if and only if, for every neighbourhood W of 0 in G, there exists a
neighbourhood W' of 0 in G' such that, for every a € L, A(b) € W' for every b < a implies
wla) € W.

Proposition (3.3) Let u: L — G be a modular measure and U a D-uniformity. Then the
following conditions are equivalent:

(1) p<<U.
(2) p is U-uniformly continuous.

(3) U(p) <U.

Proof. Tt has been proved in 3.5 of [A] that p is continuous in 0 if and only if p is uniformly
continuous. Since U(u) is the weakest D-uniformity which makes p uniformly continuous,
we have that p << U if and only if U (u) < U.

We say that two D-uniformities ¢/ and V are singular if, for all neighbourhoods F, G of 0,
respectively, in I/ and in V, there exists a € L such that a € F and a* € G. In particular, if
U is generated by a modular measure p : L — G, we write p L Vif U(p) LV.IEN: L > G’
is another modular measure, ;1L A means U(p) L U(A). In this case, we say that p and A
are singular. By (1.2)-1, we have that p L A if and only if, for all neighbourhoods W and
W' of 0, respectively, in G and in G', there exists a € L such that u(b) € W for every b < a
and \(c) € W' for every ¢ < a’t.

Proposition (3.4) Let U,V be D-uniformities on L. Then the following conditions are
equivalent:

(1)U L.
@) UAY=0.

Proof. Denote by F and G the systems of neighbourhoods of 0, respectively, in &/ and in V.
By 2.4-c and 2.6-a of [A-V], UAV = 0 if and only if, for every F € Fand G € G, F®&G = L,
where F&@ G ={a®b:a€ F,be G, a L b}. Hence (2) = (1) immediately follows.

(1) = (2) Let F € F, G € G and a € L. By (1.2) we can choose F' € F such that
a < b€ F'implies a € F and G' € G such that a € G’ implies (a V b) © b € G for every
a € L. By (1), we can find ¢ € L such that ¢ € F’ and ¢ € G'. Set b = a A c. Then we
have a = b® (a ©b), where b € F since b< ¢ € F' and a ©b € G since, by (1.1)-7, we have
aob=ao(aAc) = (ctVat)oat € G. Since a is arbitrary, we conclude that F ® G = L.

Now, as a consequence of the results of Section 2, by (3.1) we obtain the following
decomposition theorem.

Theorem (3.5) Let u: L — G be an ezhaustive modular measure and U a D-uniformity
on L. Then there ezist unique modular measures \,v : L — G such that p = A+v, A << U
and v L U. Moreover X\ and v are ezhaustive and singular, A(L), v(L) are contained in
w(L), and U(p) =UN) VU (V).

Proof. Denote by B the lattice of all exhaustive D-uniformities on L and let W = sup 5. By
(2.9), B is a Boolean sublattice of the lattice of all lattice uniformities on L. Moreover, by
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(3.2), any two elements of B are permutable and, since by 3.2 of [W4] U(u) is exhaustive,
we have U(u) < W, and therefore by (3.3) p is W-uniformly continuous.

Set V =U(u) AU. Since V € B, by (3.1) there exist unique modular measures A\,v : L —
G such that p = A+v, U(N) <V and U(v) AV = 0. Moreover U(u) = U(N) VU(v), A(L) and
v(L) are contained in u(L) and ), v are exhaustive since U(X\) < U(u) and U(v) < U(p).

Since V < U, we have U(X) < U. Moreover, since U(v) < U(u), we have U(v) NU =
UV)ANU(p) AU =U(Y) AV =0. By (3.3) and (3.4) we have A << U and v L U. Moreover,
since U(N) AU(v) =UN) NUANU(v) =0, we have A L v.

Different choices of U in (3.5) give different decomposition theorems.
For example, if we take as U the uniformity generated by a modular measure m : L — G',
we obtain a Lebesgue decomposition theorem.

Corollary (3.6) (Lebesgue decomposition theorem). Let p : L — G be an exhaustive
modular measure and m : L — G' a modular measure. Then there exist unique G-valued
singular modular measures \ and v on L such that p = A4+v, A << m and v L m. Moreover

Up) =UX) VUP).

