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Abstract. This paper considers the problem of estimation and testing for ARCH

models under the assumption of conditional correlation. For a bivariate model with

unknown volatility parameter vector, we construct an estimator for this parameter

vector using the conditional least squares estimator given by Tj�stheim (1986). Such

an estimation procedure is applied to more general ARCH models. Next we turn

to discuss the testing problem for the multivariate model in the setting of Taniguchi

and Kakizawa (2000), based on a quasi-Gaussian maximum likelihood estimator. The

results show that the tests such as Gaussian likelihood ratio (GLR), Wald (W), and

Langrange multiplier (LM) provide asymptotic equivalent procedures for testing a gen-

eral linear hypothesis. For a composite hypothesis, the limiting distribution of such

tests is derived in a parametric form. The W test is used for constructing approximate

con�dence intervals. As an example, the local power property is illustrated.

1. Introduction

Analysis of �nancial data has received a considerable amount of attention in the liter-

ature during the past two decades. Several models have been suggested to capture special

features of �nancial data and most of these models have the property that the conditional

variance depends on the past. One of the well known and most heavily used examples

is the class of ARCH(p) models, introduced by Engle (1982). Since then, ARCH related

models ( e.g., GARCH, GARCH-M, EGARCH) have become perhaps the most popular and

extensively studied �nancial econometric models. The implementation of these parametric

models is relatively simple, and from a practical point of view, it is well known now how to

identify, estimate, and test this kind of model (for a description of these models and some

empirical evidence, see the survey by Bollerslev et al. (1992)). Moreover, Giraitis et al.

(2000) discussed a class of ARCH(1) models, which includes that of ARCH(p) models as a

special case, and established suÆcient conditions for the existence of a stationary solution

and its explicit representation.

In classical time series anaylsis the asymptotic estimation and testing theory were devel-

oped for linear processes, which include the AR, MA and ARMA models. L�utkephol (1991)

extended these results to the case of vector process and discussed the asymptotics of the

classical testing principles such as likelihood ratio (LR), Wald (W), and Langrange mul-

tiplier (LM) under the null hypothesis. More speci�cally, he derived the null asymptotic

distribution of a Gaussian likelihood ratio (GLR) test for a vector-valued non-Gaussian

AR process. Taniguchi and Kakizawa (2000) elucidated the asymptotics of tests based on

Gaussian likelihoods for non-Gaussian vector linear processes. Their approach provides a

convenient framework for many testing problems in the literature.

In this paper, we focus attention on the problem of estimation for bivariate ARCH,
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and estimation and testing for multivariate ARCH models under the assumption of con-

ditional correlation (for a review of these models, see e.g., Bollerslev (1987); Bollerslev et

al. (1988); Engle and Kroner (1995)). Such models allow the variances and covariances to

depend on the information set in a vector ARMA manner and are particularly useful in

multivariate �nancial models. More concretely, the paper is organized as follows. Section

2 presents the conditional least squares estimation approach in the context of nonlinear

time series given by Tj�stheim (1986). Using this result, in Section 3, we �rst discuss the

problem of estimating the bivariate ARCH model with unknown volatility parameter vec-

tor. Then we apply these results to more general ARCH models. Section 4 discusses the

testing problem for the multivariate ARCH model in the setting of Taniguchi and Kakizawa

(2000), based on a quasi-Gaussian maximum likelihood estimator. The testing principles

GLR, W, and LM provide asymptotic equivalent procedures for a general linear hypothe-

sis. Then the limiting distribution for a composite hypothesis of such tests is derived in a

parametric form. The W test is used to construct approximate con�dence intervals. Based

on the results by Sakiyama and Taniguchi (2003), the local power is highlighted in Section 5.

2. Conditional Least Squares Estimation

In this section, we state Tj�stheim's result (1986) which was essentially obtained by

reformulating and extending the arguments of Klimko and Nelson (1978) to nonlinear time

series.

Let fXt : t = 0;�1; : : : g be a strictly stationary and ergodic process taking values

in R
p. In addition, suppose that EfkXtk2g < 1, where k � k denotes the Euclidean

norm. Suppose that observations (X1; : : : ;Xn) are available. The probability distribution

of (X1; : : : ;Xn) is speci�ed by an unknown parameter vector � = (�1; : : : ; �r)
T 2 B � R

r.

Its true value is denoted by �
0. Then consider a general real-valued penalty function

Qn(�) = Qn(X1; : : : ;Xn;�) depending on the observations and a parameter vector � 2 B .
Let us now specify the penalty function. Let Ft(l) be the �-�eld generated by fXs :

t� l � s � tg, where l is an appropriate integer. If fXtg is a nonlinear autoregressive model

of order k, we can take l = k. Write m�(t; t � 1) = E�fXtjFt�1(l)g.
Consider the penalty function

Qn(�) =

nX
t=p+1

fXt �m�(t; t � 1)gT fXt �m�(t; t � 1)g:

The CLS estimator �̂
(CLS)
n of � is de�ned by �̂

(CLS)
n = argmin�2B Qn(�).

Then, under some regularity conditions of Cramer type, Tj�stheim (1986, pp. 254-256)

showed that

�̂
(CLS)
n

a:s�! �
0
; and

p
n(�̂(CLS)n � �

0)
d�! N (0;U �1RU �1) as n!1;

where

U = E

�
@

@�
m
T
�0(t; t� 1)

@

@�
m�0(t; t� 1)

�
and

R = E

�
@

@�
m
T
�0(t; t� 1)fXt �m�0(t; t � 1)gfXt �m�0(t; t � 1)gT @

@�
m�0(t; t � 1)

�
<1:

The CLS estimation approach provides a uni�ed treatment of estimation problems for

widely used classes of nonlinear time series models. Based on such an estimation approach,
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Tj�stheim (1986) applied it to several classes of nonlinear models.

3. Estimation of ARCH models

In the present section we will �rst discuss the problem of estimation for a bivariate

ARCH model to illustrate the key ideas based on the preceding framework. Then we apply

such an estimation procedure to more general ARCH models.

3.1 Bivariate case

To begin with, let us suppose that a bivariate time series fXt = (X1;t;X2;t)
Tg follows

an ARCH(p) model characterized by the equations

Xt = �X;t"t; HX;t � E(XtX
T
t jFX;t�1) = AX;0 +

pX
j=1

AX;j � (Xt�jX
T
t�j); t � p+ 1;

(1)

where � stands for the Hadamard product (element-by-element multiplication), FX;t is the

�-�eld generated by fXt;Xt�1; : : : g, "t = ("1;t; "2;t)
T � i.i.d. N (0;�),

� =

�
1 �12

�12 1

�
; j�21j < 1;

with corresponding fourth-order cumulant �" = (�";1; �";2)
T , HX;t � (hij;t) = �X;t��X;t

is a 2 � 2 symmetric matrix, �X;t = diagf
p
h11;t;

p
h22;tg, AX;0 and AX;j, j = 1; : : : ; p,

are unknown volatility parameter matrices, and "t is independent of FX;t�1.

In the sequel, we will use the following identities. Let C1, C2, C3 and C4 be matrices

whose dimensions are such that the products C1C2C3, C1C3 and C2C4 exist. Further,

suppose that C1 and C2 are nonsingular. Then

(B1) vec(C1C2C3) = (CT
3 
 C1)vec(C2),

(B2) (C1 
 C2)(C3 
 C4) = C1C3 
C2C4,

(B3) (C1 
 C2)
�1 = C

�1
1 
 C

�1
2 ,

(B4) (C1 
 C2)
T = C

T
1 
 C

T
2 ,

where 
 denotes the tensor product (for the de�nition of vec(�), see e.g., Magnus and

Neudecker (1999)).

For the ARCH speci�cation to be sensible, HX;t must be a positive de�nite matrix for

all possible realizations of Xt�1. Note that the time evolution of HX;t is governed by that

of h11;t, h22;t and h12;t = �12

p
h11;th22;t. Therefore, to model the volatility of Xt, it suÆces

to consider the following representation

hX;t =

0
@ h11;t

h12;t

h22;t

1
A =

0
@ a10

a20

a30

1
A+

pX
j=1

0
@ a11;j a12;j a13;j

a21;j a22;j a23;j

a31;j a32;j a33;j

1
A
0
@ X

2
1;t�j

X1;t�jX2;t�j

X
2
2;t�j

1
A

� aX;0 +

pX
j=1

~AX;jZX;t�j; t � p + 1;(2)

which satis�es the following conditions.