Now we want derive by (3.5) a Hewitt-Yosida decomposition theorem. First we need
some results.

Lemma (3.7) Let 4 : L — G be an ezhaustive modular measure. Then, for every D-
uniformity U < U(u), there exists a modular measure v : L — G such that v << p and
U=UW).

Proof. By (3.5) we can find exhaustive modular measures A\ and v such that u = A + v,
U(p) =UN)VUW), UN) AU =0 and U(v) < U. By (3.3) we have v << p. Moreover, since
by (2.9) the lattice of all exhaustive D-uniformities is distributive, we get U = U AU(u) =
UNUNVU@)=UNUN)VUANUW)) =UNUY)=UV).

A modular measure p : L — G is said to be purely non o-additive if the zero-measure is
the only o-additive modular measure A with A << p.

Lemma (3.8) Let u: L — G be a modular measure. Denote by U, the supremum of all
0-0.c. D-uniformities on L. Then the following conditions are equivalent:

(1) p is purely non o-additive.
(2) p L U,.

(3) u L X\ for every o-additive modular measure .

Proof. (1) = (2) By (3.7) we can find a modular measure v such that v << p and U (p) A
Uy; =U(v). Then U(v) is o-o.c. and therefore, by (3.2) of [W4], v is o-0.c., too. Hence, by
2.2 of [A-B], v is g-additive. By (1), we get v = 0. Therefore U (v) =0, i.e. p L U, by (3.4).
(2) = (3) If A is a o-additive modular measure, by 2.2 of [A-B] A is 0-0.c. and therefore
we have U(u) AUN) =U(u) AUN) AU, = 0. Hence, by (3.4), u L A.
(3) = (1) If A is a o-additive modular measure with A << p, by (3.3) and (3.4) we have
UN) =UN) ANU(p) =0, whence A = 0.

Corollary (3.9) (Hewitt-Yosida decomposition theorem). Let pu: L — G be an ezhaustive
modular measure. Then there exist unique G-valued modular measures A and v on L such
that p = A+v, X is o-additive and v is purely non o-additive. Moreover U(p) = U(XN)VU (V).

Proof. Take in (3.5) as U the supremum of all o-o.c. D-uniformities on L, and apply (3.8).
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4. Control theorems

In this section we derive from the results of Section 2 a technique which allows us to
transfer control theorems known for measures on Boolean algebras - as Bartle-Dunford-
Schwartz and Rybakov theorems - to control theorems for modular measures on L.

We denote by X,Y complete Hausdorff locally convex linear spaces.

If u:L — X and and v : L — Y are modular measures, we say that v is a control for p
if p << v and v << p (see Section 3).

Recall that, by (3.3), v is a control for p if and only if U(u) = U(v).

If M is a collection of X-valued modular measures on L, we say that a modular measure
v is a control for M if U(v) = sup{U(p) : p € M}.

If W is an exhaustive D-uniformity, we denote by

DU(L,W), DU(L,W), DU(C(L),W)

the lattices introduced in Section 2. If # € DU(L,W), we denote by U,U{ and U the
elements which correspond in the isomorphism between DU (L, W) and the other lattices,
respectively (see (2.9)). Moreover, as in Section 2, we denote by U(u) the D-uniformity
generated by a X-valued modular measure y on L.

If u is a W-continuous modular measure on L, we denote by i the modular measure
defined by fi(a@) = p(a) for a € @ € L, by i the uniformly continuous extension of i to
(L,V) and by Ti the restriction of ji to C'(L). It is clear that fi is a o.c. modular measure
(see (2.5)) and therefore T is a measure on a Boolean algebra.

An essential step to obtain control theorems is the following result.
Proposition (4.1) Let W be an ezhaustive D-uniformity on L. Then:

(1) The map ¢ : p — T is a monomorphism between the linear space of all W-continuous
X -valued modular measures on L and the linear space of all W- continuous X -valued
measures on C(L).

(2)If X = R and W is the supremum of the D-uniformities generated by all bounded real-
valued modular measures on L, then the map ¢ in (1) is an isomorphism between the
linear space of all bounded real-valued modular measures on L and the linear space of
all completely additive measures on C(L).