Assumption 1.
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(i) The volatility parameter vector �X = (aTX;0; vec
T ( ~AX;1); : : : ; vec

T ( ~AX;p))
T 2 �X �

R
k is to be estimated, where �X is compact and k = 3(3p+ 1);

(ii) hjj;t > 0 a.e., j = 1; 2, and � is positive de�nite;

(iii) ~AX;j , j = 1; : : : ; p, satisfy �( ~AX;1+ � � �+ ~AX;p) < 1, where �(�) denotes the maximum

eigenvalue of � in modulus.

The condition (ii) guarantees positive de�niteness of HX;t, and (iii) is a suÆcient con-

dition for fXtg to be stationary and ergodic (see Engle and Kroner (1995)). If ~AX;j,

j = 1; : : : ; p, are diagonal matrices, the model will be called diagonal ARCH (see e.g.,

Gouri�eroux (1997, p. 111)).

Write WX;t = (1; ZT
X;t�1; : : : ; Z

T
X;t�p+1)

T and �X;t = ZX;t� hX;t. Then, using (B1), we

have the following autoregressive representation

ZX;t = (WT
X;t�1 
 I3)�X + �X;t;(3)

where I3 is the 3 � 3 identity matrix. Notice that E[ZX;tjFX;t�1] = hX;t, and therefore,

hX;t is the prediction of ZX;t when its past is known, and �X;t is the error term. Write


t(�X ) � E[�X;t�
T
X;tjFX;t�1] = E[(ZX;t � hX;t)(ZX;t � hX;t)

T jFX;t�1]:(4)

Now consider the estimation of �X . Suppose that an observed stretch (X1; : : : ;Xn) is

available. The true value of �X is denoted by �
0
X . Hence, from (B2), (B3) and (3), the

conditional least squares estimator for �X is given by

�̂X;n =

�� nX
t=p+1

WX;t�1W
T
X;t�1

�
�1


 I3

�� nX
t=p+1

(WX;t�1 
 I3)ZX;t

�
:(5)

Let us impose the following assumption.

Assumption 2.

EfkZX;tk4g <1.

SuÆcient conditions to validate this assumption is given by Giraitis et al. (2000).

Write

UX = [E(WX;t�1W
T
X;t�1)]
 I3 and RX = E[(WX;t�1 
 I3)
t(�

0
X )(W

T
X;t�1 
 I3)]:

Then we have the following result.

Theorem 3.1. Suppose that the process fZX;tg given by (3) satis�es Assumptions 1 and

2. If UX and RX are positive de�nite matrices with bounded elements, then as n!1,

(i) there exists a sequence of estimators f�̂X;ng such that �̂X;n
a:s�! �

0
X .

(ii)
p
n(�̂X;n � �

0
X )

d�! N (0; U �1
X RXU �1

X ).

Proof. In view of (3), we have

m�X (t; t � 1) = (WT
X;t�1 
 I3)�X and

@m�X (t; t� 1)

@�X
= (WX;t�1 
 I3):
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Now, using Assumption 2, it is not diÆcult to show that the regularity conditions of Cramer

type given in Tj�stheim (1986) are satis�ed.

Observe that

�̂X;n � �X =

��
(n � p)�1

nX
t=p+1

WX;t�1W
T
X;t�1

�
�1


 I3

�

�
�
(n� p)�1

nX
t=p+1

(WX;t�1 
 I3)�X;t

�
:

Since, by Assumption 2, fWX;t�1W
T
X;t�1
I3g and f(WX;t�1
I3)�X;tg are strictly stationary

and ergodic. Moreover, UX is �nite, and E[(WX;t�1 
 I3)�X;t] = 0. Thus, by the ergodic

theorem,

(n� p)�1
nX

t=p+1

(WX;t�1W
T
X;t�1)
 I3

a:s:�! UX ; and

(n � p)�1
nX

t=p+1

(WX;t�1 
 I3)�X;t
a:s:�! 0;

which imply �̂X;n
a:s�! �X .

Next we derive the limiting distribution of �̂X;n. For any given vector � = (�0; : : : ; �k)
T 6=

0, it follows from (B4), the Cramer-Wold device and Billingsley's theorem (1961) for mar-

tingales that the distribution of

(n� p)�1=2
nX

t=p+1

�
T (WX;t�1 
 I3)�X;t

converges to the normal distribution with mean zero and variance

E[(�T (WX;t�1 
 I3)�X;t)
2] = E[�T (WX;t�1 
 I3)E[�X;t�

T
X;tjFX;t�1](W

T
X;t�1 
 I3)�]

= �
TRX� as n!1:

Thus, by Slutsky's theorem, the assertion (ii) follows. Hence the proof is completed.

3.2 Multivariate case

In the preceding subsection, we described the estimation procedure for the bivariate

ARCH model. Based on such an estimation procedure, it is natural to consider modeling

the ARCH model in a higher dimensional situation.

Let fYt = (X1;t; : : : ;Xm;t)
T g be an m-variate time series generated by

Yt = �Y;t~"t; HY;t � E(YtY
T
t jFY;t�1) = AY;0 +

pX
j=1

AY;j � (Yt�jY
T
t�j); t � p+ 1;

whereFY;t is the �-�eld generated by fYt; Yt�1; : : : g, ~"t = ("1;t; : : : ; "m;t)
T � i.i.d. N (0; ~�),

~� =

0
BBBB@

1 �12 � � � �1m

�12 1
.. .

...
...

. . .
. . . �(m�1)m

�1m � � � �(m�1)m 1

1
CCCCA ; j�ij j < 1;
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with corresponding fourth-order cumulant �~" = (�~";1; : : : ; �~";m)
T ,HY;t � (hij;t) = �Y;t

~��Y;t

is an m � m symmetric matrix, �Y;t = diagf
p
h11;t; : : : ;

p
hmm;tg, AY;0 and AY;j , j =

1; : : : ; p, are unknown volatility parameter matrices, and ~"t is independent of FY;t�1. By

analogy with (2), the corresponding representation of HY;t is given by

hY;t = vech(HY;t) =

0
B@

a10

...

aq0

1
CA+

pX
j=1

0
B@

a11;j � � � a1q;j

...
. . .

...

aq1;j � � � aqq;j

1
CA vech(Yt�jY

T
t�j)

� aY;0 +

pX
j=1

~AY;jZY;t�j ; t � p+ 1;

where q =m(m+ 1)=2.

We now impose the following conditions.

Assumption 3.

(i) The volatility parameter vector �Y = (aTY;0; vec
T ( ~AY;1); : : : ; vec

T ( ~AY;p))
T 2 �Y � R

s

is to be estimated, where �Y is compact and s = m(mp+ 1);

(ii) hii;t > 0 a.e., i = 1; : : : ;m, and ~� is positive de�nite;

(iii) ~AY;j , j = 1; : : : ; p, satisfy �( ~AY;1 + � � �+ ~AY;p) < 1 for stationarity.

The condition (ii) ensures the positive de�niteness ofHY;t (see e.g., Engle (1995, p. 302)).

Write WY;t = (1; ZT
Y;t�1; : : : ; Z

T
Y;t�p+1)

T and �Y;t = ZY;t � hY;t. Then

ZY;t = (WT
Y;t�1 
 Iq)�Y + �Y;t;(6)

where Iq is the q � q identity matrix. Recalling (4), we write


t(�Y ) � E[�Y;t�
T
Y;tjFY;t�1] = E[(ZY;t � hY;t)(ZY;t � hY;t)

T jFY;t�1]:

Based on an observed stretch (Y1; : : : ; Yn), we shall estimate �Y . Its true value is denoted

by �0Y . Hence, by analogy with (5), the conditional least squares estimator for �Y is given

by

�̂Y;n =

�� nX
t=p+1

WY;t�1W
T
Y;t�1

�
�1


 Iq

�� nX
t=p+1

(WY;t�1 
 Iq)ZY;t

�
:(7)

By writing

UY = [E(WY;t�1W
T
Y;t�1)]
 Iq and RY = E[(WY;t�1 
 Iq)
t(�

0
Y )(W

T
Y;t�1 
 Iq)];

we can establish the asymptotics of (7) via the ergodic theorem and Billingsley's theorem

(1961) for martingales similarly as in Theorem 3.1.