(3)If p: L — X is a W-continuous modular measure and U = U(p), then U = U(f) and
U =Up).

DIf u:L— X andv:L =Y are W-continuous modular measures, then u << v if and
only if fif << ¥ if and only if 1 << 7.

Proof. (1) Tt is clear that the maps p — i — i are isomorphisms. Moreover, if X = R, the
map ji — 7 is injective since, by 2.7 of [A-B-V], /i attains its supremum on C(L). Then in
the general case ¢ is injective since the dual space X' of X separates the points and, by 6.3
of [W,], the topology generated by p is the supremum of the topologies generated by the
modular measures z’ o u, with 2’ € X'.

(2) has been proved in 4.3 of [A-B-V].

(3) The equality & = U(ji) has been proved in 3.8 of [W4]. By (2.9) applied with C(L)
in place of L, we obtain that U = u(ﬂ)\c@)- Then, to prove the other equality, we have to
prove that U(1),c(z) = U(R). By (2.10), it is sufficient to prove that the elements of C(L)

which correspond to U and to U(fz) in the isomorphism of (2.10) are equal.
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Recall that, for a X-valued modular measure A, the closure of {0} in U(A) is the set
{a€eL:Ab)=0Vbe L,b<a} (see Section 1).

Then, by (2.10), we have to prove that, if a € C(L), from ji(b) = 0 for every b € C(L)
with b < a it follows i(b) = 0 for every b € L with b < a.

Let a € C(L) and suppose ji(b) = 0 for every b € C(L) with b < a. Set #(b) = ji(b A a)
for b € L. By 2.2 of [A-B-V], 7 is a bounded modular measure on L. By assumption, we
have that 7 = 0. By (1) applied to L in place of L, we get # = 0, i.e. ji(b) = 0 for every
be L with b < a.

By (3.3), (2.9) and (3), we have that u << v & U(u) <UW) S UR) <UT) & 1 << T.

By (4.1) an exhaustive modular measure v on L is a control for an exhaustive modular
measure  if and only if 7 is a control for 7. This allows us to immediately prove theorems
of existence of real-valued controls.

Theorem (4.2) (Bartle-Dunford-Schwartz theorem). Let p : L — X be an erhaustive
modular measure and suppose that X is metrizable. Then u has a [0, 1]-valued control.

Proof. Let W be as in (4.1)-2. By Bartle-Dunford-Schwartz theorem for measures on
Boolean algebras, we can find a [0,1]-valued measure 7 on C(L) such that U (7) = U(z). By
(4.1)-2, we can find a real-valued modular measure A on L such that A = 7 and U(X) = U(u).

In similar way we can prove the following result.

Theorem (4.3) (Rybakov theorem). Let pn: L — X be an ezhaustive modular measure
and suppose that X is a Banach space. Then there exists a continuous linear functional x'
on X such that the modular measure x' o i is a control for p.

Now we want extend to modular measures on L a control theorem proved by A. Basile
in [B] (Theorem 2). In this case, the control takes values in X and then it is not possible to
immediately transfer the result because we don’t know if the map ¢ in (4.1)-(1) is surjective.
Nevertheless it is possible to extend the result of [B] with the aid of the isomorphism of
(2.9).

Recall (see [D]) that every X-valued measure on a Boolean algebra A generates a
Freéchet-Nikodym topology (FN-topology) on A, i.e. a group topology having as base of
neighbourhoods of 0 a family consisting of sets U with the following property: if a < b € U,
then a € U.

For the proof of our result we need the following lemma (see proof of Lemma 1 of [B]),
which we will apply to C(L).

Lemma (4.4) Let A be a complete Boolean algebra, 7o a o.c. Hausdorff FN-topology on A
and M a collection of X -valued 1o-continuous measures on A. Denote by T thwpremum
of all FN-topologies (i) generated by the elements p of M. Set apr = (sup {0} )t and

a, = (sume(M))L for u € M. Suppose that, for each integer n, there exist a, € A,
Un € M and a 1o-continuous measure v on A with the following properties:

(1) {an} is disjoint.
(2) For each integer n, a, < ay,, .
(3) anm = sup,, an.

T(vr) = 1(vn), where vy(a) = pn(a A ay) for a € A.