Theorem 3.2. Suppose that the process fZY;tg given by (6) satis�es Assumption 3. If UY

and RY are positive de�nite matrices with bounded elements, then as n!1,

(i) there exists a sequence of estimators f�̂Y;ng such that �̂Y;n
a:s�! �

0
Y .

(ii)
p
n(�̂Y;n � �

0
Y )

d�! N (0; U �1
Y RY U �1

Y ).
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4. Testing problem in multivariate ARCH

An application of any statistical model to data desires to have diagnostic tests avail-

able for checking the model's ability to describe the data, once the model has been esti-

mated. This section considers the classical testing principles such as Gaussian likelihood

ratio (GLR), Wald (W) and, Langrange multiplier (LM), which provide a convenient frame-

work for deriving such tests. The W test is used for constructing approximate con�dence

intervals.

Consider the multivariate ARCH model,

ZY;t = (WT
Y;t�1 
 Iq)�Y + �Y;t:

Recalling 
t(�Y ) = E[�Y;t�
T
Y;tjFY;t�1], we can under the stationarity condition, set 
 =

Ef
t(�Y )g. The spectral density matrix of fZY;tg is given by

f(�) =
1

2�
A(�)�1
fA(�)�g�1;

where A(�) = Iq�
Pp

j=1
~AY;je

ij�. Henceforth we are interested in a k-dimensional unknown

parameter �, and suppose that � is innovation free, i.e., 
 is independent of �.

Let

In(�) =
1

2�n

� nX
t=1

(ZY;t � �ZY;t)e
it�

�� nX
t=1

(ZY;t � �ZY;t)e
it�

�
�

be the periodogram of the partial realization of fZY;tg, where �ZY;t = n
�1
Pn

t=1ZY;t and �
is the complex conjugate transpose. We write the spectral density matrix f(�) as f�(�).

Suppose that we wish to test

H0 : C�� r = 0 against HA : C�� r 6= 0;(8)

where C is a speci�ed (k � l)� k matrix of full rank, and r is a speci�ed k � l vector with

k = dim(�).

In order to estimate �, we use the results of Hosoya and Taniguchi (1982) who considered

its estimation by minimizing the quantity

D(f�;In) =

Z �

��

[log det f�(�) + trff�(�)�1In(�)g]d�;(9)

where det(�) and tr(�) stand for the determinant and trace, respectively. The motivation of

this quantity stems from approximated Gaussian likelihoods although Gaussianity of fZY;tg
is not assumed.

Let �̂(QML) be the quasi-Gaussian maximum likelihood estimator of � minimizing (9).

Then, under general regularity conditions, they showed that

p
n(�̂(QML) � �)

d�! Nk(0; F
�1(�));(10)

where

F (�) =
1

4�

Z �

��

@

@�
log f�(�)

@

@�T
log f�(�)d�:
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Hence, in view of (8), we have

p
n(C�̂(QML) �C�)

d�! Nk�l(0; CF
�1(�)CT ):(11)

Let

~�(QML) = arg min
�: C�=r

D(f�;In)

be the restricted quasi-Gaussian maximum likelihood estimator of �. Then the Gaussian

likelihood ratio (GLR) test statistic is given by

GLR =
n

2�
fD(f

�̂(QML)
;In)�D(f~�(QML) ;In)g:

Motivated by (11), the Wald (W) test statistic is given by

W = n(C�̂(QML) � r)T [CF�1(�̂(QML))CT ]�1(C�̂(QML) � r):

The Langrange multiplier (LM) test statistic is of the form

LM =
n

16�2

�
@

@�
D(f~�(QML) ;In)

�T
F
�1( ~�(QML))

�
@

@�
D(f~�(QML) ;In)

�
;

which is based on the restricted estimator ~�(QML). Hence, under appropriate regularity

conditions, it can be shown similarly as in Taniguchi and Kakizawa (2000, pp. 60-63) that

the limiting distribution of the tests GLR, W, and LM when H0 is true tends to �
2
k�l as

n!1.

In summary we have three test procedures with equivalent asymptotic distribution under

H0. The GLR statistic involves both the restricted and unrestricted QML estimator, the

LM test statistic is based on the restricted estimator only, and the W test statistic requires

just the unrestricted estimator. The choice among the three procedures is often based on

computational convenience. The W test has a disavantage that it is not invariant under

transformations of the restrictions.