(4) The series S.>°_ v¥ is uniformly convergent on A.

n=1"n
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Then the measure v = - v* is a X -valued control for M.

n=1"n

If M is a collection of X-valued modular measures on L, we say that M is uniformly
ezhaustive if, for every monotone sequence {a,} in L, {u(a,)} is a Cauchy sequence in X
uniformly with respect to u € M. Then, if we set A(a) = (u(a))uenm for a € L, we have that
M is uniformly exhaustive if and only if A : L — (XM, 7.)) is exhaustive, where 7., is the
topology of the uniform convergence in X™. Therefore, by 3.4 of [A], we obtain that M is
uniformly exhaustive if and only if, for every orthogonal sequence {a,} in L, the sequence
{n(an)} converges to 0 in X uniformly with respect to u € M.

Now we can extend to effect algebras Theorem 2 of [B].

Theorem (4.5) Let {u,} be a uniformly exhaustive sequence of X -valued modular measures
on L. Then {p,} has a control with values in X.

Proof. Set W = sup{U(u,) : n € N}. By (2.10), the map
¢:U € DUL,W) — (supmﬁ )J' € C(L)

is a lattice isomorphism. By (2.5), C(L) is a complete Boolean algebra.

(i) We prove that the assumptions of (4.4) are satisfied with respect to the family
M = {fi, : n € N} of measures on C(L).

Set 7 = sup,, T, where, for each n € N, 7, is the topologies generated by U(f,,) on
C(L). By 6.10 of [W3], 7, and the topology 7o generated by W are FN-topologies. By (2.5),
7o is o.c. Note that, since by (2.9) DU(L,W) and DU(C(L), W) are isomorphic, from the
definition of W we get 79 = 7. Therefore, for each n € N, 7, is 79-continuous.

Now set

Gy = 0U(n)) (M EN), a1 =y, an=au, \ \/ au (n22).

i<n—1

Then, by (4.1), {a,} is a disjoint sequence in C(L), with a, < a,, = (sup{0} ™)*.
Moreover, if we set ap;y = (supm T)J', since ¢ is a lattice isomorphism, we have sup,, a,, =
supy, au, = sup{p(U(un)) :n € N} = ¢(W) = an.

Now, for a € L and n € N, set ,(a) = fin(a A ap) and 7, = 27"y,

Since {a,} C C(L), by 2.1 of [A-B-V] 7, is a W-continuous modular measure. Since

U@r) = U(D,), we have that ﬂ:qc@) is Tp-continuous.

We prove that the series Y~ | 7 is uniformly convergent on L.

It is clear that, since {u, } is uniformly exhaustive, {fi,, : n € N} is uniformly exhaustive,
too. Observe that, since {a,} is an orthogonal sequence in C(L), by (2.1)-1 of [A-B-V] we
have a A @I, a; = @}, (a A a;) for each a € L and n € N. Therefore, for each a € L,
{a Aa,} in an orthogonal sequence in L. Then we have that lim,, #,(a) = 0, and therefore
{#n(a)} is bounded in X for each a € L. Hence, if we set i(a) = (#,(a))nen for a € L and
H = {f € XN : f(N) is bounded}, we have that A is a H-valued modular measure and,
since {fi, } is uniformly exhaustive, h it is exhaustive with respect to the topology 7o of the
uniform convergence in H. Then, by 2.3 of [W,], h is bounded in (H, 7.,), whence it follows
that ,,cn i, (L) is bounded in X. Let W be an absolutely convex neighbourhood of 0 in
X, and choose ¢ > 0 such that (|, (L)) C W. Let r € N be such that 3. 27 < e.

Then, if p > ¢ > r and a € L, we obtain

i>r
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Then all the assumptions of (4.4) are satisfied. o
(ii) Now set, for a € L, ¥(a) = Y o, 7% (a). By (i) and (4.4), Yjc(iy is a control for M.
Moreover, since 7% is W-continuous and the series >0, U¥ is uniformly convergent on L,

we have that 4 is W-continuous, too. Then, by (4.1), 4 is a control for M = {jix : n € N'}.
Hence {p, : n € N} has a X-valued control.
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