The hypothesis (8) reduces to the following problem of testing composite hypothesis

H
�

0 : �2 = �2;0 against H
�

A : �2 6= �2;0;(12)

where � = (�T1 ; �
T
2 )

T , �1 = (�1; : : : ; �l)T , �2 = (�l+1
; : : : ; �

k)T , and �2;0 = (�l+1
0 ; : : : ; �

k
0)
T ,

a speci�ed vector and (�T1 ; �
T
2;0)

T 2 Int(�X). Write �̂(QML) = ((�̂
(QML)

1 )T ; (�̂
(QML)

2 )T )T

under H�

A and de�ne ~�
(QML)

1 by

~�
(QML)

1 = argmin
�1

D(f(�1;�2;0);In):

For (12), we use the followings:

GLR
� =

n

2�
fD(f

(�̂
(QML)

1 ;�̂
(QML)

2 )
;In) �D(f

(~�
(QML)

1 ;�2;0)
;In)g;

W
� = n(�̂

(QML)

2 � �2;0)
T [GF�1(�̂(QML))GT ]�1(�̂

(QML)

2 � �2;0);

LM
� =

n

16�2

�
@

@�
D(f�;In)

����
�=~�(QML)

�T
F
�1( ~�(QML))

�
�
@

@�
D(f�;In)

����
�=~�(QML)

�
;
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where G = [0; Ik�l], a (k� l)� k matrix with Ik�l, the (k� l)� (k� l) identity matrix and
~�(QML) = ((~�

(QML)

1 )T ; �T2;0)
T is the restricted estimator of � under H�

0 .

Now we proceed to derive the limiting distribution of the tests GLR�, W �, and LM
�

under H�

0 in the setting of Sakiyama and Taniguchi (2003). Partitioning the information

matrix conformably with �1 and �2 yields

F (�) =

�
F11 F12

F
T
21 F22

�
;

where the component matrices F11, F22 and F12 are l � l, (k � l) � (k � l) and l � (k � l),

respectively. If K = F22 � F21F
�1
11 F12, then provided F

�1
11 and K

�1 exist, the inverse of

F (�) is

F
�1(�) =

�
F
�1
11 + L �F�111 F12K

�1

�K�1
F21F

�1
11 K

�1

�
;(13)

where L = F
�1
11 F12K

�1
F21F

�1
11 (see e.g., Rencher (2000, p. 21)). Write v =

p
n(�̂(QML)��),

w =
p
n( ~�

(QML)

1 � �1) and u = (wT
; 0T )T . Then, under H�

0 , it is not diÆcult to show

GLR
� = (u� v)TF (�)(u� v)(1 + op(1)):(14)

Observe that

v = �F�1(�)
p
n

4�

@

@�
D(f�;In)(1 + op(1));

u = �J(�)
p
n

4�

@

@�
D(f�;In)(1 + op(1));(15)

where

J(�) =

�
F
�1
11 0

0 0

�
:

From (15), the expression (14) becomes

GLR
� =

p
n

4�

@

@�T
D(f�;In)fF�1(�)� J(�)g

p
n

4�

@

@�
D(f�;In)(1 + op(1)):(16)

Recall (10):

p
n

4�

@

@�
D(f�;In)

d�! Nk(0; F (�));(17)

which, together with (13) and (16), leads to

GLR
� = Q

T
GLR�QGLR� + op(1);

where

QGLR� = �(4�)�1K�1=2

�p
n

@

@�2
D(f�;In)� F21F

�1
11

p
n

@

@�1
D(f�;In)

�
:

In view of (17) we can see that QGLR�

d�! N (0; Ik�l), and hence,

GLR
� d�! �

2
k�l under H�

0 :
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Next we consider the W � test. From (13) and (15), it follows that

p
n(�̂

(QML)

2 � �2;0) = �(4�)�1K�1

�
@

@�2
D(f�;In)� F21F

�1
11

@

@�1
D(f�;In)

�
(1 + op(1)):

Write

QW� = �(4�)�1K�1=2

�p
n

@

@�2

D(f�;In)� F21F
�1
11

p
n

@

@�1

D(f�;In)

�
;

from which,

W
� =

p
nK

1=2(�̂
(QML)

2 � �2;0)
T
p
nK

1=2(�̂
(QML)

2 � �2;0) = Q
T
W�QW� + op(1):

Then, using the fact that QW�

d�! N (0; Ik�l), it follows that

W
� d�! �

2
k�l; under H�

0 :

In the same way as in GLR
�, we get

LM
� d�! �

2
k�l; under H�

0 :

The above results are summarized in

Proposition 4.1. For the testing problem (12), the limiting distribution of the tests GLR
�
,

W
�
, and LM

�
under H

�

0 tends to �
2
k�l as n!1.

The asymptotics of the W test is used to construct approximate con�dence intervals.

Suppose � is partitioned as � = (�1; �
T
2 )

T , where �1 is the �rst component and also the

parameter of interest, and �2 is the (k � 1)-vector of the remaining components. By re-

ordering and relabeling the components of � if necessary, �1 can be taken to be any of the

components of �. Write �̂(QML)(�1) = (�1; (�̂
(QML)

2 (�1))
T )T , and denote by �̂

(QML)

1 the

QML estimator of �1. Then the approximate level 100(1� �)% con�dence intervals for �1
is given by

f�1 : n(�̂(QML)

1 � �1)
2
F (�̂

(QML)

1 ) � S
�1
1 (1� �)g;

where S1 is the distribution function of the �
2
1 distribution with one degree of freedom. The

interval derived from this test reduces to

[�̂
(QML)

1 � n
�1=2

F
�1=2(�̂

(QML)

1 )��1(1 � �=2); �̂
(QML)

1 + n
�1=2

F
�1=2(�̂

(QML)

1 )��1(1� �=2)];

where �(x) =
R x
�1

(2�)�1=2e�t
2=2

dt.

5. Local power evaluation

In this section we provide a heuristic analysis in terms of local power based on the

results of Sakiyama and Taniguchi (2003), and the previous section. For this, it is natural

to consider the �rst-order bivariate ARCH model of the form

ht =

0
@ h11;t

h12;t

h22;t

1
A =

0
@ a10

a20

a30

1
A+

0
@ a11 0 0

0 a22 0

0 0 a33

1
A
0
@ X

2
1;t�1

X1;t�1X2;t�1

X
2
2;t�1

1
A

� a0 +AZt�1; 2 � t � n;
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where a10 > 0, a20 > 0, a20 > 0, and a11 � 0, a33 � 0, a11a33�a
2
22 � 0. Write �t = Zt�ht.

Then Zt = a0 + AZt�1 + �t. Note that EfE[�t�Tt jFt�1]g = 
 � (!ij ), i; j = 1; 2; 3,

and is independent of A, where Ft is the �-�eld generated by fXt;Xt�1; : : : g. Write

� = (�T1 ; �
T
2 )

T , �1 = (!11; !22; !33; !21; !31; !32)
T , �2 = (a11; a22; a33)

T . Then the spectral

density matrix is given by f�(�) = (2�)�1A(�)�1
fA(�)�g�1, where A(�) = I3 �Ae
i�.

Let us consider the problem of testing composite hypothesis

H0 : �2 = �2;0 against HA : �2 6= �2;0;

where �2;0 = (a11;0; a22;0; a33;0)
T is a speci�ed vector. From the de�nition of F (�), we have

the followings:

F11
(6�6)

=
1

4�

Z �

��

@

@�1
log f�(�)

@

@�
T
1

log f�(�)d�;

F12
(6�3)

= F
T
21 =

1

4�

Z �

��

@

@�1
log f�(�)

@

@�
T
2

log f�(�)d� = 0;

F22
(3�3)

=
1

4�

Z �

��

@

@�2
log f�(�)

@

@�
T
2

log f�(�)d�

=

0
@ (1� a

2
11)

�1 (1� a11a22)
�1 (1 � a11a33)

�1

(1� a11a22)
�1 (1� a

2
22)

�1 (1 � a22a33)
�1

(1� a11a33)
�1 (1� a22a33)

�1 (1� a
2
33)

�1

1
A :

Hence, K = F22 � F
T
21F

�1
11 F12 = F22, and from the result by Sakiyama and Taniguchi

(2003), the local power of the test with asymptotic level z� is given by

ZZZ
jx1j;jx2j;jx3j>z�

dN (F
1=2

22 h; I3); h 2 R3
:

For �2;0 = (0:3; 0:1; 0:2); (0:9; 0:1; 0:8); (0:9; 0:7; 0:8), and � = 0:05, Figure 1 provides the

local power. Note that for these choice of the parameter values, the concerned conditions

are satis�ed. An interesting feature is that the local power increases when the components

of �2;0 increase, which means that h=
p
n approaches zero at the rate of 1=

p
n.
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Figure 1: Local power with � = 0:05
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